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ABSTRACT

Conversion of first-order formulae to the clause form required for resolution theorem prov-
ing introduces Skolem terms intended to represent the individuals said to exist. These terms can
lead to incorrect theories when assumptions are made concerning them. This has been called the
reverse Skolemization problem (RSP) and is due to the lack of a precise semantics for the Skolem
terms. We define minimal attribution as the desired interpretation of Skolem terms and show
how, under this interpretation, the Skolem terms become default names for individuals described
by their properties. We describe a set of intuitively satisfying solutions to the RSP which rule out
incorrect theories and also show how to enforce minimal attribution in purely deductive systems.
Both dynamic and static applications of the solution are considered, and a detailed description of
an implementation of the former is provided.
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Chapter 1

Introduction

Existentially quantified variables have always posed problems for resolution-based deduc-

tive systems. In the process of converting an arbitrary formula to the required clause form, these

variables are Skolemized to eliminate the existential quantifiers. While it can be shown that this

transformation does not affect the unsatisfiability of the formula (the Skolem-Herbrand-Go
..
del

Theorem), the resulting clauses may have interpretations which lead to incorrect conclusions.

For example, naive interpretation of statements which are intended to mean that most individuals

possess a property can conflict with information known explicitly about other objects when this

information is expressed using existential quantifiers. Further, universally quantified variables in

the antecedents of rules become Skolem terms during the conversion process and naive applica-

tion of default rules to such terms can lead to incorrect assumptions.

We investigate the role of Skolem functions within the Theorist hypothetical reasoning

framework which is based on a resolution theorem prover. Under an interpretation of minimal

attribution , existential statements become, effectively, default rules for naming individuals

which possess certain properties. We define minimal attribution and examine the problems

involved in making consistent assumptions concerning Skolem individuals.

For purposes of illustration, we describe a progression of solutions to the reverse Skolemi-

zation problem. Each solution is intuitively reasonable, but only the last is capable of enforcing

minimally attributive semantics in all situations involving assumptions. We characterize the

difference between the solutions, and show how the final approach can be applied even in purely

deductive situations when no assumptions are being made. We describe previous attempts to

solve the RSP, and argue for the utility of our approach in assumption-based reasoning and for

the validity of minimally attributive semantics for Skolem terms in general.
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This dissertation is organized as follows. Chapter Two will set out the requisite logical

preliminaries concerning clausal logic and will describe the Theorist hypothetical reasoning sys-

tem. Chapter Three will outline the reverse Skolemization problem, presenting several examples

of its occurance, and Chapter Four will present our solutions to the problem and several further

examples. In Chapter Five we will cover the details of the implementation of the modified Theor-

ist system and Chapter Six will summarize the results and outline potential future avenues of

research.



Chapter 2

Logical Preliminaries

In this chapter we will set out the definitions and details of clausal logic and describe the

Theorist hypothetical reasoning system. Further details concerning the former are available in any

standard text on first-order logic, for example [Lov78], [GeN87], or [ChL73]. The definitive

Theorist reference is [PGA87] but we will go into some detail here as the details are perhaps less

well-known.

2.1. Clause form

Definition

A term is an n-ary function symbol followed by n arguments, each of which is either a

term or a variable , where variables are not considered terms. In the case n = 0, the

term is called a constant . We will denote variables by names starting with uppercase

letters.

Definition

An atomic sentence is an n-ary predicate symbol followed by n arguments, each of

which is a term or a variable. We will denote predicate, function and constant symbols

by names starting with a lowercase letter, and trust that no confusion will result.

Definition

A literal is either an atomic sentence (e.g. p(X)) or the negation of an atomic sen-

tence (written, e.g. , ¬p(X)). In the former case it is a positive literal, in the latter a

negative one.

Definition

A clause is a disjunction of literals (written l1 ∨ l2 ∨ . . . ∨ ln).

3
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2.2. Conversion to clause form

Any well-formed formula (wff ) of the first-order predicate calculus can be translated into a

set of clauses using the following procedure.

1. Eliminate implication:

p → q ≡ ¬p ∨ q.

2. Reduce scope of negation:

¬ ¬ p ≡ p ,
¬ ∀X p(X) ≡ ∃X ¬ p(X) ,
¬ ∃X p(X) ≡ ∀X ¬ p(X) ,
¬(p ∧ q) ≡ ¬ p ∨ ¬ q ,
¬(p ∨ q) ≡ ¬ p ∧ ¬ q .

3. Standardize variables apart:

∀X (p(X)∧ ∃X q(X)) ≡ ∀X (p(X)∧ ∃Y q(Y)) .

4. Skolemize existentially quantified variables:

∀X∃Y p(Y) ≡ ∀X p(f(X)) , (see below).

5. Convert to prenex form:

∀X p(X) → ∀Y q(Y) ≡ ∀X∀Y (p(X) → q(Y)) .

6. Convert to conjunctive normal form:

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) .

7. Drop universal quantifiers:

∀X p(X) ≡ p(X) .

8. Break conjuncts into clauses:

c1 ∧ c2 ∧ . . . ∧ cn ≡ {c1,c2, . . . ,cn } .

9. Rename variables:

{ p(X),q(X) } ≡ { p(X),q(Y) } .

For further details and examples, see [Nil80, §4.2.1]. Note that all clauses are implicitly univer-

sally quantified (step 7). We will generally ignore step 9; variables in different clauses should be

assumed distinct even if their names are the same. We will also sometimes write clauses using

implication signs to make their intended interpretation clearer.
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The only step which does not involve only the use of straightforward logical identities or

rewriting rules is step 4, in which we replace existentially quantified variables by functions which

‘‘represent’’ the individuals stated to exist. For example, the formula

∃X red(X)

becomes

red(c)

where c is a 0-ary Skolem function (a Skolem constant) denoting the individual said to be red.

In the case that the existential quantifier occurs within the scope of universal quantifiers, we allow

for the possibility that the individual referred to might depend on the values of the universally

quantified variables. For example, from

∀X ∃Y is−mother−of(Y,X)

we get

∀X is−mother−of(f(X),X)

where f(X) is a Skolem term whose intended interpretation is that it denotes the mother of the

individual X.

Note that symbols used to represent the Skolem individuals introduced by this step of the

conversion must be distinct from any other constant or function symbols in the set of formulae

being transformed; otherwise the resulting clause might mistakenly refer to an individual which

other clauses already referred to.

2.3. Resolution theorem proving

The result that makes the clausal form of sentences attractive for theorem proving is the

Skolem-Herbrand-Go
..
del Theorem which states, effectively, that if a set of formulae S is

unsatisfiable, then the set of clauses created from S by the procedure described above is also

unsatisfiable (cf. [Gal86, Chapters 7 and 8]).

In particular, the resolution proof procedure [Rob65] exploits this fact to construct proofs

from sets of clauses. We will not go into the details of resolution refutations or proofs; see any of

the references cited above for details. We will note however the advantages of resolution, since
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the problems to be described later arise as a direct result of the use of clauses.

� Resolution is a correct and complete inference rule, therefore using it alone avoids the

need to choose between alternative rules at each step of a proof. Systems that use mul-

tiple inference rules (e.g. natural deduction [BMN80] or Gentzen systems [Gal86])

often require heuristic or metareasoning procedures to decide what to do next.

� Implementation of resolution systems can be made efficient through careful use of

pattern matching and database indexing techniques, see [Cam84]. The Japanese fifth-

generation project (cf. [ICO88], [Fuc88]) has implemented resolution proving at the

microcode level on special-purpose architectures.

� Horn clauses (clauses with at most a single positive literal) can be interpreted as pro-

cedure calls allowing natural and useful programs to be written using only clauses and

resolution (cf. [Kow74], [vaK76]).

� Several tools are readily available for the development of clause-oriented systems,

mostly derived from the PROLOG language [Col83] and its relatives. These provide

robust platforms for prototyping resolution-based deductive systems, as opposed to

the relative scarcity of other theorem provers. Further, PROLOG is a full-featured pro-

gramming language implementing non-logical features through meta-predicates and

procedural attachment of ‘‘system’’ predicates.

2.4. Theorist: A hypothetical reasoning system

Theorist [PGA87, vaG86] is a nonmonotonic reasoning system based on the scientific

method and its ‘‘observe-hypothesize-predict-test’’ paradigm. Its knowledge base is partitioned

into a set F of facts , which are taken to be true, and a set H of hypotheses (actually hypothesis

schemas ) instances of which may be used so long as there is no information to the contrary.

A Theorist database is said to explain a set of observations O if

F ∪ D |= O,
F ∪ D consistent

for D a set of instances of H. In this case we say that D is the theory which explains O. 1.
�������������������������������

1. The symbol D comes from ‘‘default theory’’, even though such usage is now somewhat misleading.



7

In general, Theorist is as powerful as any other default reasoning scheme, such as cir-

cumscription [McC80] or default logic [Rei80]. See [LiG89] for a comparison between Theorist

and the former, and [Poo88a, Poo89] for comparisons with the latter.

2.5. Theorist example

The following Theorist database describes some possible commonsense knowledge about

birds:

Example 2.1
H = {birdsfly(X): ∀X bird(X) → flies(X),

emusdontfly(X): ∀X emu(X) → ¬flies(X) },

F = {bird(tweety),

emu(edna),

∀X emu(X) → bird(X) }.

We name the hypotheses for ease of reference. 2. The intended interpretation of these statements

should be clear: most birds fly; most emus don’t fly; tweety is a bird; edna is an emu; all emus

are birds. The precise meaning of ‘‘most’’ in this setting is an open question and is not relevant

here.

We can explain the observation

flies(tweety)

with the theory

{birdsfly(tweety) },

meaning we use the default rule

bird(X) → flies(X)

with reference to tweety. Note that we could not have derived flies(tweety) from the

facts alone. We were able to use the default rule since there was no information to the contrary.

�������������������������������

2. In fact, the hypothesis name : formula can be transformed into hypothesis name and fact formula ←
name . So long as name contains all universally quantified variables appearing in formula (which may be
instantiated during a proof) the semantics are identical. See [Poo88a, §5] for further details.
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2.6. Theorist and nonmontonicity

Clearly, we may be able to explain a given set of observations with several theories or

explain both an observation and it’s negation (with different theories, each of which is consistent

despite being mutually inconsistent). Thus in the above example, we can explain

flies(edna)

with theory

{birdsfly(edna) }

and we can explain

¬flies(edna)

with theory

{emusdontfly(edna) }.

This is an example of the multiple extension problem [HaM86] and is solved in the Theorist

framework by theory preference : meta-rules which prune and order theories. So, for example,

we might prefer the explanation of ¬flies(edna) by virtue of a specificity criterion as in

inheritance reasoning. For details, see [Poo85], [Kir87], or the other references listed at the end

of this section.

In addition to straightforward explanation, we can use Theorist to predict or conditionally

explain . For prediction, we predict those things which are logical consequences of preferred (for

example, maximal) theories. A simple example is given by the ‘‘Nixon diamond’’ [THT87]

which is axiomatized for Theorist as:

H = { ¬pacifist(X) ← republican(X),

pacifist(X) ← quaker(X) },

F = {republican(nixon),

quaker(nixon) }.

In other words, most republicans are not pacifists, most quakers are, and Nixon is both a quaker

and a republican. If we predict only those things which are present in all extensions of a theory

(and the facts) then we predict neither pacifist(nixon)nor ¬pacifist(nixon). If we

predict those things present in any extension, then we predict both possiblities.
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We conditionally explain observations O with conditions C if adding C to F would allow us

to explain O. Conditional explanation is useful when there are no ‘‘traditional’’ explanations,

however, if unrestricted, the exponential explosion of conditional explanations may be counter-

productive, since any point at which a proof fails is a candidate for a condition. As before, theory

preference information could be used to specify more ‘‘desirable’’ conditions. As a simple exam-

ple, Theorist might be able to ask the value of something it cannot deduce, such as the result of a

lab test in a diagnostic environment. Clearly these are good candidates for conditions, subject to

cost and utility considerations.

The specification of Theorist makes no commitment as to how validity (|= ) is to be imple-

mented in order to actually build a system based on it’s principles. A reasonable approach is to

implement validity by derivability (|−) using a complete proof procedure and use negation as

failure [Cla78], [Llo87] to implement consistency checking. Thus from facts F and hypotheses H

we explain O with theory D if

F ∪ D |− O,
F ∪ D |−/ ¬ d, for each d ∈ D.

To be even more specific, we implement derivability using a clausal theorem prover based

on the MESON proof procedure [Lov78]. This is a resolution-based proof procedure which can be

viewed as PROLOG with true negation and thus allows the use of arbitrary (as opposed to only

Horn) clauses [UmP85], [Bow82]. Straightforward extensions allow the processing of disjunc-

tive queries (e.g. , [Sti88]). We should point out that while validity is at best semi-decidable for

first order logic (and thus for Theorist) the depth-first strategy of our implementation of the

MESON procedure may cause it to pursue an infinite proof branch and miss solutions. In any

event, these control issues are not of concern here since we are concerned with producing a

correct specification (however see Chapter 5 for some discussion of this).

To conclude, among other areas of interest, Theorist can be used in planning and temporal

reasoning to deal with the frame problem ([GoG87], [Goo87]), for analogical reasoning ([Jac86],

[Goe89]), for diagnosis and abductive reasoning ([Poo86b], [Poo88b]), and in expert systems
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([JoP85], [Tub86]).



Chapter 3

The Reverse Skolemization Problem

The reverse Skolemization problem (RSP) arises in any reasoning system based on clausal

logic. In particular, it arises in Theorist when assumptions are made concerning Skolem individu-

als. In this chapter we describe the RSP from the point of view of theory formation in hypotheti-

cal reasoning and present examples of its occurance, allowing us to proceed to the solution

described in Chapter Four. We will show how this is part of a larger problem concerning the

identity of individuals said to exist, and will describe other approaches to the problem and their

relative merits.

3.1. Example

Consider the following Theorist database, where the variables are intended to range over

blocks in a ‘‘Blocks World’’ and the constants refer to particular blocks.

Example 3.1
H = { ∀X ontable(X) }, (1)

F = {g ← ∃Y (red(Y) ∧ ontable(Y)), (2)

∃Z red(Z), (3)

red(a), (4)

¬ontable(a) }. (5)

The intended interpretation of these formulae is

(1) We can assume any block is on the table unless we are told otherwise.

(2) g (our goal) is true if there is at least one block which is both red and on the

table.

(3) There is (at least) one red block.

(4),(5) a is a block which is red and is not on the table.

The Herbrand universe [Gal86, §9.5.2] of this set of formulae consists solely of a (g is a con-

stant predicate symbol).

We convert the database to clause form, following the procedure described in Chapter Two,

11
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to obtain

H′ = {ontable(X) }, (1′)

F′ = {g ← red(Y) ∧ ontable(Y), (2′)

red(c), (3′)

red(a), (4′)

¬ontable(a) } (5′)

where c is a Skolem constant. The Herbrand universe of the set of clauses is {a,c }. In what

follows, we will often want to refer to the set of individuals explicitly named in the non-clausal

form of our theories, as distinct from those created by Skolemization.

Definition

The non-Skolem Herbrand universe (NS-Herbrand universe or NSHU ) of a set of

clauses C is the set of non-Skolem terms in the Herbrand universe of C.

Clearly, if a set of clauses C is derived from a set of formulae F by the process described in

chapter two, the NS-Herbrand universe of C will be the same as the Herbrand universe of F.

Now consider explaining g. We can’t explain it with Y = a due to (5′). We have red(c)

however, from (3′), and could explain g if we could assume ontable(c) (since we can’t

establish it from F). The attempt to show ¬ontable(c) fails, so it is consistent to make the

assumption, thus explaining g with theory {ontable(c) }. The proof is depicted graphically

in Figure 3.1. The dashed arrow indicates a consistency check.
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g
��
�
�

red(X)∧ontable(X)

[a/X]

red(a)∧ontable(a)

(4)

�
�
�
�

yes

(1)

�
�
�
�

¬ontable(a)
(5)

��
�

yes
fail

[c/X]

red(c)∧ontable(c)

(3)

�
�
�
�

yes

(1)

�
�
�
�

¬ontable(c)��
�

fail
yes

Figure 3.1 Theorist explanation of g

3.2. The meaning of existentials

In order to evaluate the answer of Example 3.1 with respect to the intended meaning of the

original formulae, we must determine more precisely the semantics of existentially quantified

statements in our system.

On the one hand, if we use such statements referentially , the fact (3) then refers to a

specific individual which we are expected to be already familiar with. To properly add this fact to

our database would require that we somehow identify the individual in order to attribute the new

property (redness) to it. Under this interpretation, Skolem terms do not appear. If a statement fails

to refer (i.e. we can’t find its referent) then the statement is an error (either meaningless or false

depending on your philosophical preferences).

Within the framework of a commonsense or default reasoning system such as Theorist how-

ever, it makes more sense to interpret existential statements attributively , that is without commit-

ment to a particular individual. In this sense then, we are simply stating that (at least one) such

object exists, without indicating whether we are familiar with it or not. Furthermore, the Skolem-

ization procedure provides a name for the existing individual.

We will further want to impose a minimality condition on the use of posited individuals: an

existential statement only commits to the existence of a single satisfying individual possessing

the specified properties, while not, of course, ruling out others. We observe that this notion is also
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embodied by the Skolemization procedure which replaces existentially quantified variables with

functions which denote single individuals. 3. We call this intuitively satisfying interpretation of

existential statements minimally attributive . The rest of this dissertation is concerned with

enforcing this notion of minimal attribution.

To illustrate minimal attribution, we first observe that Skolem terms can arise in two dif-

ferent ways in our clausal database. These are shown in Table 3.1 which shows the original,

non-clausal statements and their Skolemized, clausal forms.

∀X p(X)#p(X)
∃Xp(X)#p(c1)
g ← ∀X p(X)#g ← p(c2)
g ← ∃X p(X)#g ← p(X)

Table 3.1 Two uses of Skolem terms

The first type of use of Skolem terms is assertional , typified by the second line of Table

3.1. In this case, we are asserting that an individual with certain properties exists, and, under a

minimally attributive interpretation, the Skolemized form of the statement becomes a default rule

for naming such an individual. In order to preserve the desired semantics, such a rule (statement)

should not be used when existing individuals in the NS-Herbrand universe of our database satisfy

the definition.

The second use of Skolem terms is verificational , typified by the third line of Table 3.1.

Here the Skolem term is a ‘‘placeholder’’ whose uniqueness (see page 5) ensures that only a

universally quantified assertion will prove it. This is correct, as the original statement had a

universally quantified formula as antecedent. In keeping with the minimally attributive seman-

tics, Skolem terms used verificationally should not appear in the results of queries, and when they

appear in theories they should be read as universally quantified variables.
�������������������������������

3. Thus the correct way to say ‘‘Everyone has at least one parent’’ is not ∀X∃Yparent(x,y), at
least not if two possible parents are desired. Using this formula, it is possible that X has two parents, i.e. , it
is not ruled out, however the function introduced to replace Y refers to one or the other parent but not to
both. While ‘‘at least one’’ would seem to subsume ‘‘two’’, the Skolemization procedure does not reflect
this.
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As in [Poo86a], we can record the (minimally attributive) definitions of Skolem constants

using Hilbert’s ε-operator [Lei69]. For an arbitrary formula

∀X1 . . . ∀Xn ∃Y p(X1, . . . ,Xn,Y)

which when Skolemized becomes

∀X1 . . . ∀Xn p(X1, . . . ,Xn,f(X
� �

)),

we record the definition of the Skolem term f as

f(X
� �

) = εY.p(X1, . . . ,Xn,Y).

We call the formula p(X1, . . . ,Xn,Y) the defining sentence of f. In certain formalisms,

namely DLOG [Goe85], the ε-expression is a term and can appear in formulae itself. We will not

use it as such however: for us it is simply an extra-linguistic expression used to record definitions.

We will see in the next chapter how these definitions can be effectively used.

3.3. The reverse Skolemization problem

Under the minimally attributive interpretation of existentials then, the answer arrived at by

Theorist in Section 3.1 is obviously wrong. The definition of c is

εX.red(X).

Since a satisfies the definition of c, that is

F |= red(a),

we should not use (3) to assume the existence of another individual c with those properties.

Recall that c is an assertional Skolem term, hence our preferred, minimally attributive answer is

that g cannot be explained.

In general, we should not use clauses containing Skolem individuals when elements of the

NS-Herbrand universe of the clauses satisfy the definitions of the Skolem individuals. In this way

we preserve the minimally attributive aspect of existential statements. If no member of the NS-

Herbrand universe satisfies the definition of a Skolem function, then it is legitimate to consider

the new (Skolem) individual.

To further illustrate the point, suppose we replace (4′) in Example 3.1 to get
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Example 3.2

H′ = {ontable(X) }, (1′)

F′ = {g ← red(Y) ∧ ontable(Y), (2′)

red(c), c = εX.red(X), (3′)

¬red(a), (4′)

¬ontable(a) }. (5′)

That is, the block a is now known to be both non-red and not on the table. The explanation of g

proceeds exactly as before, yielding theory

{ontable(c) }.

This time however, there is no element of the NS-Herbrand universe of F′ which satisfies the

definition of c. As a result, we must use (3′) to posit a new individual, namely c, which can

consistently be assumed to be on the table, and the explanation of g is correct.

As a final example, consider the following database which illustrates the verificational use

of Skolem terms:

Example 3.3

H = { ∀X ontable(X) }, (1)

F = {g ← ∀X ontable(X), (2)

¬ontable(a) }, (3)

which, when converted to clauses, yields

H′ = {ontable(X) }, (1′)

F′ = {g ← ontable(c), (2′)

¬ontable(a) }, (3′)

where c is a verificational Skolem constant whose definition is

c = εX.¬ontable(X).

Clearly we will be able to explain g with theory

{ontable(c) }

despite the fact that not all known blocks are on the table (3′). Observe that if we had

ontable(a) (3′)

instead, this answer would be correct, since we know of no blocks which are not on the table, and
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the hypothesis allows us to conclude that any others are on the table. In fact, if we didn’t have 3′

at all, the answer would be trivially correct as there are no blocks. (i.e. , the NS-Herbrand

universe is empty.)

The reason for Theorist’s failure is equally clear: the clausal theorem prover implicitly con-

tains the unique names hypothesis

¬eq(α,β)∧ ¬eq(β,γ)∧ ¬eq(α,γ) . . .

extended for all distinct terms α,β,γ,.... Our equality predicate eq is used in the standard

Fregean sense of semantic identity : two terms are equal if and only if they represent the same

individual in the semantic domain. The unique names assumption means that Theorist implicitly

assumes that different constants and functions represent different individuals in the domain. For

those individuals posited to exist by the Skolemization process however, this may not be the case

if minimally attributive semantics are to be preserved.

3.4. Other approaches

Before describing our solution to the RSP in the next chapter, we should briefly describe

other approaches and solutions.

First, Cox and Pietrzkowski [CoP84] proposed an algorithm for reversing the Skolemization

of a set of clauses which is based syntactic transformations that replace each clause in the set by a

set of formulae. However, as the results are full first-order formulae and not clauses, this tech-

nique does not apply to our resolution-based approach, except perhaps as a way of making

answers containing Skolem functions more palatable. Since the mapping of clauses to formulae is

not (cannot be due to ambiguity in resolving quantifier scoping) one-to-one, even this is of ques-

tionable value within our framework. See also [Nil80] for details of answer-extraction involving

Skolem functions.

Early work on the problem within the Theorist project was done by Poole [Poo86a] who

proposed a proof-procedural solution. Basically, this relied on asserting new facts concerning

individuals which satisfied the definitions of Skolem individuals and then re-explaining the goal

with a different theory. While Poole’s work formed the foundation of our solution and, we
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believe, correctly identified the root of the RSP, it clouded the essential question of the semantics

of Skolem individuals with respect to other constants and functions. Our work can be viewed as

a clarification (and extension) of Poole’s; all the examples from [Poo86a] are done in Section 5.6.

Finally, we should note that, of course, the problem wouldn’t exist if we were using a non-

clause-based theorem prover, such as a natural deduction system [BMN80, Gal86] to implement

validity. However, as pointed out in Chapter Two, the benefits of resolution with respect to both

speed and usability justify the use of clauses and the resulting attention that must be paid to prob-

lems such as the RSP.



Chapter 4

Identity and Skolem Functions

In the previous chapter we observed that Theorist can form incorrect theories when dealing

with existential formulae, at least with respect to a given interpretation of these statements. We

observed that the problem was a manifestation of a more general problem concerning the identity

of Skolem terms arising either assertationally or verificationally. We also saw that the minimally

attributive interpretation of existential formulae is intuitively appropriate in hypothetical reason-

ing situations.

In this chapter we describe our solution to the reverse Skolemization problem. In order to

demonstrate the sufficiency and necessity of our approach, the exposition will proceed in stages:

each section will solve a larger part of the problem. After showing how the final solution rules out

all incorrect theories, we will describe how it can be applied even in purely deductive situations

to enforce minimal attribution with respect to Skolem terms. We describe how this final solution

can be easily incorporated into the existing Theorist framework.

The progression of solutions to the RSP can be viewed as a dynamic (or interpreted)

enforcement of the minimally attributive semantics of existential statements, so we describe how

a similar effect could be obtained by ‘‘compiling’’ the intended interpretation into a static data-

base. This alternative is viewed as a traditional issue in nonmonotonic reasoning: any nonmono-

tonic reasoning system must decide on either a static or a dynamic approach to database manage-

ment.

4.1. Negating Skolem terms

In Example 3.3, we observed that Theorist’s failure to get the correct answer was due to its

use of the statement

g ← ∀X ontable(X)

which introduced a verificational Skolem term when transformed to

g ← ontable(c)

to create a new individual c when our database F already contained an individual (a) satisfying

19
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the definition of c. We noted that the problem arose due to Theorist’s incorrect use of the

hypothesis ontable(X). Now recall that to show consistency, Theorist attempts to show that

the negation of the hypothesis under consideration follows from the facts, 4. in this case that

F |= ¬ontable(c).

If the attempt fails, as it does in this case, then the hypothesis can be consistently assumed.

Our first solution to the RSP amounts to a naive attempt at reversing the Skolemization of

the hypothesis under consideration. We observe that

¬ontable(c)

is not ‘‘really’’ the negation of

ontable(c)

when c is a Skolem constant. The desired interpretation of the latter statement is

∃X ontable(X),

which when negated and converted to clauses (Section 2.2) would yield

¬ontable(X).

Therefore, before attempting to show an inconsistency we must replace each Skolem term in the

hypothesis we are considering with a unique variable (the same variable for each occurance of the

term). 5.

To properly enforce minimally attributive semantics, if we succeed in showing this

modified negation, we must then test that the individual instantiating this variable is in the NS-

Herbrand universe of our database. Otherwise we might, for example, simply use the Skolem

term we replaced in the first place. An effect of this is that a database which is redundant with

respect to existential statements such as

F = { ∃X p(X),

∃Y p(Y) }

will not be interpreted properly: we should, from a minimal attribution standpoint, get one
�������������������������������

4. Actually, from the facts and the current theory, but we can safely ignore any current theory for
demonstration purposes.

5. Note that since the consistency check amounts to a query, the variable is existential, not universal, and
will be instantiated by the resolution proof procedure.
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answer, but the procedure described above will not find any. In this case, an arbitrary choice

between the two Skolem terms resulting from converting such a database to clauses must be

made. Having mentioned this problem we will ignore it, but see Section 4.6 for a discussion of

related issues.

Reconsider Example 3.3:

H′ = {ontable(X) }, (1′)

F′ = {g ← ontable(c), c = εX.¬ontable(X), (2′)

¬ontable(a) }. (3′)

This time rather than trying to show that

F |= ¬ontable(c)

we will try to show that

F |= ∃Z(¬ontable(X) ∧ X∈ NSHU),

which is true, for X = a. Thus the consistency check fails, the hypothesis is rejected, and the goal

g is not explained, correctly.

As another example, consider the use of hypotheses to specify the closed-world assumption

[Rei81] as in [Poo86a, Example 3]:

Example 4.1

H = { ∀X∀Y ¬on(X,Y) }, (1)

F = { ∀X (cleartop(X) ← ¬ ∃Y on(Y,X)), (2)

on(a,b) }. (3)

The hypothesis means that the only blocks that are on each other are those explicitly stated to be

so in the facts; all others can be assumed not to be on anything and not to have anything on them.

The facts define what it means to have a clear top, and describe that block a is on block b. Con-

verting to clauses yields

H′ = { ¬on(X,Y) }, (1′)

F′ = {cleartop(X) ← ¬on(f(X),X), f(X) = εY.on(Y,X), (2′)

on(a,b) }. (3′)

As before, the RSP is manifested in the fact that we can explain both cleartop(a) and
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cleartop(b) with theories { ¬on(f(a),a) } and { ¬on(f(b),b) } respectively, since

neither of these can be proven inconsistent, despite our explicit knowledge that b does not have

a clear top since a is on it.

Applying our solution however, in testing the consistency of

¬on(f(a),a)

we try to show that

F |= ∃Z(on(Z,a) ∧ Z∈ NSHU)

rather than

F |= on(f(a),a).

This fails, so we correctly conclude that a has a clear top. The consistency check for

¬on(f(b),b)

becomes

F |= ∃Z(on(Z,b) ∧ Z∈ NSHU)

which succeeds, for Z = a, thus we correctly cannot explain b having a clear top.

We comment that if the syntactic manipulations involved in this solution seem disquieting,

the same effect can be acheived if the implementation of validity includes equality (as before, in

the Fregean sense of semantic identity) as in [RoW69], [Yuk87], or [Kor83]. If so, then to

acheive the solution described above we allow Theorist (during consistency checking) to assume

that a Skolem term is equal to any term in the NS-Herbrand universe. We then have a hierarchy

of assumptions, where the ‘‘normal’’ assumptions can be ruled out by ehypotheses : assumptions

of equality between a Skolem and a non-Skolem term, which can themselves only be ruled out by

the facts.

To illustrate, for Example 3.3 we generate an ehypothesis for the Skolem term c to get

H′ = {ontable(X) },

H′e = {eq(c,Z) ← Z∈ NSHU },

F′ = {g ← ontable(c),

¬ontable(a) }.

When we try to explain g we have to test the consistency of the assumption ontable(c) by
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trying to show that

F ∪ De |= ¬ontable(c),
F ∪ De consistent

for De a set of instances of He. In the example, using the substitutivity axiom for ontable in

its contrapositive form

¬ontable(X) ← eq(X,Y) ∧ ¬ontable(Y)

and the fact ontable(a), we will succeed if it is consistent to assume the ehypothesis. Since

F |=/ ¬eq(c,a)

we can make the equality assumption, therefore proving ¬ontable(c) and ruling out the

explanation of g, correctly.

We will not pursue this avenue any further (however see Section 5.3) since the overhead of

deduction with equality is too high when we can acheive our goals by performing meta-

manipulations instead.

4.2. Restoring the context of Skolem terms

The preceding solution works so long as we are always making assumptions concerning the

defining predicates of Skolem terms. That is, in Example 3.3 we are assuming

ontable(c)

for

c = εX.¬ontable(X)

and in Example 4.1 we are assuming

¬on(f(a),a)

for

f(X) = εY.on(Y,X).

Example 3.2 illustrates the inadequacy of this solution for general assumptions concerning

Skolem terms. Recall that we had



24

H′ = {ontable(X) }, (1′)

F′ = {g ← red(Y) ∧ ontable(Y), (2′)

red(c), c = εX.red(X), (3′)

¬red(a), (4′)

¬ontable(a) }. (5′)

and that we could explain g with theory {ontable(c) } since

F |=/ ¬ontable(c).

This was correct since a did not satisfy the definition of c.

Applying the previous solution, however, requires that we test whether

F |= ∃Z(¬ontable(Z) ∧ Z∈ NSHU)

instead. Clearly this is the case, for Z = a, so the hypothesis will be rejected, incorrectly. The

problem is that we have ignored the definition of the Skolem term and allowed the assumption

concerning it to be ruled out by a fact concerning an individual which does not satisfy the

definition.

Our second solution corrects this problem by requiring that, in order to rule out a hypothesis

concerning a Skolem term, not only do we have to show its modified negation as in the previous

section, but we must also show that the individual instantiating the new variable satisfies the

definition of the Skolem term.

Thus in the previous example, rather than showing that

F |= ∃Z(¬ontable(Z) ∧ Z∈ NSHU)

we try to show that

F |= ∃Z(¬ontable(Z) ∧ red(Z) ∧ Z∈ NSHU)

since

c = εX.red(X).

We cannot show this, so the hypothesis is accepted and the query g explained, correctly, with

theory {ontable(c) }.

As another example, reconsider Example 3.1:
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H′ = {ontable(X) }, (1′)

F′ = {g ← red(Y) ∧ ontable(Y), (2′)

red(c), (3′)

red(a), (4′)

¬ontable(a) } (5′)

This time we will show the hypothesis ontable(c) inconsistent since

F |= ¬ontable(a) ∧ red(a) ∧ a∈ NSHU,

thus correctly not allowing us to explain g.

Note that in the two examples in Section 4.1, the negation of the hypothesis being con-

sidered and the definition of the Skolem term concerned were identical. These can therefore be

considered a special case of this section’s solution and they would clearly both be handled prop-

erly.

In the alternative approach based on ehypotheses, this solution requires that we only assume

Skolem terms equal to terms in the NS-Herbrand universe which satisfy their definitions. Thus

our ehypotheses would be of the form

eq(c,X) ← defn. of c[X/c] ∧ X∈ NSHU,

where the antecedent should be read as ‘‘the definition of c with X substituted for c’’ where X

is a unique variable. In the example from the previous section our ehypothesis becomes

H′e = {eq(c,Z) ← red(Z) ∧ Z∈ NSHU }.

As in that section, we will not pursue this approach any further.

4.3. Ensuring minimally attributive theories

The previous solution seems to capture the intuition regarding minimally attributive Skolem

terms. In this section however, we will see that it does not always rule out theories which

unnecessarily introduce Skolem terms.

For example, consider the following weakening of the ‘‘blocks world’’ database from Sec-

tion 3.1:
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Example 4.2
H = { ∀X ontable(X) },

F = {red(a),

∃X red(X) }.

Recall that in the original example we also had the fact

¬ontable(a)

but here we do not know whether a is on the table or not. We convert to clauses to get

H′ = {ontable(X) },

F′ = {red(a),

red(c), c = εX.red(X) }.

Now consider explaining the same query as before:

? ← red(X) ∧ ontable(X).

We clearly get the (correct) answer X = a with theory

{ontable(a) }.

Unfortunately we also get the answer X = c with theory

{ontable(c) }

since there is no way of deriving ¬ontable(X) from F. Theorist produces an answer which

postulates the existence of a Skolem individual despite the fact that there are individuals in its

database which satisfy the individual’s definition, thus violating our criterion of minimal attribu-

tion. Note that we get the same effect even if we know that a is on the table since, again, we

have no negative information which would allow us to rule out a hypothesis.

From this we conclude that our modified consistency checking criterion, which requires us

to show both the modified negation of the hypothesis under consideration and the definition of

the Skolem term involved, is too strong. In order to preserve minimally attributive semantics, it is

only necessary to show, in order to rule out a hypothesis concerning a Skolem term, that its

definition is satisfied by another individual. Of course, we must still test the consistency of the

assumption normally (by attempting to show its negation) in case we have contradictory explicit

information about the Skolem term.
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So in the previous example (4.2), when we are considering assuming

ontable(c)

we test whether

F |= ∃Z(red(X) ∧ X∈ NSHU) ∨ ¬ontable(c).

The first disjunct is the definition of the Skolem term c, the second is the simple consistency

check for the assumption. Clearly

F |= red(a) ∧ a∈ NSHU

thus correctly ruling out the hypothesis. Theorist produces only the (correct) theory

{ontable(a) }. As in Example 3.2, if we know instead that a was non-red, the test would

fail, the hypothesis would be accepted, and we would get the correct explanation with theory

{ontable(c) }.

An example of how the simple consistency check is still necessary is provided by the fol-

lowing:

Example 4.3
H = { ∀X ontable(X) },

F = {g ← ∃X (red(X) ∧ ontable(X)),

∃X (red(X) ∧ ¬ontable(X)) }

which, when converted to clauses, yields

H′ = {ontable(X) },

F′ = {g ← red(X) ∧ ontable(X),

red(c), c = εX.red(X) ∧ ¬ontable(X),

¬ontable(c), c = εX.red(X) ∧ ¬ontable(X) }.

Clearly then, without the simple consistency check we would explain g with theory

{ontable(c) } despite the fact that we are told only about a block which is explicity not on

the table.

We conclude this section by presenting the examples of the previous two sections and

showing how they are all solved using this last solution. Further examples, including all of those

in [Poo86a], are presented in Section 4.5.
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Example 3.3
H′ = {ontable(X) },

F′ = {g ← ontable(c), c = εX.¬ontable(X),

¬ontable(a) }.

In trying to explain g, we try to assume ontable(c). To rule out this assumption

we must show that

F |= ∃Z(¬ontable(X) ∧ X∈ NSHU) ∨ ¬ontable(c).

We show the condition, for X = a, thus correctly ruling out the hypothesis. There is no

other explanation of g.

Example 4.1
H′ = { ¬on(X,Y) },

F′ = {cleartop(X) ← ¬on(f(X),X), f(X) = εY.on(Y,X),

on(a,b) }.

Explaining cleartop(a) requires assuming ¬on(f(a),a). We test whether

F |= ∃Y(on(Y,a) ∧ Y∈ NSHU) ∨ on(f(a),a)

We fail to show either disjunct, thus accepting the hypothesis and explaining

cleartop(a) with theory { ¬on(f(a),a) }.

To explain cleartop(b) we try to assume ¬on(f(b),b) which requires test-

ing whether

F |= ∃Y(on(Y,b) ∧ Y∈ NSHU) ∨ on(f(b),b).

This is true, for Y = a, so the hypothesis is ruled out and we cannot explain

ontable(b), correctly.

Example 3.2
H′ = {ontable(X) },

F′ = {g ← red(Y) ∧ ontable(Y),

red(c), c = εX.red(X),

¬red(a),

¬ontable(a) }.
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We can explain g if we can show that the assumption ontable(c) is consistent,

which requires that we test whether

F |= ∃X(red(X) ∧ X∈ NSHU) ∨ ¬ontable(c).

We cannot show this, so g can be explained with theory {ontable(c) }.

Example 3.1
H′ = {ontable(X) },

F′ = {g ← red(Y) ∧ ontable(Y),

red(c),

red(a),

¬ontable(a) }

Again we want to use the assumption ontable(c) to explain g, so we test

whether

F |= ∃X(red(X) ∧ X∈ NSHU) ∨ ¬ontable(c).

This is true, for X = a, so we reject the hypothesis correctly and cannot explain g.

4.4. Minimal attribution in general

We have shown how the solution to the RSP presented in the previous section eliminates all

incorrect theories involving both assertational and verificational Skolem terms, and ensures

minimally attributive theories. We may however want to take this further and enforce minimally

attributive semantics even in purely deductive situations. Our previous solution can be applied in

these circumstances almost directly.

Consider the following deductive Theorist database (no hypotheses), which states that

everyone has a mother and that wilma is the mother of pebbles:

Example 4.4
F = { ∀X∃Y mother−of(X,Y),

mother−of(pebbles,wilma) }.

Conversion to clauses yields
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F′ = {mother−of(X,m(X)), m(X) = εY.mother−of(X,Y),

mother−of(pebbles,wilma) }.

Now if we query Theorist about pebbles’ mother, that is

? ← mother−of(pebbles,Z),

we get the two deductive solutions

Z = wilma

and

Z = m(pebbles).

This second answer violates our desired minimally attributive semantics since we already know

of an individual (wilma) which satisfies the definition of m(pebbles).

To adapt our solution to deductive situations such as this requires converting the existential

statement

∀X∃Y mother−of(X,Y)

to the meta-level conditional

mother−of(X,m(X)) ← F |=/ ∃Z(mother−of(X,Z) ∧ Z∈ NSHU).

This will clearly succeed in ruling out the unwanted second solution. In addition, we will also be

able to correctly answer the query

? ← mother−of(wilma,Z)

with

X = m(wilma)

since we know of no other individual which is wilma’s mother, that is

F |=/ ∃Z(mother−of(wilma,Z) ∧ Z∈ NSHU).

This solution also make intuitive sense: we are explicitly saying that Skolem terms can only

be introduced in a minimally attributive manner, that is, when their definitions are not satisfied by

non-Skolem individuals. We also should note here that the general solution is certainly not

difficult to implement. As we will describe in Chapter Five, we have already implemented |= in

order to build theories and test consistency. As we do there, we can implement |=/ by failing to

show |= .
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Clearly this is closely related to our solution from the previous section for explanations

requiring assumptions. If we translate all statements involving Skolem terms to the meta-level

form described above and return to simple consistency checking as in the original Theorist, we

will completely incorporate this solution. To illustrate, observe that the statement

∃X p(X)

becomes

p(c) ← F |=/ ∃X(p(X) ∧ X∈ NSHU)

according to the specification of our solution, and when trying to assume

q(c)

we have to show simply that

F |=/ ¬q(c)

regardless of the fact that c is a Skolem term. Thus, as for the solution in Section 4.3, showing

either

F |= ∃X(p(X) ∧ X∈ NSHU)

or

F |= ¬q(c)

will rule out the hypothesis q(c); in the first case the antecedent of the modified fact is not

satisfied and in the second the hypothesis is simply inconsistent.

We will again conclude this section (and conclude the description of our solution to the

reverse Skolemization problem) by presenting the examples of the previous sections and their

solutions using our final method.

Example 3.1
H = { ∀X ontable(X) }, (1)

F = {g ← ∃Y (red(Y) ∧ ontable(Y)), (2)

∃Z red(Z), (3)

red(a), (4)

¬ontable(a) }. (5)
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H′ = {ontable(X) }, (1′)

F′ = {g ← red(Y) ∧ ontable(Y), (2′)

red(c) ← F |=/ ∃X(red(X) ∧ X∈ NSHU), (3′)

red(a), (4′)

¬ontable(a) } (5′)

We cannot explain g with Y = a due to (5′), and the antecedent of (3′) is not satisfied

since

F |= (red(a) ∧ a∈ NSHU).

There is therefore, correctly, no explanation of g.

Example 3.2
H′ = {ontable(X) }, (1′)

F′ = {g ← red(Y) ∧ ontable(Y), (2′)

red(c) ← F |=/ ∃X(red(X) ∧ X∈ NSHU), (3′)

¬red(a), (4′)

¬ontable(a) } (5′)

Here we correctly explain g with theory {ontable(c) } since the antecedent of

(3′) is true (we cannot show that c’s definition is satisfied by another individual) and we

cannot show the assumption simply inconsistent.

Example 3.3
H = { ∀X ontable(X) }, (1)

F = {g ← ∀X ontable(X), (2)

¬ontable(a) }, (3)

H′ = {ontable(X) }, (1′)

F′ = {g ← ontable(c) ∧ F |=/ ∃X(¬ontable(X) ∧ X∈ NSHU), (2′)

¬ontable(a) }, (3′)

First note that (2′) comes from applying the identity

(p ← q) ← r ≡ p ← (q ∧ r)

to the standard form of our solution.
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Then in this example the hypothesis ontable(c) is simply consistent but the

minimality condition is not satisfied since we have

F |= (¬ontable(a) ∧ a∈ NSHU)

which rules out using (2′) to explain g. There is, correctly, no other explanation of g.

Example 4.1
H = { ∀X∀Y ¬on(X,Y) }, (1)

F = { ∀X (cleartop(X) ← ¬ ∃Y on(Y,X)), (2)

on(a,b) }. (3)

H′ = { ¬on(X,Y) }, (1′)

F′ = {cleartop(X) ← ¬on(f(X),X)∧ F |=/ ∃Y(on(Y,X)∧Y∈ NSHU),(2′)

on(a,b) }. (3′)

We can explain cleartop(a) with theory { ¬on(f(a),a) } since it is simply

consistent and we can find no other block that is on a. For goal cleartop(b) however,

we have that

F |= (on(a,b) ∧ a∈ NSHU)

thus ruling out the the hypothesis ¬on(f(b),b) and preventing any explanation.

Example 4.2
H = { ∀X ontable(X) }, (1)

F = {red(a), (2)

∃X red(X) }. (3)

H′ = {ontable(X) }, (1′)

F′ = {red(a), (2′)

red(c) ← F |=/ ∃X(red(X) ∧ X∈ NSHU) }. (3′)

Clearly we will only get the desired theory

{ontable(a) }

to explain the query

? ← ∃X red(X) ∧ ontable(X)

since the unwanted theory
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{ontable(c) }

is ruled out as the antecedent of (3′) is not satisfied since

F |= (red(a) ∧ a∈ NSHU).

Example 4.3
H = { ∀X ontable(X) }, (1)

F = {g ← ∃X (red(X) ∧ ontable(X)), (2)

∃X (red(X) ∧ ¬ontable(X)) } (3)

H′ = {ontable(X) }, (1′)

F′ = {g ← red(X) ∧ ontable(X), (2′)

red(c) ← F |=/ ∃X(red(X) ∧ ¬ontable(X) ∧ X∈ NSHU), (3′)

¬ontable(c) ← F |=/ ∃X(red(X)∧ ¬ontable(X) ∧X∈ NSHU) }.(4′)

Finally, in this example, the antecedents of (3′) and (4′) are satisfied as there are no

other blocks. We try to assume ontable(c) to explain g but it is simply inconsistent

due to (4′). Thus we cannot explain g, correctly.

4.5. Poole’s Examples

For completeness, in this section we present the examples from [Poo86a] which inspired

this work. Note that his Examples 1, 2, and 5 are not what we are concerned with, his Example 3

(solved in his Example 6) is almost exactly our Example 4.1, and his Examples 7A and 7B are

our Examples 3.1 and 3.2.

Poole’s Example 4 (solved in his Example 7)

H = { ∀X ontable(X) }, (1)

F = {g ← ∃Y (red(Y) ∧ ontable(Y)), (2)

∃X red(X) } (3)

H′ = {ontable(X) }, (1′)

F′ = {g ← red(Y) ∧ ontable(Y), (2′)

red(c) ← F |=/ ∃X(red(X) ∧ ¬ontable(X) ∧ X∈ NSHU), (3′)
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This example is very similar to our Example 4.2. We want to explain g with theory

{ontable(c) } since there are no non-Skolem individuals satisfying the definition of c. The

proof is illustrated in Figure 4.1.

g

(2)

��
�
�

red(X)∧ontable(X)

[c/X]

��
�
�

red(c)∧ontable(c)

(3)

F |=/ ∃Z(red(Z)∧Z∈ NSHU)
�
�
�
�

yes

��
�

fail

(1)

�
�
�
�

yes

¬ontable(c)��
�

fail

Figure 4.1 Poole’s Example 4

Poole’s Example 8a

H = { ∀X∀Y ¬on(X,Y) }, (1)

F = { ∀X (cleartop(X) ← ¬ ∃Y on(Y,X)), (2)

on(a,b), (3)

red(b), (4)

g1 ← ∀X cleartop(X) }. (5)

H′ = { ¬on(X,Y) }, (1′)

F′ = {cleartop(X) ←

¬on(f(X),X)∧ F |=/ ∃Y(on(Y,X)∧Y∈ NSHU), (2′)

on(a,b), (3′)

red(a), (4′)

g1 ← cleartop(c1) ∧

F |=/ ∃Z(¬cleartop(Z) ∧ Z∈ NSHU) }. (5′)

Intuitively, we should not be able to explain g1 since there is a block (b) whose top is not
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clear. The proof is shown in Figure 4.2.
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g1

(5)

��
�
�

cleartop(c1) ∧ F |=/ ∃Z(cleartop(Z)∧Z∈ NSHU)��
�

fail ∗(2)

�
�
�
�

¬on(f(c1),c1) ∧ F |=/ ∃Z(on(Z,c1)∧Z∈ NSHU)

(1)

�
�
�
�

on(f(c1),c1)��
�

fail
yes

(2)

�
�
�
�

¬cleartop(c1)

(2)

on(f(c1),c1)��
�

fail

(5)

¬g1��
�

fail

��
�

yes

∗��
�
�

¬cleartop(Z) ∧ Z∈ NSHU

(2)

��
�
�

(on(f(Z),Z) ∨ F |=/ ∃W(on(W,Z)∧W∈ NSHU)��
�

fail

��
�

yes
(3)

�
�
�
�

on(a,b)��
�

yes

[a/W]

�
�
�
�
�
�
�

a∈ NSHU��
�

yes

[b/Z]� �������������������������������������������

b∈ NSHU��
�

yes

Figure 4.2 Poole’s Example 8a

Poole’s Example 8b

H = { ∀X∀Y ¬on(X,Y) }, (1)

F = { ∀X (cleartop(X) ← ¬ ∃Y on(Y,X)), (2)

on(a,b), (3)

red(b), (4)

g2 ← ∀X (cleartop(X) ← red(X)) }. (5)
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H′ = { ¬on(X,Y) }, (1′)

F′ = {cleartop(X) ←

¬on(f(X),X)∧ F |=/ ∃Y(on(Y,X)∧Y∈ NSHU), (2′)

on(a,b), (3′)

red(a), (4′)

g2 ← cleartop(c2) ∧

F |=/ ∃Z(¬cleartop(Z) ∧red(Z)∧Z∈ NSHU) }. (5′)

g2 ← red(c2) ∧

F |=/ ∃Z(¬cleartop(Z) ∧red(Z)∧Z∈ NSHU) }. (6′)

This time we want to be able to explain g2 since the only block which does not have a

clear top is red, and we are only trying to show that all non-red blocks have clear tops. The proof

is illustrated in Figure 4.3. The dotted branch is identical to the top part of Figure 4.2 except with

c2 rather than c1.
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g2

(5)

��
�
�

cleartop(c2) ∧ F |=/ ∃Z(cleartop(Z)∧ ¬red(Z)∧Z∈ NSHU)

(2)

...........
yes

��
�

yes
(2)

�
�
�
�

(on(f(Z),Z) ∨ F |=/ ∃W(on(W,Z)∧W∈ NSHU)��
�

fail

��
�

yes
(3)

�
�
�
�

on(a,b)��
�

yes

[a/W]

�
�
�
�
�
�
�

a∈ NSHU��
�

yes

[b/Z]� �������������������������������������������

¬red(b)��
�

fail

Figure 4.3 Poole’s Example 8b

4.6. Interpretation vs. compilation

The solutions described above allow Theorist to dynamically compute overriding instances

of the unique names hypothesis (Section 3.3) required to preserve the minimally attributive

semantics of the original statements. In nonmonotonic reasoning systems such as Theorist, the

question arises of how to effect the non-monotonicity and update the system’s knowledge base in

light of new input. This issue manifests itself within the scope of the RSP when existentially

quantified statements are affected by the input, either directly or indirectly, as we shall see. We

now consider a version of the previous solution which ‘‘compiles in’’ the intended interpretation

and discuss its relationship to the previous, interpreted, alternative.

Suppose we have a Theorist database (F,H) to which we wish to add the fact

∀Y� � ∃X p(Y� � ,X).

We Skolemize to get

p(Y� � ,f(Y� � ))

where p(X) is the defining sentence of the Skolem function f, i.e.

f = εX.p(Y� � ,X).

In order to preserve the minimally attributive aspect of the original statement, we must
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check whether any other individual in the database satisfies the definition of f. That is, we must

check whether

F |= ∃Y p(Y).

for any definite individual Y.

If we find an individual satisfying f’s definition, then we can simply leave the database

unchanged with respect to the existence of the individual. For example, adding the statement

∃X red(X)

to facts

F = {red(a) }

should add nothing to F.

If we don’t find an individual satisfying f’s definition then, as before, we are justified in

creating a new individual, which we do by simply adding the (Skolemized) clause

red(c)

to F.

A more complicated situation arises when dealing with Skolem functions, as opposed to

constants. In this case, we wish to ‘‘compile-in’’ the interpretation of a formula such as

∀X∃Y mother−of(X,Y)

which when converted to clauses becomes

mother−of(X,m(X))

where m is a Skolem function such that

m(X) = εY.mother−of(X,Y).

Suppose we have an existing fact concerning a certain individual’s mother, such as

mother−of(pebbles,wilma).

Now, in keeping with our desired minimal attributive interpretation of the existential statement,

we would like to prevent the creation of an individual

m(pebbles)

since we have that wilma satisfies the definition of m. However, we would accept as valid the

use of
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mother−of(wilma,m(wilma))

since we cannot deduce any other individual which is the mother of wilma. The fact that we

require to reflect the addition of the existential statement would then be of the form

mother−of(X,f(X)) ← ¬eq(X,wilma).

In general, the antecedent would list all those individuals which satisfied the definition of the

Skolem term. This use of the homogeneous form [Cla78] might facilitate updating the database,

depending on the implementation, particularly the implementation of equality.

It is not enough to perform this check only when adding existential statements to the data-

base. When adding any new fact we must recheck all statements containing Skolem terms in

case the new fact references an individual which now (after adding the fact) satisfies the

definition of one of the Skolem terms. If this is the case, we can remove the fact containing the

Skolem term. For example, adding

red(a)

to

F = { ∃X red(X) }

should prevent the use of the Skolem term posited by the existential statement (after Skolemiza-

tion).

Similarly, when deleting a fact we have to check all those sentences containing Skolem

terms which we previously ‘‘ignored’’ due to the definitions of the terms being satisified by other

(non-Skolem) terms. If the fact which is being deleted figured in the satisfaction of the Skolem

term’s definition and we can no longer find an individual satisfying the definition, then we must

admit the Skolem term as legitimately denoting a new individual. For example, removing

red(a)

from

F = { ∃X red(X),
red(a) }

should ‘‘reintroduce’’ the Skolem individual.
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The compilation of the intended interpretation of Skolem terms into the database during

update comes at a price however. Since each search for satisfying individuals involves a test of

validity, it is semi-decidable for any strong logic, just as Theorist’s normal inference procedure

is. Thus we are trading the cost (and potential non-termination) of inference at the meta-level

during goal solution against a similar cost to be incurred as the database is updated. Whether we

wish to incur this cost at ‘‘update-time’’ or at ‘‘query-time’’ becomes a matter of circumstance.

It may be that rather than the sort of ‘‘exact’’ manipulation of the database described above,

we might want Theorist to interact with the user to determine his or her intentions. For example,

upon detecting that an existential sentence was already satisfied by other individuals, the user

might want to either change the existential statement to properly characterize the difference or

might simply assert new facts about the individuals identified by Theorist. Similarly, upon dele-

tion of sentences, the user might want to purge all references to satisfying individuals regardless

of which facts they came from. Finally, when Skolem terms are admitted as legitimate, the user

might want to give them descriptive names identifying the intended interpretation and making

answers more comprehensible.



Chapter 5

Implementation

In this chapter we describe the details of our implementation of the modified Theorist inter-

preter. Since much of our work was directed towards implementing aspects of Theorist not

directly concerned with the RSP, this chapter will have a somewhat broader scope than the rest of

the dissertation.

All implementation was done in C-PROLOG on a VAX11/780, hence the name of our version:

CTheorist. Previous versions of Theorist used Waterloo Unix Prolog or Quintus Prolog. CTheor-

ist has been ported to Turbo-Prolog for the IBM-PC family, but the restrictions of that PROLOG

forced extensive modifications to the code described here [Fit89]. Pseudo-PROLOG code

presented here may not be exactly as in the implementation, although in many cases it is, modulo

debugging and other extraneous code.

5.1. A first-order front end

5.1.1. Parser/tokenizer

In order to experiment with the Skolemization process, Theorist required a front-end capa-

ble of recognizing statements in the full first-order predicate calculus rather than than simply

clauses as it had previously had. We implemented a parser/tokenizer module which accepts the

Theorist command set described in Table 5.1. A formula is any formula of the first-order predi-

cate calculus and an atom is a positive literal.

43
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fact formula Assert formula as a fact
hypothesis formula Assert formula as a hypothesis
askable atom Mark atom as askable
meta atom Mark atom as meta-evaluable
explain formula Get Theorist to explain formula
input file-list Read commands from files
end Exit Theorist
list category-list List Theorist’s database
clear category-list Clear Theorist’s database
help topic-list Get help on Theorist topics

Table 5.1 Theorist command set

The tokenizer uses standard PROLOG techniques for lexical analysis using one-character

lookahead. The parser uses PROLOG production rules with actions to convert infix input formulae

to a prefix form. It converts a variety of input syntaxes for connectives and quantifiers to a stan-

dard set of operators. Details of certain commands such as list and clear are also handled

and converted to a standard form.

5.1.2. Conversion to clauses

For commands which manipulate formulae (fact, hypothesis), the prefix form

returned by the parser must be converted into clause form as described in §2.2. This is performed

by seven recursively descending predicates, each of which implements one of the steps in the

conversion. The result is a list representing a set of clauses (disjunctions) each of which is in

prefix form. Skolem functions are automatically generated by the appropriate routine to replace

existentially quantified variables.

5.1.3. Conversion to rules

Finally, each clause is converted to a PROLOG-like rule before assertion to accomodate

Theorist’s backward-chaining proof procedure. In each clause, one disjunct is chosen to be the

head of the rule (consequent) and the others form the body (antecedent). All contrapositives of

the rule are generated, thus the choice of head literal is irrelevant. The use of contrapositives

allows non-Horn clauses to be expressed as rules: the general clause
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p ∨ q

becomes the pair of rules

p ← ¬q
q ← ¬p .

5.2. Theorist as a set of inference rules

It is useful to think of Theorist as a collection of inference rules for a first-order language.

Thus the various Theorist commands correspond to different possible inference steps, and the

CTheorist implementation reflects this. The theorem-proving heart of CTheorist is an interacting

set of recursive clauses which define the prove predicate: prove(G,A,H1,H2) is true

when G has been proven (explained, really) with ancestor goals A using a theory consisting of

hypotheses H1 and H2. The predicate proveAll simply attempts to prove each member

of the list that it is given (the empty list being trivially proved).

5.2.1. MESON rules

The first pair of inference rules implement the MESON procedure which permits Theorist to

use general clauses. Any formula asserted as a fact can be used to further a proof:

prove(G,A,H1,H2) :− fact(G:−B),
proveAll(B,A,H1,H2).

The list of ancestor goals is maintained to allow proof by contradiction if the current goal is

the negation of an ancestor goal, as required by the MESON procedure [Lov78]:

prove(G,A,H1,H2) :− negate(G,NG),
member(G,A).

5.2.2. Meta rules

The second pair of inference rules implement Theorist’s meta-commands: attempting to

prove a predicate marked as askable results in query being posed of the user if the value can-

not be deduced:
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prove(G,A,H1,H2) :− askable(G) ,
answered(G) ,
answeredTrue(G) .

prove(G,A,H1,H2) :− askable(G) ,
not answered(G) ,
answerTrue(G) .

The predicates answered and answeredTrue check whether the predicate has been previ-

ously asked and what its value was; answerTrue interacts with the user and saves the answer.

Note that the user can answer ‘‘true’’, ‘‘false’’, or ‘‘don’t know’’ to these queries.

Predicates marked as meta are evaluated by PROLOG:

prove(G,A,H1,H2) :− meta(G),
call(G).

5.2.3. Hypothetical rules

Finally, the theory formation aspect of Theorist is implemented by using formulae asserted

as hypotheses:

prove(G,A,H1,[G |H2]) :− hypothesis(G :−B),
proveAll(B,[G |A],H1,H2),
negate(G,NG),
not prove(NG,A,H2,H2).

If the formula is not atomic, CTheorist attempts to prove its antecedent. 6. If succesful the con-

sistency of the assumption is checked by making a recursive call to the prove predicate to

attempt to show the negation of the hypothesis. If this fails then the hypothesis can be con-

sistently assumed. In the current implementation, hypotheses are not permitted in the consistency

check to rule out other hypotheses. The semantics of this restriction is part of current work in the

Theorist project (e.g. [Goo89, SaG89]).

We should note that in the actual implementation, the prove predicate has several extra

arguments which maintain state such as: the depth of the current proof for tracing; variable bind-

ings for pretty-printing (since C-PROLOG does not provide this); and flags to indicate, for example,

whether or not the current goal is part of a consistency check.
�������������������������������

6. We could always make our hypotheses atomic by transforming then to hypothesis newAtom
and fact newAtom ↔ formula, similar to the naming transformation referred
to in Footnote 2.
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5.3. Paramodulation

We augmented Theorist to handle the equality relation by implementing paramodulation

[RoW69] as an additional inference rule. This was used as mentioned in Sections 4.1 and 4.2 to

implement parts of the initial solutions and for related explorations of the utility of equality in

general. The additional clause for prove is

prove(G,A,H1,H2) :− fact(eq(X,Y):−B),
paramodulate(eq(X,Y),G,Gp),
proveAll(B,[G |A],H1,H3),
prove(Gp,A,H3,H2).

The predicate paramodulate(T1,T2,T3) is true if the result of paramodulating from T1

into T2 is T3. The from literal is the statement of equality, for example suppose this is

eq(a,b). The into literal is our ‘‘source’’, say p(a). Then the result of paramodulating from

eq(a,b) into p(a) is p(b).

The implementation of paramodulate is straightforward and consists of enumerating

subterms of T2 until one is found which unifies with either X or Y (X or a in the example).

The other term of the equality (Y or b in this case) is then substituted for occurances of X in T2

to yield T3. Note that this is not quite complete paramodulation: the specification of the infer-

ence rule [RoW69, p. 139] requires only that the two terms unify with a common term, not that

they necessarily unify with each other. For simplicity of implementation we use the weaker ver-

sion which obviates the need for a search for a common term (i.e. , we are ignoring the warning in

[RoW69] that ‘‘viewing paramodulation as mere substitution of equals is like viewing resolution

as mere pattern matching’’ [page 140]). A detailed study of the effects of this restriction and of

the costs and benefits of deduction with equality in general, while useful and important, was

beyond the scope of this work.

We made two refinements to the above naive implementation of paramodulation in the

interests of improving performance:

a) We test that G and Gp are not identical after the paramodulation. While such a result

would be correct and reflects the reflexivity of equality, it can only cause loops in Theorist’s
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proof procedure. Resolution by itself provides the eq(X,X) axiom.

b) To further prevent loops, we maintain a list of paramodulation ancestors throughout a

proof. That is, whenever we use the paramodulation inference rule we add the term which

we paramodulated into to this list. The list is checked immediately after testing condition

(a): if Gp is a member of it then we can safely fail the proof. 7. As above, such inferences

would be correct (in this case they reflect the symmetry of equality) but again they can only

lead to loops in an SLD-resolution prover like Theorist’s.

5.4. Ehypotheses

In connection with the use of equality, second-level hypotheses for the implementation of

the early solutions were added to the front end and are generated automatically during Skolemiza-

tion. Extensive use is made of PROLOG meta-predicates for the construction of terms and clauses.

Use of these ehypotheses is implemented as yet another inference rule (clause for prove).

This clause can only be used during consistency checks, but is otherwise similar to the clause

governing the use of hypotheses. That clause is also modified to permit the use of the ehypotheses

during the attempt to show the negation of the assumption.

The work spent developing this, while not completely correct with respect to the reverse

Skolemization problem, nonetheless provided useful insight into the use of interacting levels of

hypotheses with equality. For example, we believe that inheritance hierarchies with arbitrary

exceptions can be modelled using hypotheses which are allowed to rule each other out. Criteria

for deciding among multiple extensions is, as always in Theorist, theory preference information.

In this case the required information amounts to indicating which hypotheses can rule out which.

While work here was only rudimentary, we believe that explicit manipulation of statements and

hypotheses concerning equality is the best approach to such hierarchical classification problems.

As another example, [Goe89] is pursuing equality as a means of describing and computing

analogical information. In this case it is the statement of equality itself that must be assumed,
�������������������������������

7. Note that we do not unify here; the terms must be literally
identical.
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under certain criteria. Again, theory preference knowledge can decide between competing

hypotheses.

5.5. Meta-proofs

5.5.1. Theory formation solution

In accordance with the solution presented in Section 4.3, if we only want to rule out illegiti-

mate theories, we modify the rule governing the use of hypotheses to check for Skolem terms in

any hypothesis it is considering. If one is found then, in addition to the normal test for con-

sistency, the hypothesis can be ruled out by showing that the Skolem term’s definition is satisfied.

The modified clause for prove is therefore:

prove(G,A,H1,[G |H2]) :− hypothesis(G:−B),
proveAll(B,[G |A],H1,H2),
not ruleOut(G,A,H2).

ruleOut(G,A,H) :− negate(G,NG),
prove(NG,A,H,H).

ruleOut(G,A,H) :− skolemTerm(G,Sk),
definition(Sk,Def),
prove(Def,A,H,H),
not skolemTerm(Def,_).

The predicate skolemTerm(F,Sk) is true if Sk is a Skolem subterm of formula F, and will

enumerate all such terms by backtracking. It fails if there are no Skolem subterms in F, hence its

use to check for elements of the NS-Herbrand universe (see Section 4.1). The predicate

definition(Sk,Def) simply looks up the definition of Sk which was generated by the

front end during Skolemization. The first clause for ruleOut performs simple consistency

checking, the second attempts to prove that a Skolem term’s definition is satisfied by a non-

Skolem term.
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5.5.2. General solution

Following the specification in Section 4.4, the front end converts input statements of the

form

∀Y
� �

∃X p(Y
� �

,X)

to

p(Y
� �

,f(Y
� �

)) ← not(prove(p(Y
� �

,Z),A,H,H),

not SkolemTerm(Z,_)).

where prove is marked as meta and cannot use new hypotheses. In fact there are some techn-

ical details regarding variable bindings and the like which we have ignored here, but the idea and

its implementation is hopefully clear enough.



Chapter 6

Conclusions

We have examined the role of existentially quantified statements in resolution-based deduc-

tive systems, and observed that the lack of precise semantics for the Skolem terms introduced

mechanically during conversion to the required clausal form can lead to intuitively incorrect

answers. This has been called the reverse Skolemization problem (RSP). We defined the concept

of minimal attribution as the desired semantics for such terms in a hypothetical reasoning

environment (and in general). We showed how minimal attribution makes intuitive sense, and

have illustrated this with examples using the Theorist paradigm.

We examined how the RSP occurs with respect to two different ways Skolem terms can

arise: assertionally and verificationally . In the verificational case, the Skolem term is really a

placeholder for a universally quantified variable. Our solution ensured that Skolem terms appear-

ing verificationally did not get used in theories where they were not treated as universally

quantified variables. In the assertional case, the Skolem terms become default rules for naming

individuals satisfying certain properties. Our solution ensured that the Skolem terms were only

introduced when existing individuals did not satisfy these properties, thus preserving minimally

attributive semantics.

We described a progession of solutions to the RSP, starting with the intuitively ‘‘easiest’’

solution which involved replacing Skolem terms with variables before attempting to show their

negation. These variables are instantiated during consistency checking, and we test that the

instantiating individuals belong to the non-Skolem Herbrand universe of our set of clauses. This

was justified by examining the semantics of the original, non-clausal formulae.

The first solution was then modified to consider only individuals which also satisfied the

definition of the Skolem term they were replacing. This prevented individuals which explicitly

could not be identical to a Skolem term from ruling out an assumption concerning it.
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Finally, we observed that, to preserve minimal attribution, only the satisfaction of the

definition of a Skolem term by a non-Skolem term is required to rule out an assumption concern-

ing the Skolem term. This was illustrated by examples where there was no negative information

which would allow us to rule out a theory, but where introducing a Skolem term would violate

minimal attribution. Our solution involved a meta-level proof of the necessity of the Skolem

term and a simple consistency check of the assumption to ensure that all information about the

Skolem term was considered.

We showed how the RSP can occur in deductive situations where our solution based on rul-

ing out theories during consistency checking would obviously not apply. Our solution was shown

to be readily adaptable to such situations and was shown to be capable of preserving minimally

attributive semantics in these situations as well. Several examples illustrated the sufficiency of

this final approach.

The meta-level computation done in order to enforce minimal attribution is semi-decidable

for any strong logic, thus we described how minimal attribution can be enforced at update-time

rather than at query-time (without avoiding the cost however). We described how, for a variety

of user/machine interactions involving the addition and deletion of Skolem terms arising from

existential statements, the meta-proof required for our dynamic solution can be used to maintain

a static database. We also showed how all statements, not just those containing Skolem terms,

can affect the minimally attributive semantics, and described possible ways of handling these

updates.

We showed how our solutions could be easily incorporated into the Theorist framework,

and provided detailed examples of an implementation of the dynamic version of our solution.

We also described in some detail other aspects of the Theorist implementation which contributed

to the exploration and understanding of the RSP and of the role of Skolem terms in general.

Future work could certainly focus on maintaining a ‘‘criterion of identity’’ in order to

enforce minimal attribution more efficiently. As well, user-interface issues such as those dis-

cussed in Section 4.6, which are really a form of dynamic interaction to determine semantics,
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could be further explored in the context of learning concepts. Since this work focuses on identity,

further work on deductive systems with equality would no doubt prove useful. Indeed, equality is

a powerful tool for the natural axiomatization of many domains and so deserves further attention.

Since the costs of reasoning with equality are high, a careful examination of the benefits is

required.

We feel that existential statements arise naturally in the axiomatization of many situations.

In order to accomodate such statements in a resolution-based system, a precise semantics for the

Skolem terms introduced during conversion to clauses must be decided upon and enforced by the

system. For example, verificational Skolem terms are unavoidable if universally quantified for-

mulae are to be permitted in rule antecedents, and such rules are often useful. As described above,

assertional Skolem terms interpreted in a minimally attributive way become default rules for

naming individuals by identifying their properties, another useful representational tool.

This dissertation has cleared the philosophical air surrounding Skolem terms, permitting

unrestricted use of full clausal logic in deductive systems. While minimally attributive semantics

are not the only possible way of interpreting existentially quantified statements, we believe that it

is the most intuitively reasonable way. We have illustrated the natural connection between these

semantics and hypothetical reasoning, thereby clearing the way to full use of existential state-

ments in these systems also.
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