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Introduction
Ø Expectation maximization (EM) algorithm is to find the

maximum likelihood solution for models having latent variables.
A typical example is the Gaussian mixture model (GMM), which
requires a Gaussian assumption. However, natural images are
highly non-Gaussian so that GMM is not ideal for performing
image clustering task on pixel space.

Ø Generative adversarial network (GAN) has been proved to be
powerful in learning data distribution. Previous work has shown
that GAN can be modified to perform maximum likelihood
estimation (MLE).

Ø Instead of applying GMM on the image clustering task, we
propose a GAN based EM learning framework that can
maximize the likelihood of images and estimate the latent
variables. We call this model GAN-EM, which is a framework for
image clustering, semi-supervised classification, and
dimensionality reduction. In M-step, we design a novel loss
function for discriminator of GAN to perform MLE on data with
soft class label assignments.

Ø The GAN-EM model outperforms most other popular clustering
methods. In the meantime, the quality of the generated images
is also comparable to different GAN variants. Examples of
generated images:

Methodology

M-step: We design a novel loss function for GAN discriminator to
perform MLE on data with soft class label assignments.
Specifically, a conditional generator captures data distribution for K
classes, and a discriminator tells whether a sample is real or fake
for each class.

E-step: We introduce another neural network, called E-net, to fit
the data distribution. The E-net is trained on the data generated by
the generator, acting as a reversed generator.

Experiments

Clustering: We perform unsupervised clustering on MNIST and CelebA datasets.
GAN-EM achieves SOTA results on MNIST with 10, 20, and 30 clusters.

Semi-supervised classification: We extend our model to semi-supervised
classification tasks where only a small part of samples’ labels are known. We use almost
the same training strategies as the clustering task except that we add the supervision to
the E-net in every E-step. We evaluate the performance on MNIST, SVHN, and CelebA.

Dimensionality reduction: We add a new layer to the E-net before the output layer.
After convergence of training, we take the output of this newly added layer as extracted
features after dimensionality reduction.
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Convergence of test error rate of GAN-EM on MNIST.

Representation of unsupervised dimensionality reduction on 
MNIST. Each color denotes one class of digit.


