
Learning to Cooperate

by

Shenghuo Zhu

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Professor Dana H. Ballard

Department of Computer Science
The College

Arts and Sciences

University of Rochester
Rochester, New York

2003

ii

Curriculum Vitae

Shenghuo Zhu was born August 17, 1974 in Wenzhou, China. He graduated with a

Bachelor of Engineering degree at Zhejiang University in 1994, and with a Master

of Engineering degree at Tsinghua University in 1997. He entered the University of

Rochester in 1997, from which he received a Master of Science degree in Computer

Science in 1998. His current work in machine learning has been pursued since 1999

with professor Dana Ballard.

iii

Acknowledgments

I would like to express my gratitude to all those who gave me the possibility

to complete this thesis. I want to thank the University of Rochester Computer

Science department for giving me permission to commence this thesis in the first

instance, to do the necessary research work and to use departmental resources.

This thesis is the result of several years of work whereby I have been accompanied

and supported by many people. It is a pleasant aspect that I have now the

opportunity to express my gratitude for all of them.

The first person I would like to thank is my adviser, Dana Ballard, for stim-

ulating suggestions and encouragement helped me in all the time of research for,

giving me the freedom to pursue my research goals, and writing of this thesis. I

would also like to thank the other members of my PhD committee who monitored

my work and took effort in reading and providing me with valuable comments on

earlier versions of this thesis: Mitsunori Ogihara, Chris Brown and Mark Fey. I

thank you all.

The faculty, students and staff all gave me the feeling of being at home at

work. I want to thank them for all their help, support, interest and valuable

hints. Especially I am obliged to Tao Li, Chen Yu, Qi Li for collaboration in

several projects. Also I would like to thank Deqing Chen, Chunqiang Tang and

Xipeng Shen for discussing research topics and playing squash.

I feel a deep sense of gratitude for my parents always gave me boundless love

and support to follow the dream I choose. I am grateful for my sister, Chunshi,

iv

who encouraged me during the years. Especially, I would like to give my special

thanks to my wife, Sang, whose patient love enabled me to complete this work.

This thesis is based upon work supported by NIH/PHS Grant 5-P41-RR09283

and NSF Grant EIA-0080124.

v

Abstract

Game theory is not only useful to understand the performance of human and au-

tonomous game players, but it is also widely employed to solve resource allocation

problems in distributed decision making systems. These distributed systems are

mostly referred to as multi-agent systems. Reinforcement learning is a promis-

ing technique for learning agents to adapt their own strategies in such systems.

Most existing reinforcement learning algorithms are designed from a single-agent’s

perspective and for simplicity assume the environment is stationary, i.e., the dis-

tribution of the utility of each state-action pair does not change. The predominant

approaches to game playing in those settings assume that opponents’ behaviors

are stationary. However, in a more realistic model of multi-agent systems, the

agents are continually adapting their own strategies owing to different utilities at

different times. Because of non-stationarity, multi-agent systems are more sen-

sitive to the trade-off between exploitation, which uses the best strategy so far,

and exploration, which tries to find better strategies. Exploration is especially

important in changing circumstances.

Cooperation usually enables agents to receive a higher payoff than non-cooperative

ones. This research is to explore the cooperative opportunities in unknown games.

A hill-climbing exploration approach is proposed for agents to take their oppo-

nents’ responses into consideration, and maximize the payoffs by gradually adapt-

ing their strategy to their opponents’ behaviors in iterated games. Simulations

show that the agents can efficiently learn to cooperate with or compete against

vi

each other as the situation demands. Also, the agents are able to tolerate noise

in environments and exploit weak opponents.

Assuming that the utility of each state-action pair is a stochastic process allows

us to describe the trade-off dilemma as a Brownian bandit problem to formalize

recency-based exploration bonus in non-stationary environments. To demonstrate

the performance of exploration bonus, we build agents using Q-learning algorithm

with a smoothed best response dynamics. The simulations show that the agents

can efficiently adapt to changes in their opponents’ behaviors whereas the same

algorithm, using Boltzmann exploration, can not adapt. This work focuses on typ-

ical simultaneous games that represent phenomena of competition or cooperation

in multi-agent environments, such as work-and-shirk game.

vii

Table of Contents

Curriculum Vitae ii

Acknowledgments iii

Abstract v

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Multiple Agents v.s. Games . 1

1.2 Reinforcement Learning . 2

1.3 Non-stationary and Adaptive Adversaries 3

1.4 Summary of Contributions . 4

1.5 Organization . 5

2 Preliminary 6

2.1 Game Theory . 6

2.2 Reinforcement Learning . 13

2.3 Multiagent Reinforcement Learning 21

viii

3 Learning to Cooperate 25

3.1 Definitions . 27

3.2 The probabilistic tit-for-tat strategy 30

3.3 The Hill-Climbing Exploration (HCE) Algorithm for Game of Con-

tinuous Strategies . 32

3.4 The HCE Algorithm for Games with Discrete Strategies 40

3.5 Experiments . 41

3.6 Conclusions . 49

4 Non-Stationary Environments 50

4.1 The Brownian Bandit Problem 51

4.2 Learning in Repeated Games . 55

4.3 Simulation Results . 57

4.4 Conclusions . 57

5 Learning Machine Challenge 60

5.1 Design . 61

5.2 Results . 64

6 Clustering Game 68

6.1 A Clustering Algorithm: CoFD 70

6.2 Agents for Distributed CoFD . 77

6.3 Experimental Results . 77

6.4 Relative Work . 85

6.5 Conclusions . 87

7 Summary 89

ix

List of Tables

3.1 The probabilistic tit-for-tat strategy 30

3.2 Transit matrix T of PTFT against PTFT 31

3.3 The probabilistic decision of the hyper controller 34

3.4 Tournament results . 48

6.1 An example of data set . 76

6.2 Confusion matrix for Experiment 1 76

6.3 Confusion matrix for Experiment 2 81

6.4 Confusion matrix of Zoo . 81

x

List of Figures

2.1 The payoff matrix of the rock-paper-scissors game 7

2.2 Payoff matrix of Prisoner’s Dilemma 9

2.3 DFA representation of Tit-for-Tat 10

2.4 The payoff matrix of a simple example of the tragedy of the commons 11

2.5 The payoff matrices of work-n-shirk 12

3.1 πCC = 1
(1+λ)2

. 32

3.2 An experimental result of IPD, HCE vs HCE 37

3.3 An experimental result of IPD, HCE vs All Cooperate 37

3.4 An experimental result of IPD, HCE vs All Defect 38

3.5 An experimental result of IPD, HCE vs TFT 38

3.6 An experimental result of matching pennies 39

3.7 An experimental result of coordination 39

3.8 Discounted average of payoffs in matching pennies. 42

3.9 Discounted average of payoffs in coordination. The horizontal axis

represents time, t. The vertical axis represents payoffs. 44

3.10 Discounted average of payoffs in tragedy of commons. The hori-

zontal axis represents time, t. The vertical axis represents payoffs. 45

xi

3.11 Discounted average of payoffs in prisoners’ dilemma. 46

4.1 Brownian bandit problem . 52

4.2 R(x) and ŵ(x). 53

4.3 ρ . 54

4.4 Two learning agents play work-n-shirk 59

6.1 Scalability with number of points 84

6.2 Scalability with number of dimensions 84

1

1 Introduction

The enormous complexity of software environments has spawned interest in au-

tonomous intelligent agents that can navigate through them. Since such agents

learn and encounter other agents, there is a great demand for learning algorithms

that work in multi-agent environments. This dissertation is about exploring some

of theories of building distributed cooperative learning agents in multi-agent en-

vironments.

1.1 Multiple Agents v.s. Games

An agent is an entity that exerts some actions in a certain environment. An

adaptive/learning agent is an agent able to learn strategies from its environment

to improve its own reward. In most cases, the environment of an adaptive agent

contains some other adaptive agents. Such an environment is referred to as a

multiple adaptive agent environment, in short, a multi-agent environment.

Generally, learning problems in multi-agent environments can be modeled as

simultaneous games, where players execute actions simultaneously, and the payoffs

depend on the combinations of actions taken by the players. Rock-paper-scissors

is, for example, such a simultaneous game. Another kind of games is alternative

2

games, like chess. In the rest of this dissertation, we refer to simultaneous games

as games unless specified. This research focuses on two-player iterated games,

i.e., two autonomous agents simultaneously learn to improve their own strategies

in order to achieve better individual rewards in games. These games can be

used to study the central issues in multi-agent systems, such as competition and

cooperation. Chapter 2 gives a rudimentary introduction to game theory.

1.2 Reinforcement Learning

The AI research community has increased the interest in the learning capability

of systems. An adaptive system is generally more flexible and robust than a

preprogrammed one. Supervised learning, where a teacher provides exact answers

of training examples, is a useful technique in solving problems involving pattern

recognition and classification. However, exact answers may not exist in some

cases. Reinforcement learning is a technique only use suggestive answers, known

as rewards, to improve the performance. Therefore, reinforcement learning is

widely used in control systems, in which the mathematical models are not well

defined.

Markov decision processes (MDPs) originate in the study of stochastic optimal

control (Bellman, 1957) and have been widely used as a popular method for mod-

eling and solving theoretic decision/planning problems ever since (Howard, 1960;

Puterman, 1994). It is based on the Markovian assumption: the rewards and the

dynamics only depend on the current state. Reinforcement Learning (RL) (Barto

et al., 1983; Sutton, 1984; Watkins, 1989) is a formal framework for learning MDP

agents’ knowledge is expected optimal policy, how to choose actions to maximize

reward. Chapter 2 gives a preliminary introduction to reinforcement learning.

3

1.3 Non-stationary and Adaptive Adversaries

Unlike systems only containing single adaptive agent, multi-agent systems are non-

stationary or, even, inconsistent from the perspective of an individual agent, be-

cause learning opponents may continually adapt their individual strategies. There-

fore, to explore the responses of learning opponents, it is necessary for agents to

be able to keep changing their estimates of payoffs.

In some games, such as matching pennies, no pure equilibrium exists, therefore

mixed strategies should be included in the set of support of a general-purposed

learning agent, with the result that learning agents are nondeterministic. One

interpretation of mixed strategies is to probabilistically choose actions from pure

strategies. Unaware of the payoff matrix to the opponent, a learning agent can

not compute the exact Nash equilibrium. A fictitious player (Fudenberg & Levine,

1998) assumes that the opponent is consistent with its mixed strategy. However,

it is well known that the mixed strategies do not converge if two fictitious players

play against each other in some games, such as matching pennies.

In games like prisoners’ dilemma, the unique equilibrium is for both players

to play d (defect), resulting in less payoffs (1, 1) than (3, 3) if both players play

c (cooperate). If a player believes that its opponent does not change its strat-

egy, then it will always play d. To overcome this dilemma, we also have to take

the opponents’ responses into consideration. To predict opponents’ actions in

prisoners’ dilemma, Carmel and Markovitch (1996) proposed a method to model

opponents’ strategies as finite automata. Players are able to predict the deter-

ministic strategy of their opponents. However, if the adversaries are also learning

agents, they are unlikely to be deterministic. Moreover, deterministic players may

play poorly in noisy environments, where agents may probabilistically realize an

action different from the one they intend to. Noisy environments are very com-

mon in most real life problems. Therefore, we propose an approach for learning

4

agents to analyze their opponents’ responses via statistical data without modeling

entire opponents’ strategies. Considering the adversaries’ responses, agents can

maximize the expected payoff with a better estimation.

1.4 Summary of Contributions

In this dissertation, I propose an approach of cooperative exploration for solv-

ing the cooperative problems in multiagent environments. Learning agents adapt

their strategies to their opponents’ strategies through statistical analysis of their

opponents’ responses in iterated games. Also, agents explore possible cooperative

strategy and verify whether the opponents’ response improve the payoff. The

simulations show that learning agents can efficiently learn to compete against,

cooperate with each other in respective settings and adapt to changes in their

opponents’ strategies. Also, learning agents are able to tolerate noise in environ-

ments and exploit weak opponents.

Another study focused on the strategy of playing against another intelligent

agent in a non-stationary environment. The study formalizes recency-based ex-

ploration bonus with the Brownian bandit problem. To illustrate the efficiency of

the recency-based exploration, we build Q-learning agents with the smoothed best

response dynamics. The simulations demonstrate that systems with the recency-

based exploration can reach expected equilibria more efficiently than those with

Boltzmann exploration. The simulations also show that the learning agents can

efficiently adapt to the new context owing to changes of their peers’ behaviors or

drift of their environment.

Last, I present my studies on some applications related to learning in mul-

tiagent environments, a neuroscience research on playing with monkey, learning

machine challenge, and multiagent clustering algorithm.

5

1.5 Organization

Chapter 2 introduces some preliminaries used in this dissertation, including ba-

sic knowledge of game theory and reinforcement learning. Chapter 3 presents

an algorithm of cooperative exploration for solving the cooperative problems in

multiagent environments. Chapter 4 formulates the exploration strategy in non-

stationary environments. Chapter 5 describes the player that participated Learn-

ing Machine Challenge. Chapter 6 presents the game theory point view of cluster-

ing and some other distributed learning problems. Finally, Chapter 7 summarizes

the contributions of this dissertation to the theory and practice of building learn-

ing algorithm for agents in a distributed environment.

6

2 Preliminary

This chapter introduces the background knowledge of game theory, and the basic

knowledge of Markov decision processes and reinforcement learning.

2.1 Game Theory

Game theory (von Neumann & Morgenstern, 1947) is designed for reasoning about

simple multi-player systems. In a two player game, each player takes an action

(in a stage), then receives a payoff that depends on its action and the opponent’s.

A simple example is the rock-paper-scissors game, the payoff matrix of which is

as Figure 2.1.

The formal description is as follows:

Definition 1 An n-player game, G, contains a set of n players. The i-th player

can choose strategies from a set of pure strategies, denoted by Ai. A pure profile

is an n-tuple of pure strategies of players, which is an item of
∏n

j=1Aj. Also for

the i-th player, there is a payoff function, ri :
∏n

j=1Aj → R, which maps a pure

profile into a real number.

The rock-paper-scissors game is a two-player 3-strategy game. Ai = {rock, paper, scissors}

for each i. Ai could also be a real number in some games, such as price-war.

7

Bob

Alice Rock Paper Scissors

Rock
0

0

1

-1

-1

1

Paper
-1

1

0

0

1

-1

Scissors
1

-1

-1

1

0

0

Figure 2.1: The payoff matrix of the rock-paper-scissors game. Each of the players,

Alice and Bob, takes one of the actions, “rock”, “paper” or “scissors”. The

contents of the matrix are the payoffs to both players for the different joint profiles.

For example, in row “rock” and column “paper”, the outcome is (−1, 1), which

means that, when Alice plays “rock” and Bob plays “paper”, Alice loses the game

(receives a payoff of −1) and Bob wins the game (receives a payoff of 1).

In the rock-paper-scissors game, the rational strategy is to choose actions

randomly. This is the idea behind mixed strategies.

Definition 2 A mixed strategy for the i-th player is a probability distribution on

the set of the pure strategies, Ai.

To study the mixed strategy of a game, G, we can form another game, G ′, whose

strategy sets, A′i, are the set of probability distribution on Ai. The payoff function

of G ′ takes the expectation of the payoff function of G over the distributions.

2.1.1 Nash Equilibrium

An equilibrium, named after Nash (1951), is widely studied.

Definition 3 A Nash equilibrium is such a (mixed) profile, where any player who

changes her (mixed) strategy would be rewarded less. In the other word, a Nash

8

equilibrium is a profile such that each player’s strategy maximizes her payoff if the

strategies of the others are fixed. It is formalized as Equation 2.1.

ri(s) = max
all ti’s

ri(s; ti) (2.1)

where s is an equilibrium, ti is a (mixed) strategy of the i-th player, and s; ti

denotes the same profile as s except the i-th player plays ti.

No players leave a Nash equilibrium once they have reached it. However, Nash

equilibria may or may not exist in some games, and some games have more than

one Nash equilibrium. It can be proven that at least one mixed Nash equilibrium

exists in a game (Owen, 1995).

2.1.2 The Prisoner’s Dilemma

Besides Nash equilibrium, we are also interested in another type of profiles, where

every player may receive a higher payoff than that at a Nash equilibrium.

Definition 4 A profile p is more Pareto efficient than profile q, if and only if

ri(p) > ri(q) for each i.

The game of the Prisoner’s Dilemma, invented by Merrill Flood and Melvin

Dresher in the 1950s, two individuals are arrested for committing a crime together.

Each of them has two options, confessing and testifying against another or not.

If both of them confess and testify against the other, they would be put in jail

for 4 years; if only one of them confesses and testifies against the other but the

other does not, the former would be released while the latter would get 5 years

in jail; if neither of them confesses and testifies against another, both of them

would receive 2 years in jail. The payoff matrix of Prisoner’s Dilemma is shown

as Figure 2.2. Each number represents as 5 minus the number of years in jail.

9

B
A

C D

C 3
3

5
0

D 0
5

1
1

Figure 2.2: Payoff matrix of Prisoner’s Dilemma. Each of the prisoners, Alice(A)

and Bob(B), either defects (finks against the other) or cooperates (maintains

silence). Each number represents 5 minus the number of years in jail. Each row

represents the action A takes. The lower-left item of each box represents the payoff

A receives. Columns and the upper-right items are for B. The arrows represent

the direction of the best responses at situations, vertical ones for A and horizontal

ones for B.

In the game, Alice believes that to defect is better than to cooperate, if she

knows the action Bob takes. So does Bob. Therefore, the profile, (defect, defect),

is the outcome of the game, i.e. the Nash equilibrium of the game. However, the

payoffs for (defect, defect) are both less than those for (cooperate, cooperate).

Therefore (cooperate, cooperate) is more Pareto-efficient than (defect, defect).

A variant of the game is called Iterated Prisoner’s Dilemma (IPD), which the

game is played sequentially an infinite number of times (Rubinstein, 1986). At

each step, each player chooses a strategy, the decision of which may depend on

profiles in the previous events called history. A policy is how a player chooses a

strategy in each step. At the end of each step, the players receive payoffs.

A player is said to be restricted to regular policy, if and only if the strate-

gies played by the player can be represented by deterministic finite automata

(DFA) (Rubinstein, 1986). The input of the DFA is the perception of the player,

10

i.e. the opponent’s most recent strategy. A policy function π is a map from the

state of DFA to strategy of next stage. We write a strategy a as π(s), where s is

the state of DFA.

Tit-for-tat is a policy for IPD, with which an agent simply commits the strategy

that the opponent commits in the most recent step. The policy is represented as

Figure 2.3, where c means cooperate and d means defect. The policy function is

π(c) = c and π(d) = d.

'&%$!"#cc
'' d

** /.-,()*+d d
hh

c
ii

Figure 2.3: DFA representation of Tit-for-Tat. In this figure, c means cooperate

and d means defect. The edge represents the opponent’s most recent strategy.

The state label represents the player’s next action.

The best-response to tit-for-tat is given in (Axelrod, 1984) as Equation 2.2

with respect to the payoff discount factor γ.

πopt =

All c 2

3
≤ γ < 1

Alternate between c and d 1
4
≤ γ < 2

3

All d 0 ≤ γ < 1
4

(2.2)

When γ is greater than 2
3
, the player tends to cooperate, because the future

reward contributes a large portion of the discounted reward. When γ is less than

1
4
, the current reward contributes greater than the future ones, therefore, in the

first step, the player defects and keeps defecting because the future rewards can

not compensate the reward to cooperate with a tit-for-tat player who defects.

When 1
4
≤ γ < 2

3
, the future rewards compensate the reward of cooperating

11

with a tit-for-tat player who defects, therefore, the player cooperates and defects

alternately.

However, TFT is not the optimal strategy against a weak player, because a

TFT player can not exploit an all-cooperate player.

In a noisy environment, TFT is not a good strategy against another TFT

player. The players will play each combination with equal probability.

2.1.3 The Tragedy of the Commons

Another dilemma is called the tragedy of the commons, in which, if players receive

worse payoffs to take the same actions than to take the different actions. The

payoff matrix of a simple example is shown in Figure 2.4. In the game, there are

two Nash equilibria, (apple, orange) and (orange,apple).

Bob

Alice Apple Orange

Apple
3

3

4

6

Orange
6

4

2

2

Figure 2.4: The payoff matrix of a simple example of the tragedy of the commons.

Alice and Bob can choose one of the fruits, apple or orange. If they choose the

same fruit, they have to share the fruit.

Two players, Alice and Bob, play a non-cooperative game to choose one of the

fruits, apple and orange. The apple values 6, and the orange 4. If they choose

the same fruit, they have to share it. If they choose differently, they can have

the whole value respectively. From the payoff matrix, the apple values higher

than the orange. If both of them choose the apple, the result is worse than one

chooses apple and the other chooses orange. The solution for this game is to find

a mechanism to coordinate the players.

12

2.1.4 Work and Shirk

In some games, such as work-n-shirk(Fig.2.1.4) and matching pennies, pure equi-

libria may not exist, therefore mixed strategies (Nash, 1951) should be included

in the set of support of a general-purposed learning agent. The interpretation

of mixed strategies that we use is probabilistically choosing actions from pure

strategies.

Monkey
Boss

Work Shirk

Inspect R-L
P-W-I

0
-I

Not Inspect R-L
P-W

R
-W

Figure 2.5: The payoff matrices of work-n-shirk. Each row represents the action A

takes. The lower-left item of each box represents the payoff A receives. Columns

and the upper-right items are for B. The arrows represent the direction of the

best responses at situations, vertical ones for A and horizontal ones for B.

In work-n-shirk game, Boss expects Monkey to work so that Boss can have

product, payoff P . To encourage Monkey to work, Boss pays a wage, W , to

Monkey, unless Boss find that Monkey does not work. The wage is a reward,

R, to Monkey. However, it costs Boss I to inspect and Monkey L to work. If

Monkey works, Boss will reduce the probability of inspection to reduce the cost

of inspection. If Monkey does not work, Boss will increase the probability of

inspection to reduce the cost of wage. If Boss inspects, Monkey will work to get

more reward. If Boss does not inspect, Monkey will shirk to reduce the cost of

work.

13

2.2 Reinforcement Learning

2.2.1 Markov Decision Processes

Markov decision processes (MDPs) originate in the study of stochastic optimal

control (Bellman, 1957) and have been widely used as a popular method for mod-

eling and solving decision theoretic planning problems ever since (Howard, 1960;

Puterman, 1994). It is based on the Markovian assumption: the rewards and the

dynamics only depend on the current state.

This section provides a formal notation to describe the model of Markov deci-

sion processes. The model consists of two parts, the environment and one agent.

The environment is approximated by a discrete state space, a discrete action

space, and discrete time. At each time step, the agent executes an action and the

environment transforms from the current state to a new state that results from

the action.

Let X be the finite set of states, A be the set of actions and T be the discrete

set of time (Z). Let Xt ∈ X 1 be the random variable of the state at time t,

At ∈ A be the random variable of the agent’s action at time t.

In the model of an MDP, the environment is assumed time-invariant or sta-

tionary, that is, the transition of the environment does not depend on the time.

The random variables Xt are Markovian. We write it as

T (xk, xi, aj) = P (Xt = xk|Xt−1 = xi, At = aj),

where xk, xi ∈ X and aj ∈ A.

Now we formalize the agent. At each time step, the agent observes the envi-

ronment, makes an action decision, and receives a reward and a new observation.

1Precisely, it should be written as Xt : Ω→ X in a probability space (Ω,F ,P).

14

Let R be the set of possible rewards, Rt ∈ R be the random variable of the

agent’s reward at time t. In the model of MDP, Rt only depends on Xt−1 and At

2. In an iterated game, the discounted reward is a criterion of evaluation, which

derived from discounted sum of payoff function as Equation 2.3.

Rit(s) =
∞∑

k=0

γkri(st+1+k) (2.3)

where γ is a discount factor for the future payoffs, and 0 ≤ γ < 13.

Let O be the finite set of the agent’s observations, Ot ∈ O be the random

variable of agent’s observation at time t. In the model of MDP, Ot only depends

on Xt−1 and At−1.

Let S be the finite set of the agent’s internal states. A stationary Markovian

policy is a mapping π : S → A, where π(s) denotes the action an agent should

perform whenever it is in state s. We adopt the discount factor γ over an infinite

horizon as our optimality criterion.

2.2.2 Learning Algorithms

Reinforcement Learning (RL) (Barto et al., 1983; Sutton, 1984; Watkins, 1989)

is a formal framework for learning MDP agents’ knowledge is expected optimal

policy, how to choose actions to maximize reward. We can rewrite the problem of

optimal stationary Markovian policy as Equation 2.4 and 2.5.

Q(s, a) = R(s, a) + γ
∑
t∈S

Pr(s, a, t)V (t) (2.4)

V (s) = max
a∈As

Q(s, a) (2.5)

2In (Howard, 1960), the reward does not depend on the performed action.
3Though cases with γ = 1 are possible, they are less common (Mahadevan, 1996). A similar

model, infinite-horizon discounted model, could be found in (Kaelbling et al., 1996)

15

Then, we can define the optimal policy as Equation 2.6.

π(s) = arg max
a∈As

Q(s, a) (2.6)

Q-learning (Watkins, 1989; Watkins & Dayan, 1992) has attracted much at-

tention as an implementation of reinforcement learning. The learning processing

is updating Q-values and optimal value function as Equation 2.7.

Q(st−1, at−1)← (1− α)Q(st−1, at−1) + α(R(st−1, at−1) + γV (st)) (2.7)

where,

Uπ(s) = E{Rt|st = s, π}

= r(s, π(s)) + γ
∑
t∈S

Pr(t|s, π(s))Uπ(t)

The best that can be done in a state is its optimal value:

U∗(s) = max
π

Uπ(s) (2.8)

There is always at least one optimal policy, π∗, that achieves this maximum at all

states s ∈ S.

Other reinforcement learning methods can be found as Monte Carlo methods

(see (Barto & Duff, 1994)), Temporal-Difference Learning (Sutton, 1988), Dyna

architecture (Sutton, 1990; Sutton, 1991).

2.2.3 Perceptual Aliasing

A Markov decision process assumes that there exists a one-to-one correspondence

between the agent’s observations and states of the environment. However, in

the real world, agents have only partial observability of its environment, which is

16

described by a partial observable Markov decision process (POMDP) (Astrom,

1965).

In games, an agents has no a priori information of the opponent model, that is,

the states of the opponent model are hidden and a perception does not uniquely

reflect a state of the world. This problem is called perceptual aliasing (Whitehead,

1992).

One approach, named sensor-based approach, uses additional perceptual ac-

tions to disambiguate the state, such as Lion algorithm (Whitehead, 1992) and

Cost Sensitive Reinforcement Learning (Tan, 1991). However, one disadvantage

of the algorithms is the assumption of a deterministic environment. A limitation

of this approach is incapable to incomplete perception (Chrisman et al., 1991).

Another approach, named memory-based approach, distinguishes certain states

by remembering the past perceptions and actions. The Window-Q algorithm (Lin

& Mitchell, 1992) is an attempt to extend the Q-learning algorithm with a sliding

window over the past N observations and actions. Unfortunately, N is fixed.

In the real world, we can hardly estimate N precisely a priori. The Recurrent-Q

algorithm (Lin, 1993) trains a recurrent neural network containing a fixed number

of hidden units. This algorithm also faces the similar problem since the number

of hidden units is fixed.

The hierarchical Q-learning (Wiering & Schmidhuber, 1997) is based on an

ordered sequence of subagents, each of which learns and solves a Markovian

subtask. When a agent meet its subgoal, the transfer control unit passes con-

trol to its successor. The hierarchical structure enlarges the state space. W-

learning (Humphrys, 1996) and nested Q-learning (Digney, 1996) are similar to

this approach. The problem is that the number of agents is fixed before learning

begins.

Ring (1993) has developed a non-recurrent hierarchical neural network to learn

the sequential tasks with hidden states. High-level units are added online when

17

the unit activations are unreliably predicated. When the time delay is large,

the method suffers the problem of high-level units over-added. Pyeatt and Howe

(1999) describe a similar method.

Perceptual Distinctions Approach (Chrisman, 1992) and Utile Distinction

Memory (UDM) (McCallum, 1993) learn POMDP via state-splitting strategies.

The difference is that in the former states are split in order to increase the ability

of perceptions while in the latter in order to increase the ability of predict rewards.

This method can not solve problem when predicting reward depends on the con-

junction of several perceptions while irrelevant to any individual perception.

By adopting of Prediction Suffix Tree Learning (Ron et al., 1994; Ron, 1995),

(McCallum, 1995) presents Utile Suffix Memory (USM), which combines the ad-

vantages of instance-based learning and utile distinctions and results in a pretty

good performance. The key idea behind the utile suffix memory is to construct

an utile suffix tree with the most recently observations and actions, then to seek

a closest state (instance set) on the tree, and to choose an action based on the

instances. The skeleton of the algorithm is as follows:

1. Make a tree with only a root node and an empty history.

2. Add the last observation and action to history.

3. Seek the closest node corresponding to the last state and update the Q-values

of the node as Equation 2.9 4.

Q(s, a)← R(s, a) + γ
∑
s′

Pr(s′|s, a)U(s′) (2.9)

where R(s, a) is average reward on pairs of state s and action a, Pr(s′|s, a)

is the frequency of s′ given state s and action a, and U(s) = maxa∈A Q(s, a).

4McCallum uses U instead of V in previous equations.

18

4. Compare fringe nodes using Kolmogorov-Smirnov test. If different, promote

the fringe nodes.

5. Choose next action and repeat step 2 to 4.

2.2.4 Exploration vs Exploitation

When performing a learning algorithm, an agent expects to take the action with

the best estimated reward. However, the knowledge held by the agent can not

guarantee the observed best action is actually the best one. Therefore, the agent

must make a tradeoff between exploiting the current knowledge and exploring for

the future knowledge.

Boltzmann exploration (Sutton, 1990) assigns a probability to any action ac-

cording to its estimated utility Ui and a parameter T called temperature. The

probability of action ri is assigned as

Pr(ri) =
eUi/T∑n

j=1 eUj/T
(2.10)

When Ui > Uj, we have

lim
T→∞

eUi/T

eUj/T
= 1 (2.11)

lim
T→0

eUi/T

eUj/T
=∞ (2.12)

Therefore, when the temperature is large enough, the Boltzmann exploration acts

exactly like random exploration; when the temperature goes to zero, the Boltz-

mann exploration acts exactly like best selection. When temperature is decreasing,

the algorithm converges empirically, but there are not theoretical guarantees of

the optimal results. Simply decreasing the temperature in Boltzmann exploration

does not work with a multiagent environment. For example, suppose Bob can

choose two routes, A and B. After daily driving, he learns that Route A has less

traffic. Using Boltzmann exploration with decreasing temperature, he chooses

19

the optimal solution. However, the traffic control center changes some rules, the

traffic on two routes changes as other drivers changes their strategies. Bob may

notice the change of traffic, and explore two routes. The environment is not well

explored due to the instability of Q-values.

Exploration problem is similar to two-armed bandit problem, which appears to

have originated with the paper by Thompson (1933). A gambler is given N coins

with which to play a slot machine having two arms. Two arms may have different

payoff rates and variances. However, the gambler has no a priori information

about two arms. Her goal is to maximize her total payoff during N trials. Bellman

(1961) and Hellman and Cover (1970) give interesting discussions of the problem.

Let the average payoffs to the arms be µ1 and µ2 (µ1 > µ2) respectively, and

the variances be σ2
1 and σ2

2. The gambler allocates n trials to the observed second

best of the two bandits. Then the problem is find out the optimal allocation of

trials n∗. Holland (1975) provide a solution as Equation 2.13.

n∗ ≈ b2 ln
N2

8πb4 ln N2
(2.13)

where b = σ1

µ1−µ2
. The optimal allocation of trials N − n∗ to the observed better

arm is ecn∗
, where c is a constant. This looks similar to Boltzmann exploration.

Holland’s solution is on the finite-horizon case. In Markov decision processes,

we are more interested in infinite-horizon discounted case. Bellman and Kalaba

adopted a Bayesian formulation to solve the problem with dynamic programming

algorithm (Bellman, 1956; Bellman & Kalaba, 1959).

The Bayesian solution to this problem was proposed by Gittins and Jones

(1974). Consider a reward process, let S be its state space, B be the power set of

S, sk ∈ S be the state of the process at time k. For B ∈ B, let τ(B) be the number

of transitions before it enters B, V (s, B) be the expected discounted reward:

V (s, B) =
E(
∑τ(B)−1

k=0 γkR(sk)|s0 = s)

E(
∑τ(B)−1

k=0 γk|s0 = s)
(2.14)

20

Then the Gittins index of state s is defined as

V (i) = max
B∈B

V (i, B) (2.15)

The optimal policy just consists of action to state with largest index in each stage.

A non-Bayesian solution to two-armed bandit problem was proposed by Kael-

bling (1993). The algorithm, called ‘interval estimation’, consists in choosing the

arm with the greater upper-bound ub of a 1 − θ confidence interval of random

reward ρ. Suppose ρ follows a normal distribution which unknown mean and

unknown variance, then we have

ub = ρ̄ + s
tn−1
θ/2√
n

(2.16)

where ρ̄ is the sample mean of n observations of ρ, s is the sample standard

deviation of n observations of ρ and tn−1
θ/2 is Student’s t-function.

However, these solutions are to systems with single state, which leads to a

local-scale reasoning about information that is insufficient in many multi-state

environments. Based on the local-scale bonuses, a empirical solution to multi-state

environments is to back-propagate the exploration bonuses to simulate global-scale

reasoning about the uncertainty (Meuleau & Bourgine, 1999).

2.2.5 Multi-layer Models

Markey (1994) applies parallel Q-learning to the problem with multi degrees of

freedom. Each agent controls one degree of freedom. Tham and Prager (1994)

mention the similar idea of a separate Q-network. Dayan and Hinton (1993)

propose a two-level learning scheme, named Feudal RL. The higher-level managers

set tasks for lower level managers. However, the open question is whether the

structure can learned online.

21

2.3 Multiagent Reinforcement Learning

Many AI researchers have applied reinforcement learning techniques to solve

problems in games, such as checkers (Samuel, 1959), tic-tac-toe (Boyan, 1992),

backgammon (Tesauro, 1992), and Go (Schraudolph et al., 1994). These games

are alternative Markov games. Another type of games called simultaneous Markov

games. Some problems have been studied in (Yanco & Stein, 1993; Tan, 1993).

Simultaneous Markov games are called stochastic games, which are models of se-

quential decision making based on the Markovian assumption (Shapley, 1953; van

der Wal, 1981; Owen, 1982; Littman, 1994).

Littman (1994) proposed a frame work for learning in zero-sum games, called

minimax-Q learning. The frame work is to to find optimal policies for a zero-sum

game of “rock, paper, scissors”. The method is a variation of Q-learning, named

minimax-Q learning algorithm. The modification lies in using Q(s, a, o) instead of

Q(s, a), where o is the action chosen by the opponent and replacing Equation 2.5

with Equation 2.17 and Equation 2.4 with Equation 2.18.

V (s) = max
π∈PD(A)

min
o∈O

∑
a∈A

Q(s, a, o)πa (2.17)

Q(s, a, o) = R(s, a, o) + γ
∑
s′

T (s, a, o, s′)V (s′) (2.18)

However, the minimax-Q learning algorithm is limited in the setting of totally

negatively correlated payoffs. The minimum of Q values over opponent action

is the optimal action of opponent coincidently. Therefore, agent can estimate

the action a rational opponent would take. The minimax-Q learning algorithm is

unlikely to be extends to non-zero-sum Markov game or other multiagent systems.

Some other leaning algorithms (Hu & Wellman, 1998; Brafman & Tennenholtz,

2001; Singh et al., 2000) are based on a similar framework.

22

In the frame work it is assumed that both players can observe their own pay-

offs as well as monitor those of the opponents (In zero-sum games, the payoff

matrices of their opponents are the negatives of their own ones), but for many

real life problems agents are unable to monitor the opponents’ payoff matrices.

For example, monkeys play against machines in some neuroscientific experiments,

where the monkeys’ payoffs as well as their mix of strategies of monkeys are not

observable to machines. Moreover, the monkeys’ payoff matrices may change from

time to time because the value of reward (i.e. juice) depends on whether they are

thirsty.

For reinforcement learning in non-zero-sum games, Carmel and Markovitch

(1996) describe a model-based approach, in which the learning process splits into

two separate stages. In the first stage, the agent infers a model of the other agent

based on history. In the second stage, the agent utilized the learned model to

predicate strategies for the future. Unfortunately, Carmel and Markovitch’s work

is focus on learning agent against non-learning agent.

Sandholm and Crites (1996) build Q-learning agents for IPD. They show the

optimal strategy learned against the opponent with fixed policy, tit-for-tat, and

the behaviors when two Q-learning agents face each other. They address the hid-

den state problem in two different ways, fixed windows Q-learning and recurrent

neural network. The convergence of the algorithm is not proved in non-stationary

setting.

Many other approaches try to build opponents’ models while playing. Bui

et al. (1996) did research on learning probabilistic models of the preference of

other agents in the meeting scheduling domain. Sen and Arora (1997) used a

maximum expected utility principle approach to exploiting learned opponent’s

models. In their approach, conditional probabilities for different opponent’s ac-

tions corresponding to all actions from the current state are used to compute

expected utilities of each of the possible actions. The action with the maximum

23

expected utility is then played. A probabilistic model of the opponents’ strategies

is developed by observing actions played by the adversaries in different discrep-

ancy ranges as measured by the evaluation function of the player. Model-based

learning method can efficiently find some deterministic rules if the assumption of

deterministic opponent is valid. However, as we stated before, in general situa-

tions, the adversaries are learning agents too, and unlikely to be deterministic.

Our approach, though, can also be extended to discover deterministic rules at the

cost of increasing the state space.

Some other approaches focus on a single class of games. Billings (2000) pro-

posed an approach to play competition games like rock-paper-scissors. Claus and

Boutillier (1998) proposed an algorithm that focuses on coordination games, where

the individual payoff to a single agent is proportional to the global utility. Sug-

awara and Lesser (1998) have presented an explanation based learning approach to

improving problem solving behavior. Williams (2001) proposed methods to choose

equilibrium in a game with multiple stable equilibria. Sandholm and Crites (1996)

did some experiments on the iterated prisoners’ dilemma by using Q-learning with

Boltzmann exploration. The best case is that 25 trials out of 100 converge to the

optimal cooperate-cooperate result. Their experiments demonstrate that playing

against another learner was more difficult than playing against a fixed strategy

agent because of the peer learner’s non-stationary behavior and the average payoff

in each single stage game increases monotonically with longer Boltzmann explo-

ration schedules. Some genetic algorithms were proposed to simulate the iterated

prisoners’ dilemma, e.g. (Axelrod, 1984). In contrast to these approaches, our

algorithm is able to learn strategies for arbitrary games without extensive model-

ing. Local prisoners’ dilemma (Nowak & May, 1993) and local Hawk-Dove game

(Ahmed & Elgazzar, 2000).

It is worth to mention that some team learning (Stone & Veloso, 1999; Jain

& Sharma, 1995; Smith, 1982). It focuses on teams of independent machines that

24

learn to identify functions or languages and on the theoretical characterization.

There are also a number of approaches of distributed reinforcement learning such

as (Weiss, 1998; Schaerf et al., 1995; Littman & Boyan, 1993; Crites & Barto,

1996).

The limitation in the mathematical framework of Markov decision processes is

assuming that a single adaptive agent interacts with a stationary environment. In

this view, secondary autonomous agents can only be part of environment and are

therefore fixed in their behavior not adaptive. I am going to study the mechanism

of coordination of agents’ behaviors and stableness of multiagent systems. The

research is going to be focused on general cases (not totally positive or negative),

and systems with complicated setting, such as varying payoffs, communications,

negotiation, etc.

Because the payoffs to their opponents are unobservable to individual agents,

a selfish agent criterion is adopted in this research, with which agents attempt to

maximize their own rewards instead of global rewards. The minimax payoff strat-

egy is to use the strategy that maximizes the minimum payoffs of all strategies.

This is considered to be a safe strategy, which means the player taking the strat-

egy will get a payoff not worse than minimax payoff, whatever the opponent plays.

It, however, fails to meet the selfish criterion, because it will neither cooperate

with the opponent in a general sum game, nor exploit weak opponents. In this

paper, we will present an approach which enable agents to cooperate with their

opponents in a general sum game, and even exploit weak opponents if possible.

25

3 Learning to Cooperate

Many researches in multi-agent learning literature have been done in learning

Nash equilibria in known or unknown games. The solution at a Nash equilibrium

is safe for an individual agent because the agent would not receive less payoff if

other agents do not receive less payoffs. However, the goal of learning to converge

to a Nash equilibrium rules out possible cooperation in some games. If agents

cooperate in some games, such as prisoners’ dilemma, the payoff for each agent

may be better than the payoff at a Nash equilibrium, i.e., some solutions are more

Pareto efficient than the Nash equilibrium. Therefore, in this chapter I am going

to explore possible cooperative solutions in multi-agent learning systems. The

multi-agent systems we are interested to have the following characteristics:

• Two or more autonomous agents (or decision makers) simultaneously learn

to improve their own decisions in order to achieve better individual rewards.

Since the goal is to maximize the individual rewards, a Nash equilibrium

is not an optimal solution if another situation is more Pareto efficient than

the equilibrium, and all agents are willing to accept that situation. For ex-

ample, in Prisoners’ dilemma, if both players satisfy the cooperate-cooperate

situation, then the Nash equilibrium defect-defect is not the solution we

desire.

26

• The underlying systems are distributed or decentralized. We are seeking

a solution that autonomous agents will cooperate without the help from a

external teacher or mediator.

• Each agent has no private communication with other agents. Each agent

is unable to access to the internal state of the agents. To explore normal

cases of multi-agent learning, we avoid the approaches relying on sharing

knowledge.

• The information of rewards is partial. Each agent only knows the reward to

itself, and does not share it with other agents. Therefore, it is not necessary

to assume that other agents are rational to their rewards.

In the game of matching pennies, no pure equilibrium exists, therefore mixed

strategies should be included in the set of support of a general-purposed learning

agent, with the result that learning agents are nondeterministic. One interpre-

tation of mixed strategies probabilistically chooses actions from pure strategies.

Unaware of the payoff matrix to the opponent, a learning agent can not com-

pute the exact Nash equilibrium. A fictitious player (Fudenberg & Levine, 1998)

assumes that the opponent is consistent with its mixed strategy. However, it

is well known that the mixed strategies do not converge if two fictitious players

play against each other in matching pennies. To find a convergent approach, the

opponents’ responses should be taken into consideration.

In games like prisoners’ dilemma (Figure 2.2), the unique equilibrium is for

both players to play d (defect), resulting in less payoffs (1, 1) than (3, 3) if both

players play c (cooperate). If a player believes that its opponent does not change

its strategy, then it will always play d. To overcome this dilemma, we also have

to take the opponents’ responses into consideration.

To predict opponents’ actions in prisoners’ dilemma, Carmel and Markovitch

(1996) proposed a method to model opponents’ strategies as finite automata.

27

Players are able to predict the deterministic strategy of their opponents. How-

ever, if the opponents are also learning agents, they are unlikely to be deter-

ministic. Moreover, deterministic players may play worse in noisy environments,

where agents may probabilistically realize an action that is different from the one

they intend to. Noisy environments are very common in some real life problems.

Therefore, we propose an approach for learning agents to analyze their opponents’

responses via statistical data without modeling entire opponents’ strategies. Con-

sidering the opponents’ responses, agents can maximize the expected payoff with

a better estimation.

In a multi-agent learning systems, we expect learning agents to cooperate with

each other instead of fictitiously assuming that the opponent’s strategy is inde-

pendent. The responses of the opponent depends on the behavior of the agent.

Therefore, to achieve cooperative results, we can not simply use the fictitious gra-

dient ascent dynamics. This chapter aims to explore possible cooperative results.

In this chapter, I first define the problem interested in Section 3.1, then de-

scribe a probabilistic Tit-for-tat (PTFT) strategy for cooperative games and an-

alyze it Section 3.2. Using PTFT as a higher level controller, a Hill-climbing

exploration (HCE) algorithm is presented for the case that the mixed strategy of

the opponent is observable. At last, I extend the algorithm to HCE algorithm for

stochastic partial information general-sum games.

3.1 Definitions

In a two-player game, let r be the payoff matrix to player A. If A plays action

c and its opponent B plays d, it receives a payoff of rcd, etc. Suppose that it

randomly plays action d at a rate x and its opponent randomly plays action d at

a rate y. Then, its expected reward is RA(x, y) in Eq. (3.1).

RA(x, y) = rcc(1− x)(1− y) + rddxy + rcd(1− x)y + rdcx(1− y) (3.1)

28

Because RB has a similar form, therefore we use R to denote both RA and RB in

general.

For a general game, R could be a function without the explicit form. To make

the algorithm works, we need an assumption on R.

Assumption 1 The payoff (utility) function R is derivable along each direction

and the derivatives are uniformly continuous.

Considering players change their strategies, we have Eq. (3.2).

∂R

∂x
= uy − (rdc − rcc) and

∂R

∂y
= ux− (rcd − rcc), (3.2)

where, u = rdd + rcc − rcd − rdc.

If the system is treated as a dynamic system, we have

dR

dt
=

∂R

∂x

dx

dt
+

∂R

∂y

dy

dt
(3.3)

By assuming that the opponent’s strategy is independent, the second term

in the right-hand side of Eq. (3.3) can be ignored. As the result, the fictitious

gradient ascent dynamics can be written as Eq. (3.4). It gradually improves the

payoff given the assumption holds.

dx

dt
=

∂R

∂x
(3.4)

However, this assumption may not hold in multi-agent system. Simply follow-

ing Eq. (3.4) may not result a increasing in the payoff. For example, in prisoners’

dilemma, the strategies converge to the Nash equilibrium, (d, d), which has lower

payoffs than the Pareto-optimal (c, c) in Figure 2.2.

Now we only consider the two-player continuous games or games with mixed

strategies. Due to agents can not observe the payoff function of other agents, it is

difficult to find out a global “optimal” strategy. Therefore, we focus on gradual

29

improving method, like gradient ascent dynamics. Hopefully, we can find a locally

“optimal” strategy instead.

If strategies are constrained within a closed concave neighbor of (a1, a2), it is

also a game. Now we use the closed concave neighbors.

Definition 5 If the strategies of a two-player game G are constrained within ([a1−

δ, a1 + δ]∩A1)× ([a2− δ, a2 + δ]∩A2), the constrained game is called δ-perturbed

game at (a1, a2).

Now we explicitly define the criteria of the locally “optimal”.

Definition 6 A strategy combination (x, y) is locally Pareto-optimal, if and only

if, there exists a δ0 > 0; for any δ < δ0, either (x, y) is more Pareto efficient

than the Nash equilibrium in δ-perturbed game at (x, y), or (x, y) is the Nash

equilibrium and no other combination is more Pareto efficient than (x, y).

Since the derivatives of R(x, y) are uniformly continuous, ∂R/∂x and ∂R/∂y

are the only factors affecting the characteristic of the game.

Definition 7 In a δ-perturbed game at (x, y), the opponent’s strategy y is domi-

nant in the payoff, if and only if |∂R/∂x| > |∂R/∂y|. The agent’s own strategy,

x, is dominant in the payoff, if and only if |∂R/∂x| < |∂R/∂y|.

In an unknown game, agents need to explore some unknown region or com-

bination of strategies to achieve higher payoffs. Exploration tries to find better

strategies, while exploitation uses the best strategy so far. There is a tradeoff

between exploration and exploitation. Since exploration does not take the best

strategy so far, it may result a less optimal payoff than the best strategy. The dif-

ference is called exploration cost. In this research, we want to limit the exploration

cost within an arbitrary small value. Therefore, we use ε-optimal.

30

Definition 8 A strategy A is an ε-optimal strategy against strategy B, if and only

if the difference between the expected payoff of A against B and the expected payoff

of optimal strategy against B is less than ε.

Therefore, our goal is to find a ε-optimal solution for any infinitesimal ε. As ε

goes to 0, the solution approximates the optimal. The goal is to find a ε-optimal

solution of a local Pareto optimal.

3.2 The probabilistic tit-for-tat strategy

The tit-for-tat strategy is not optimal when the noise exists in the system. Some

literatures has mentioned probabilistic generous tit-for-tat strategy. For future

use, I formally describe a version of probabilistic tit-for-tat (PTFT) strategy in

this section. This strategy solves the noise problem of the original tit-for-tat at

the cost of an arbitrary small.

The strategy is to play C with a probability of δ if the opponent played D in

the previous step, to play C with a probability of 1−λδ if the opponent played C

in the previous step, and to play D otherwise. Here, δ is a small positive number

and λ is a non-negative number less than 1.

\ to play C D

opponent played C 1− λδ λδ

opponent played D δ 1− δ

Table 3.1: The probabilistic tit-for-tat strategy, where δ is a small positive number

and λ is a positive number less than 1.

Now, we analyze the cost of this strategy against all-defect strategy. Since the

opponent always play defect, the expected payoff to the PTFT agent is

δS + (1− δ)P = P − δ(P − S).

31

Because P > S, PTFT is ε-optimal strategy against all-defect strategy if

δ <
ε

P − S
.

Suppose that a PTFT agent plays against another PTFT. The output can one

of four combinations, CC, CD, DC, and DD. We can have transition matrix T

of these combinations as Table 3.2.

current \ next CC CD DC DD

CC (1− λδ)2 λδ(1− λδ) λδ(1− λδ) (λδ)2

CD δ(1− λδ) λδ2 (1− λδ)(1− δ) λδ(1− δ)

DC δ(1− λδ) (1− λδ)(1− δ) λδ2 λδ(1− δ)

DD δ2 δ(1− δ) δ(1− δ) (1− δ)2

Table 3.2: Transit matrix T of PTFT against PTFT

Let row vector π denote the probabilities of combinations. In long run, π

satisfies

π = πT . (3.5)

By solving Eq. 3.5, we have

π =

[
1

(1 + λ)2
,

λ

(1 + λ)2
,

λ

(1 + λ)2
,

λ2

(1 + λ)2

]
. (3.6)

Thus π is independent to δ. Let πCC denote the first column of π, i.e., the

probability that agents play CC. The relation between πCC and λ is shown in

Figure 3.1, which shows that πCC goes to 1 as λ goes to 0.

The expected payoff of a PTFT agent against another is

R + λS + λT + λ2P

(1 + λ)2
.

Because 2R > S + T and R > P , PTFT is ε-optimal strategy against itself if

λ < min

(
ε

4R− 2S − 2T
,

√
ε

2R− 2P

)
.

32

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.001 0.01 0.1 1

π
C

C

λ

Figure 3.1: πCC = 1
(1+λ)2

Though π is independent to δ, δ is related to the transition time from state DD

to state CC.

Though the algorithm can not exploit a weak player, this strategy works well

for two identical agents play the prisoners’ dilemma. However, this strategy re-

quires that agents are aware that they are playing the prisoners’ dilemma.

3.3 The Hill-Climbing Exploration (HCE) Algo-

rithm for Game of Continuous Strategies

Without knowing the payoff of the opponent, it makes the agent difficult to play

cooperatively without risk the chance of being exploited. Even if agents are willing

to cooperate, it is difficult to know what strategy is cooperative. In this section,

an algorithm is proposed, with which an agent is to explore possible strategies that

makes the opponent to perform certain strategies that increase its payoff. If payoffs

of both agents are increased due to the opponent’s strategy, it is cooperative. Also,

33

the risk of being exploited is limited.

The idea behind the hill-climbing exploration (HCE) algorithm is that agents

explore strategies and hope the opponents’ respond with strategies that benefit

it and compensate the exploration cost. If agents are constantly benefited from

such strategies, these strategies are cooperative ones.

In this section we use PTFT as an abstract model to indicate cooperation

states, though PTFT presented in the previous section does not directly work for

general-sum games.

The algorithm has two levels, namely hyper-level and hypo-level. In hyper-

level, the hyper-controller makes the decision of abstract strategies, which are the

states of the hypo-controller. There are two abstract strategies, foresight (F), like

cooperation in PD, and myopia (M), like defection in PD. In the hypo level, the

hypo-controller acts differently according to the states and also report abstract

observations to the hyper-controller.

First, the agent evaluate the behavior of the opponent. the agent can the cur-

rent perturbed-game, the current reward, the current action trend of the opponent

and the payoff reference. The decisions can be made by the following criteria,

• If the agent’s own action dominates in its payoff in the current perturbed-

game, i.e., |∂R
∂x
| > |∂R

∂y
|, it reports malicious (M);

• If the current change of the opponent, ∆y, is unknown, i.e., before the

stableness of the opponent’s strategy is observable, it reports malicious (M);

• If the current change of the opponent, ∆y, is destructive, i.e., ∂R
∂y

∆y < 0, it

reports malicious (M);

• If the agent’s current expected payoff is less than the payoff reference, i.e.,

R < µ, it reports malicious (M);

• Otherwise, it reports generous (G);

34

Besides, agents also monitor a payoff reference, µ, for evaluating the performance.

The payoff reference can be estimated by the payoff average in a relative long

period. Initially, it could be a relative large number. Agents update the reference

as the game proceeds.

The hyper-controller plays a hyper-game with two strategies, foresight and

myopia. The hyper-game is like a prisoners’ dilemma. The strategy is the same

as PTFT, here we let λ = 0. The hyper-controller instructs the hypo-controller

to be foreseeing with a probability of δ if the hypo-controller reported that the

opponent is malicious, to be foreseeing if the hypo-controller reported that the

opponent is generous, and to be myopic otherwise. Initially, the state is myopic.

The probabilistic decision is shown in Table 3.3.

foresight myopia

generous 1− λδ λδ

malicious δ 1− δ

Table 3.3: The probabilistic decision of the hyper controller, where δ is a small

positive number and λ is a positive number less than 1.

In the myopic state, the agents, acting as selfish agents, try to maximized

their own reward without considering the behavior of the opponent. Following

the gradient ascent method of reinforcement learning, the agents change their

strategy x by ∆x, where

∆x = β
∂R

∂x

and β is the learning rate. Here, we apply the win-or-learn-fast (WoLF) method

(Bowling & Veloso, 2001) to adjust β according to the reference µ, i.e.,

β =

 βwon if R > µ,

βlose otherwise
(3.7)

where 0 < βwon < βlose.

35

The foreseeing state enables the agents to explore the neighborhood of the

current joint strategy and hope to find a more Pareto efficient joint strategy than

the current one. However, because the agents are unaware of the payoff of their

opponents, they just perform a change ∆x opposite to the changes in the myopic

state, namely,

∆x = −βforesee
∂R

∂x
,

where βforesee is a positive number. Since βforesee is small, therefore the algorithm

of agent searching for local Pareto efficient point is hill-climbing.

The pseudo algorithm is shown in Algorithm 1.

Initially, the hypo-controller always reports malicious to the hyper-controller,

therefore the agent acts as a fictitious player. If the system converges, it converges

to a Nash equilibrium. Actually, we only expect that the system finally converges

to a small region within a diameter less than ε. To determine whether the goal of

this phase is achieved, each agent can test a hypothesis on the other agent that

the expected strategy of the opponent is out of the small region and try to reject

the hypothesis with a confidence level α. Also, each agent should ensure that the

other agent observe that the agent has stabilized its strategy. Once the agent is

confident that the other agent has stabilized it strategy and that the other agent

observed also the stableness, it switch to the exploration phase. The agents can

use the expected payoff as a reference for the further exploration.

The experiments show that HCE algorithm performs as expected in playing

against another HCE (Figure 3.2), All Cooperate (Figure 3.3), All Defect (Fig-

ure 3.4) and TFT (Figure 3.5).

HCE algorithm also performs as expected in matching pennies (Figure 3.6)

and (Figure 3.7).

36

Algorithm 1 HCE algorithm

procedure Initialization ()

s = N ;

Randomize x, y, µ;

end

procedure Execute ()

Perform strategy x.

end

procedure Update (xt, yt, Rt)

Update payoff function R according to reward Rt

if s == M then update µ with Rt end if

if |∂R
∂y
| > |∂R

∂x
| and ∂R

∂y
(yt − y) > 0 and Rt > µ then

s = C

else

Set s to C with probability δ, N otherwise;

end if

if s == M and Rt > µ then

β = βwin

else if s == M and Rt ≤ µ then

β = βlose

else

β = −βexplore

end if

x = x + β ∂R
∂x

y = y + min(1, |β ∂R/∂x
∂R/∂y

|)(yt − y)

end

37

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800 900 1000

p
ay

off

turns

Player A

Player B

Figure 3.2: An experimental result of IPD, HCE vs HCE

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800 900 1000

p
ay

off

turns

HCE

All-Cooperate

Figure 3.3: An experimental result of IPD, HCE vs All Cooperate

38

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800 900 1000

p
ay

off

turns

HCE

All-Defect

Figure 3.4: An experimental result of IPD, HCE vs All Defect

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800 900 1000

p
ay

off

turns

HCE

TFT

Figure 3.5: An experimental result of IPD, HCE vs TFT

39

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0 100 200 300 400 500 600 700 800 900 1000

p
ay

off

turns

Player A

Player B

Figure 3.6: An experimental result of matching pennies

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600 700 800 900 1000

p
ay

off

turns

Player A Player B

Figure 3.7: An experimental result of coordination

40

3.4 The HCE Algorithm for Games with Dis-

crete Strategies

In the foresight state, if agents can only observe the pure strategies of their op-

ponents, it has to estimate the mixed strategies for pure ones. Thus, it takes a

longer time to collect information. If an agent makes a generous move, it expects

its opponent is able to observe the move and to be generous too, otherwise makes

a malicious decision. It is the different part from the algorithm for continuous

strategy. Meanwhile, the algorithm is the same in the myopia state because the

agent believe that its opponent’s decision will not change if its changes.

If an agent is unable to observe its opponent’s generous mixed strategy, and

thus makes an error, the result of the algorithm may be different. However, if

the error is constrained by λε for some λ. We can still treat the error as the

percentage that hyper-controller performs N when observing C. If λ is small

enough, the PTFT algorithm still guarantee a high percentage of the agents in a

foresight state as indicated in Eq 3.6.

In a foresight state, to ensure that the probability of making an error obser-

vation is less than λε, the agent can use the following steps:

1. Suppose ∂R/∂y > ∂R/∂x > 0. Make a move by ∆x = −βexplore∂R/∂x =

−ν. Let x′ = x − ν. Then the agent expect to observe that the opponent

change its strategy to be some y′ = y + ν.

2. Perform pure strategies with the probability of x′ until it observes the aver-

age of its own observed strategies is less than x′ + η with a confidence level

1− α.

3. Continue to perform pure strategies with the probability of x′ and observe

the average of its opponents strategies. To ensure that the observed ŷ is

greater or less than y′ − η with a confidence level of 1− α.

41

When α < λε, it guarantees that the error is limited by λε, therefore the PTFT

algorithm still guarantee a high percentage of the agents in a cooperative state.

The detailed algorithm is shown in Algorithm 2.

Algorithm 2 HCE for discrete strategies

procedure Initialization ()

s = N ;

Randomize x, y, µ;

end

procedure Execute ()

Perform strategy x.

end

procedure Update (xt, yt, Rt)

Update payoff function R according to reward Rt

if s == N then update µ with Rt end if

Update x̂ by xt

Update ŷ by yt

if x̂ == x and ŷ <> y with confidence 1− α

then

Update as Algorithm 1. end if

end

3.5 Experiments

This section presents the results of two sets of simulations to illustrate the adap-

tiveness, the noise tolerance and the efficiency of the HCE algorithm.

42

-1

-0.5

 0

 0.5

 1

 0 3000 6000 9000

pa
yo

ff

time

MP w/ noise 0.1

A

B

A
B

Figure 3.8: Discounted average of payoffs in matching pennies.

43

To illustrate the adaptiveness of the HCE algorithm, first, two learning agents

play against each other for 3000 steps. Next, we exaggerate the non-stationarity

of the system by manually changing the behavior of one agent in the following

way. We force one player, say B, to play a programmed strategy for another 3000

steps. Finally, we restore player B’s learning ability in the remaining steps, and

check whether player A still can adapt to the new environment without explicitly

knowing the change. Also, to demonstrate the tolerance of noise, we use a noise

level η at 0.1 in the experiments, which means that with probability 0.1 a player

plays an action other than it intends to.

In the game of matching pennies, the Nash equilibrium is (0.5, 0.5). Figure 3.8

shows the discounted average of payoffs with εt = 0.01. In the first phase, players

soon learn to play the mixed strategy near the Nash equilibrium. The strategy

pair oscillate around the equilibrium because the rates of playing action d have a

large variance around 0.5. Also because the tile size of the CMAC approximation

using in the experiment is 0.25× 0.25, the estimation of opponent’s response rate

is fixed at the equilibrium. In the second phase, we force player B to play action

c (i.e. heads), and player A learns to take the advantage of that and exploit the

weakness of player B. Because of the noise, it achieves a score a little lower than

1. In the third phase, they restore to play the mixed strategy near the Nash

equilibrium again. This experiment illustrates that the learning player can learn

to play the Nash equilibrium strategy when it plays against an adaptive player,

but also can exploit a weak player (in the second phase).

In the game of coordination, there are two Nash equilibria, (c, c) and (d, d).

The result of the experiment is shown in Figure 3.9. In the first phase, players soon

learn to play an equilibrium (d, d) with a better payoff than the other equilibrium.

In the second phase we for player B play action c, then player A has to play action c

to coordinate with B. In the third phase, they learn to play the better equilibrium

again.

44

 0

 0.5

 1

 1.5

 2

 0 3000 6000 9000

pa
yo

ff

time

COORD w/ noise 0.1 A
B

Figure 3.9: Discounted average of payoffs in coordination. The horizontal axis

represents time, t. The vertical axis represents payoffs.

45

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 3000 6000 9000

pa
yo

ff

time

TOC w/ noise 0.1 A
B

Figure 3.10: Discounted average of payoffs in tragedy of commons. The horizontal

axis represents time, t. The vertical axis represents payoffs.

46

In the game of tragedy of commons, similarly there are two Nash equilibria,

(c, d) and (d, c). The result of the experiment is shown in Figure 3.10. In the first

phase, players soon learn to play an equilibrium (d, d) with a better payoff than

the other equilibrium. In the second phase we force player B to play action d.

Then player A has to play action c to achieve the highest reward given B playing

action d. In the third phase, their behaviors do not change much, because they

are playing strategies at a Pareto-optimal equilibrium.

 0

 1

 2

 3

 4

 5

 0 3000 6000 9000

pa
yo

ff

time

IPD w/ noise 0.1

B

A A
B

Figure 3.11: Discounted average of payoffs in prisoners’ dilemma.

To illustrate the generality of the learning algorithm, we switch the game to

prisoners’ dilemma. In prisoners’ dilemma game, there is one Nash equilibrium,

(d, d), but it is not Pareto-optimal. The result of the experiment is shown in

Figure 3.11. Players soon learn to play (c, c), because only by playing (c, c) can

they receive the maximum average payoff. Then, after 3000 steps, we force player

47

B to play action d. Though player B exploits player A for a short time, player A

soon learns to play action d to achieve the best given B playing action d. After

6000 steps, B is forced to optimize reward using our algorithm, and both players

learn to play (c, c) again. This experiment illustrates that the learning agent is

able to achieve the optimal solution when playing against another (cooperative)

learning agent, and able to adapt its strategy in case that the opponent exploits

its cooperative behavior.

A set of experiments compares this algorithm with several well-known strate-

gies in the game of prisoners’ dilemma at different noise levels. The result is shown

in Table 3.4. The strategies are tit-for-tat, denoted by TFT, with which one plays

the last action its opponent played; all defection, denoted by AllD, with which

one plays action d; alternative cooperation and defection, denoted by AltCD, with

which one plays c and d alternatively. The player using our algorithm is denoted

by HCE in the experiments. AllD and AltCD receive more overall payoff as the

noise level increases, because they are weak players and benefit from the uncer-

tainty of noise. Other players receive less overall payoff as the noise level increases.

The overall payoff shows that our approach is the best player in the tournament.

Tit-for-tat (TFT) is known as good strategy in prisoners’ dilemma. In a noise-

free environment, TFT is good against other players. However, if both players

play tit-for-tat, they play every combination of actions with equal probability in

a noisy environment. On the other hand, a TFT player will not exploit weak

players, such as a player that always cooperates. In contrast, our algorithm is

very robust. It receives a good payoff in both noise-free and noisy environments

against the same or other strategies and can exploit weak players.

48

noise level η 0.0 0.1 0.2

AltCD vs AltCD 2.00 2.25 2.25

AltCD vs TFT 2.50 2.41 2.34

AltCD vs AllD 0.50 0.85 1.20

AltCD vs HCE 0.58 0.93 1.42

AltCD overall 1.39 1.61 1.80

AllD vs AltCD 3.00 2.85 2.70

AllD vs TFT 1.00 1.59 2.01

AllD vs AllD 1.00 1.29 1.57

AllD vs HCE 1.17 1.42 1.65

AllD overall 1.54 1.73 1.98

TFT vs AltCD 2.50 2.41 2.34

TFT vs TFT 3.00 2.25 2.25

TFT vs AllD 1.00 1.20 1.42

TFT vs HCE 2.99 3.03 2.96

TFT overall 2.37 2.22 2.24

HCE vs AltCD 2.97 2.82 2.60

HCE vs TFT 2.99 2.63 2.37

HCE vs AllD 0.96 1.26 1.54

HCE vs HCE 2.99 2.74 2.73

HCE overall 2.48 2.43 2.31

Table 3.4: Tournament results. The first column represents different competition

between different players. The rest represents the average payoff to the first player

in different noise levels, 0.0, 0.1, and 0.2 respectively.

49

3.6 Conclusions

In this chapter, I proposed the HCE algorithm that learning agents adapt their

strategies to their opponents’ strategies through statistical analysis of their op-

ponents’ responses in iterated games. The simulations show that learning agents

can efficiently learn to compete against, cooperate with each other in respective

settings and adapt to changes in their opponents’ strategies. Also, learning agents

are able to tolerate noise in environments and exploit weak opponents.

50

4 Non-Stationary Environments

To build multi-agent learning algorithm, we resort to reinforcement learning,

which is an elegant mathematical framework for studying such tasks because it

requires few assumptions (Sutton & Barto, 1998). The only crucial one is associat-

ing a utility for each state that reflects the possibility of getting reward by taking

actions from that state. After each iteration the agent receives a utility which

is used to adjust the decision-making parameters. Most reinforcement learning

algorithms are designed for stationary single agent contexts. For simplicity, it is

assumed that the environment is stationary, i.e., the utility distribution of each

state-action pair does not change. In multi-agent systems, however, the assump-

tion is inapplicable by virtue of the fact that agents are adapting their strategies

to maximize the individual achievement or owing to different layouts or utilities

at different times.

Sandholm and Crites (1996) did some experiments on the iterated prisoners’

dilemma by using Q-learning with Boltzmann exploration . Their experiments

demonstrate that playing against another learner was more difficult than playing

against a fixed strategy agent because of the peer learner’s non-stationary be-

havior and the average payoff in each single stage game increases monotonically

with longer Boltzmann exploration schedules. One reason is that the Boltzmann

exploration suffers from inadequate exploration (Sutton, 1990). Although agents

51

with Boltzmann exploration experiment with different actions on each state, the

exploration result is likely to be out-of-date if their peer agents change their own

strategies. As a result, such a multi-agent system may be stuck in a local maxi-

mum. Another reason is that learning agents will never explore the other strategies

to achieve potential benefits after the learning algorithm has converged, which re-

sults that each learning agent in a non-stationary system stops adapting itself to

the new strategies of its peers (Kaelbling, 1993). Therefore, Boltzmann explo-

ration is not appropriate for multi-agent systems, neither are those exploration

methods based stationary environment assumption, such as counter-based explo-

ration (Sato et al., 1990), Gittins’ allocation indices (Gittins & Jones, 1974), and,

interval estimation (Kaelbling, 1993). Carmel and Markovitch (1999) proposed a

model-based exploration for learning agents. However, their learning agent only

plays against a random generated opponent, i.e., there is only one learning agent

in the circumstance. Another exploration bonus model is proposed by Dayan and

Sejnowski (1996). Their exploration model is based on the uncertainty of maze

domains.

To deal effectively with the non-stationarity of multi-agent systems, we in-

troduce a Brownian bandit problem in Sect.4.1. The Brownian bandit problem

formalizes a recency-based exploration bonus (Sutton, 1990). In Sect.4.2, we de-

scribe the learning algorithm built on Q-learning algorithm (Watkins & Dayan,

1992) with a smoothed best-response dynamics (Fudenberg & Kreps, 1993). In

Sect.4.3, a few simulations demonstrate the efficiency of the recency-based explo-

ration, comparing with Boltzmann exploration.

4.1 The Brownian Bandit Problem

Most exploration models assume that the utility of each state-action pair is sta-

tionary, i.e., its distribution does not change. However, in a multi-agent world,

52

the assumption is inapplicable and that the utility of each state-action pair of

the given agent is best modeled as a stochastic process {Xt}. In this paper, we

simplify the model to a Brownian motion, i.e., Xt − Xt−1 = Zt, where the pro-

cess {Zt} is white noise with mean 0 and variance σ2. Emulating the one-armed

bandit problem (Thompson, 1933), we introduce the Brownian bandit problem,

which assumes that the rewards for a slot machine are described by a Brownian

motion process Xt, with variance σ2. Pulling the arm at the iteration t, a agent

achieves a reward Rt = Xt, otherwise, Rt = 0. The problem is how to maximize

the discounted sum of rewards, i.e.,
∑

γtRt, where the discount factor γ is a real

number between 0 and 1.

Time

Xt

t
t � w

Figure 4.1: Brownian bandit problem. When Xt = x < 0, the agent pulls the arm

at iteration t + w. The rewards in the shadow area pay off the expected value

E(Xt+w|Xt) = x < 0.

Assume that an agent pulls the arm at the iteration t. Intuitively, the agent

should also pull the arm at the next iteration, t + 1, if Xt = x > 0, because the

expected reward of the next iteration is greater than 0, i.e., E(Xt+1|Xt) = x > 0.

If x < 0, the next pulling Xt+w after waiting for w > 0 iterations is also expected

to result a negative reward. However, in the case that Xt+w > 0, the agent

expects several positive rewards in subsequent iterations. Therefore, the problem

is whether the future positive rewards pay off the expected negative reward of the

next pulling(Fig.4.1).

The agent receives a reward Rt = Xt = x at the iteration t. R(x) be the

53

expected discounted sum of the future rewards for the iteration t′ > t. We have

R(x) = max
w

γwE(Xt+w + R(Xt+w)|Xt)

= max
w

γw(x + E(R(N(x, wσ2)))) (4.1)

where N(µ, wσ2) is a Gaussian distribution with mean µ and variance wσ2. Let

ŵ(x) be the maximum point. The decision process can be stated as: pull the

arm when w ≥ ŵ(x). Figure 4.2 shows the numerical solution for σ = 1 and

γ = 0.8, 0.9, 0.95, 0.99.

0

10

20

-20 -15 -10 -5 0 5 10 15 20

� 1

� γ

� R

� x

�

x

γ � 0 � 99
γ � 0 � 95
γ � 0 � 9
γ � 0 � 8

(a) R(x)

0

500

1000

-20 -15 -10 -5 0 5 10

ŵ

� x

�

x

γ � 0 � 8
γ � 0 � 9

γ � 0 � 95
γ � 0 � 99

(b) ŵ(x)

Figure 4.2: R(x) and ŵ(x).

Since the decision process is pull the arm when w ≥ ŵ(x), the bonus of waiting

time ρ = ŵ(x) is −x, i.e., the exploration bonus b(ρ) = −x = ŵ−1(ρ). To

54

compare with Sutton’s recency-based exploration bonus ε
√

ρ, let λ(ρ) = b(ρ)
σ
√

ρ
, so

that b(ρ) = σλ(ρ)
√

ρ. Figure 4.3 reveals that λ(ρ) goes to a constant as ρ goes to

infinity. This result is consistent with Sutton’s recency-based exploration bonus,

when ρ is large. But when ρ is small, λ(ρ) is less than the constant, which means

that the experimentation is discouraged. Also, the discount rate γ is another

important factor in encouraging experimentation. When γ is large, the agent is

likely to concern about the future rewards, therefore the experimentation is more

encouraged than when γ is small.

1.
5

1
0.

5
0

0 20 40 60 80 100 120 140

λ

� w

�

w

γ � 0 � 99
γ � 0 � 95
γ � 0 � 9
γ � 0 � 8

Figure 4.3: λ(ρ) = b(ρ)
σ
√

ρ

Although the recency-based exploration looks similar to interval estimation (Kael-

bling, 1993) and Gittins’ allocation indices (Gittins & Jones, 1974), there is a rad-

ical difference between them. Because interval estimation and Gittins’ allocation

indices are based on the assumption of stationary environments, the exploration

bonuses decrease as the numbers of observations of state-action pairs increase.

When the behavior of the peer agents changes after the learning algorithm has

converged, the learning agent will never explore the changed situations. With

the recency-based exploration, learning agents are always exploring those recently

unvisited situations and ready to adapt to any change of their peer agents.

55

4.2 Learning in Repeated Games

In a multi-agent environment, the agents make decisions independently, and their

joint actions determine the individual utilities and the stochastic state transitions.

As each agent may not perceive the internal state of its peers, a partially observable

Markov decision process (POMDP) is more applicable for multi-agent systems

than a Markov decision process (MDP). However, because of the complexity of

POMDP algorithms, in this paper we only use Q-learning algorithm to implement

the simulation.

The action with the larger Q value implies the better response. But in some

games one-shot simultaneous-move by taking the best response, the action with

the largest Q value, may lead to an oscillation. For example, in the game of

coordination 1, if two agents play C and D respectively, the best responses are

D and C respectively. The one-shot simultaneous-move leads to a CD-DC loop.

It is known as the Cournot adjustment in game theory. Fudenberg and Kreps

(1993) suggests a smoothed best response dynamics, which can be interpreted as

probabilistically taking actions according the soft-max values of Q values.

Because of the difference between Q values and the real payoffs, exploration

plays an important role in learning process. A learning agent improves the utilities

prediction by exploring the environment, and sensing possible changes of its peers’

behavior or drift in its environment. On the other hand, exploration increases

the cost of learning and also the instability of a multi-agent system. This is

known as the dilemma of exploration and exploitation. Most exploration methods

assume a single-agent circumstance. Owing to the fact that the environment is

stationary, adequate exploration ensures that the agent accurately predicts the

expected utilities of each state-action pair. However, in a multi-agent system, the

history of experiments of any agent may be out-of-date if its peers change their

1In the game of coordination, agents get rewards only if both play the same strategy.

56

own strategies, which makes these exploration methods inefficient. Assuming that

the utilities are stochastic processes, each decision problem raises the same issue

as the Brownian bandit problem, therefore we use the recency-based exploration

for multi-agent learning.

Unlike the uncertainty in simple maze domains, the non-stationarity of multi-

agent systems is mainly owing to the change of the peer agents’ behaviors, which

are based on the information they perceive. It is reasonable to assume that agents

do not update their strategies on the situations that they do not perceive. There-

fore, the exploration bonus, b(s, a), only increases on the number of time steps

that the action, a, is not tried, given the state, s, is visited, unlike the elapsed time

in (Sutton, 1990). This assumption isolates the bonus propagation, and reduces

the calculation expense.

Based on the above analysis, the learning algorithm is simply described as

running update steps and execute steps alternatively. In an update step, the

agent changes the Q values and the mixed strategies of the best responses as

follows:

Qt(s, a) = Qt−1(s, a) + α(rt + γ max
a′∈A

Qt−1(s
′, a′)−Qt−1(s, a))

Q′
t(s, a) = Qt(s, a) + σλ(ρt(s, a))

√
ρt(s, a)

BRt(s, a) =
eQ′

t(s,a)/θ∑
a′∈A eQ′

t(s,a
′)/θ

(4.2)

The second equation shows how the recency-based exploration bonus is incorpo-

rated into the Q-value. In the third equation, BR(s, a) is the smoothed best

response, i.e., the probability that the agent takes action a at state s. α and θ

are the learning rate and the smoothing rate, respectively. In an execute step, the

agent takes an action based on the probabilities of BR(s, a).

57

4.3 Simulation Results

In the experiment of work-n-shirk, two learning agents plays against each other.

The Nash equilibrium of this game is (L
R
, W−I

W
) when 0 < L < R and 0 < I < W .

The parameters of the game are P = 4,W = 2,I = 1,R = 0,L = 1 in the first

500 iterations. In the second 500 iterations, R is changed to 2. The parameters

of learning agents are α = 0.1, σ = 1, θ = 0.2.

Figure 4.4(a) and 4.4(b) shows the simulation of two learning agents with the

recency-based exploration. Before the change, the Nash equilibrium is at (1, 0).

In this simulation, the frequency of inspect and work between iteration 400 and

iteration 500 is (0.99, 0.01). After the change, the new equilibrium is (0.5, 0.5).

In this simulation, the frequency of inspect and work between iteration 900 and

iteration 1000 is (0.50, 0.50). It takes the system about 120 iterations to find the

new equilibrium after the change. In contrast, agents with Boltzmann exploration

fail to adapt to the change of the environment (Fig. 4.4(c) and 4.3).

4.4 Conclusions

Multi-agent learning plays an important role in distributed intelligent systems,

especially where agents can not be preprogrammed to operate as desired. Rein-

forcement learning is addressing the problem by dynamically learning knowledge

and improving utilities. However, most reinforcement learning algorithms are

designed for stationary single agent contexts. In a multi-agent system, learning

agents should adapt to gradual improvement of their peers or drift in its environ-

ment. For this reason, those explorations assuming a stationary circumstance are

unrealistic. To be adaptive, the agents should keep exploring the system in their

lifetime to seek possibly better rewards owing to the changes.

Besides the dilemma of exploration and exploitation in a multi-agent system,

58

another dilemma is that the exploration of the agents may result the instability of

the system. Therefore, the learning agents should understand possible irregular

behaviors of their peers and be able to recover from the tragic situation owing to

the exploration.

We formalize Sutton’s recency-based exploration bonus with the Brownian

bandit problem. To illustrate the efficiency of the recency-based exploration, we

build Q-learning agents with the smoothed best response dynamics. The simu-

lations demonstrate that systems with the recency-based exploration can reach

expected equilibria more efficiently than those with Boltzmann exploration. The

simulations also show that the learning agents can efficiently adapt to the new

context owing to changes of their peers’ behaviors or drift of their environment.

59

0

0.5

1

00.20.40.60.81

B
os

s-
In

sp
ec

t

Monkey-Work

1st stage

��

��

��
���	
�

�
�� ����

��

�� ��
����

��
 ! "# $%&'

()

*+ ,- ./01
23

45

2nd stage
+
+
++

+

+

+

+

+

+

+
+

++++++++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(a) Trace, recency-based expl.

0
0.

5
1

0 500 1000

%

t

Boss-Inspect
Monkey-Work

(b) Strategies, recency-based expl.

0

0.5

1

00.20.40.60.81

B
os

s-
In

sp
ec

t

Monkey-Work

1st stage

��

��

�� ���	
�������������������� !"#$%&'()*+,-./0123

45

2nd stage
+++

+

(c) Trace, Boltzmann expl.

0
0.

5
1

0 500 1000

%

t

Boss-Inspect
Monkey-Work

(d) Strategies, Boltzmann expl.

Figure 4.4: Two learning agents play work-n-shirk. The parameters are P =

4,W = 2,I = 1,R = 0,L = 1 in the first 500 iterations. In the second 500 itera-

tions, R is changed to 2. In 4.4(a) and 4.4(c), the lines represent the trace of the

mixed strategies. The solid lines represent the trace before the change, and the

dash lines represent the trace after the change. The vertical axes represent the

percentage of inspect the boss exerts and the horizontal axes represent the per-

centage of work the monkey exerts. The lines represent the mixed strategy. The

values represent the discounted (0.95) average strategies over the past iterations.

The average strategies for the boss are represented by the solid lines. The average

strategies for the monkey are represented by the dash lines.

60

5 Learning Machine Challenge

The Learning Machine Challenge1 is a round-robin tournament, in which all agents

will play each other in a number of different games. The Challenge was announced

at The Seventeenth International Joint Conference on Artificial Intelligence.

In the Challenge, a player agent plays an unknown game against an unknown

opponent. An agent only knows for sure that the various moves, and they are

represented by meaningless symbols. It makes a move by sending one of the

symbols it knows about to the outside world. Then it observes one of the symbols

it knows about coming in from the outside world and also receives a score from

above. Basically, the Challenge shares the same assumption as ours.

Besides the games similar to those mentioned above, the Challenge also consists

a few languages games. For example, Predict game, in which agents learn to

predict the next character from a corpus; Context game, in which agents learn to

emit the right symbols for the current context; etc.

1http://lmw.a-i.com/

61

5.1 Design

In this section, we briefly describe our design for learning agents in unknown

games.

To build learning agents for multi-player games, we resort to reinforcement

learning, which is an elegant mathematical framework for studying such tasks

because it requires few assumptions. The only crucial one is associating a utility

for each state that reflects the possibility of getting reward by taking actions

from that state. After each iteration the agent receives a utility which is used to

adjust the decision-making parameters. Most reinforcement learning algorithms

are designed for stationary single agent contexts. For simplicity, it is assumed that

the environment is stationary, i.e., the utility distribution of each state-action pair

does not change. In multi-player games, however, the assumption is inapplicable

by virtue of the fact that agents are adapting their strategies to maximize the

individual achievement or owing to different layouts or utilities at different times.

Some simple two-player games have no complicated situations such as the

prisoners’ dilemma. Single state solution works more efficient for such games.

However, it is important for a learning algorithm to forecast the distribution of

opponents’ actions and estimate the expected reward of each action and take the

best action accordingly.

Suppose that the opponent plays an action, Xt = a, in set A at each time

t. A discrete data stream Xt ∈ A is independently generated from a binomial

distribution with mean of pt(a). In this paragraph, we abbreviate it and denote

it as pt. The subtask for a learning agent is to forecast pt. The estimation

can simply be the moving average of last n events, which can be formalized as

p̂t+1 = 1
n

∑n
i=0 Xt−i. The estimation is unbiased.However, this moving average

estimation requires saving a queue of rewards of last n events. A discounted

estimation can avoid this as p̂t+1 = (1 − α)
∑∞

i=0 αiXt−i , where α is discount

62

factor. This estimation is also unbiased. A Bayesian forecasting can also be

used for such forecasting.

The agent estimates the reward of each situation according to Eq. 5.1.

Rt+1(at, a
′
t) = Rt(at, a

′
t) + β(rt −Rt(at, a

′
t)) (5.1)

R(a, a′) is the expected reward to the player if he plays a and the opponent plays

a′; rt is the reward to the player at time t; at is what the player plays at time t;

a′t is what the opponent plays at time t;

Based on pt(a
′) and Rt(a, a′), the expected reward of playing a, Q(a), is esti-

mated as Equation 5.2.

Qt(a) =
∑
a′

pt(a
′)Rt(a, a′) (5.2)

To make a better prediction of rewards, agents need to know the exact situation

they are in. In most cases, using a large state space helps eventually, because a

larger state space is used. Each state indicates the more specific situation, which

helps predict rewards more accurately. However, in a same number of trials, on

average, each state has fewer samples in a larger space, which results less accurate

in early stages. It is known as the data sparse problem. Therefore, we have to

make tradeoff between accuracy and learning speed. In continuous state/action

spaces, such a problem also exists. Many approaches, such as CMACs (Sutton,

1996), case-based RL (Santamaŕıa et al., 1998), kernel-cased RL (Ormoneit &

Sen, 2002), variable resolution (Munos & Moore, 1999), have been studied. They

are all based on an assumption of the similarity between a state and its neighbors

owing to the continuous value function. In CMACs, the reward of a certain point

is approximated by the average of the rewards of states (tiles) that cover the point.

Inspired by (Jacobs et al., 1991; Jordan & Jacobs, 1992), we estimate the reward

of a certain state by a weighted average of the rewards of meta-states that include

the state.

63

A state can be represented by an observation history. If the history length is,

for example, 4, then a state is represented as CDCC in the prisoners’ dilemma,

which means in the last round, the agent played C and observed D, and played C

and observed C in the one before. A meta-state is a set of states, that share some

same features (history). In this paper, we use a wildcarded string to represent

it, for instance, ∗D ∗ C, which means all states that the agent observed D and

C in the last two rounds, therefore ∗D ∗ C includes CDCC. The Q-values of

meta-states are updated in the same manner as those of the regular states.

We consider s → π(s) as a rule. There are no conflicts between rules before

meta-states are introduced. Now the (meta-)states ∗D ∗ C, C ∗ ∗∗, CDCC, etc.,

all match observations CDCC and the respective rules may conflict. A regular

state rule, CDCC → π(CDCC), is more specific than a meta-state rule, ∗D ∗

C → π(∗D ∗ C). In a long-run stationary environment, it eventually predicts

the expected rewards more precisely than the meta-state one. However, in a

non-stationary environment, because other players change their policies, or in a

short-run game, respect to the size of state space, some general meta-state rules

may be more efficient. In this paper, we use the mixture of Q-values of states

applied, instead of picking one using some hard rules.

The method of averaging all Q-values without weights is not suitable, because

some rules are more applicable than others. In the on-line algorithm of (Jordan &

Jacobs, 1992), the inverses of Hessian matrices are used to mix Q-values. However,

the computation of Hessian matrices of all states is costly. In this approach, we

approximate them with the inverses of diagonal matrices of variances, that is, the

reward of a state is approximated by the average of Q-values of all applicable

(meta-)states with weights of inverses of their variances.

64

5.2 Results

Ninety-four users entered the Challenge. Total 196 players were submitted. The

player received the third place in the Challenge. The detailed results as the follows.

The contest games are Lang-FCC, Lang-MCC, Lang-SCG, Lang-MCG, Lang-

MCGe, Lang-MCCc and Lang-MCCcev.

Lang-FCC is Fixed Context Classification. It is a simple context extension to

the already published classification game. The purpose of the game is to classify

a space of strings (words) into 3 classes, and respond to every particular input

string with a member of the appropriate class: A− > D, B− > E, and C− > F .

A, B and C are members of respective classes, each containing 1 to 5 symbols. D,

E, and F are members of respective classes, each containing 5 symbols.

Lang-MCC is Multiple Context Classification. Like FCC, this game also in-

volves classifying a space of strings (randomly generated ”words”) into 2 classes,

and respond to every particular input string with a member of the appropriate

output class which has not been used recently. Only this time, the context al-

ternates between 2 contexts, ’X’ and ’Y’: If preceded by a symbol of class ’X’,

A− > B and C− > D. But if preceded by a symbol of class ’Y’, then A− > D

and C− > B. As before, The strings A, B, C, D, X and Y are members of

respective classes, each containing 1 to 5 members.

Lang-SCG is Single Class Generalization. This game tests the ability of the

player to classify with a single context variation. Like in the previous game, some

symbols are class-members.

An input stream may be one of to forms:

[p-quantifier] [noun] [plural] [s-quantifier] -->

correct response: [noun] [singular].

Or:

65

[s-quantifier] [noun] [p-quantifier] -->

correct response: [noun] [plural].

For example:

[p-quantifier] = {"two", "three" "four"...}.

[s-quantifier] = {"one"}.

[noun] = {"dog", "cat", "mouse"}.

[plural] ={"s"}.

[singular] = {" "}.

The input sequence ”one”+”dog”+”two” expects the response ”dog”+”s”.

The input sequence ”three”+”cat”+”s”+”one” expects the response ”cat”+” ”.

After the first 1000 rounds (with examples) the [noun] set is augmented (new

nouns introduced) and the game continues in the same manner, except that when

the new nouns are used, no examples are provided.

Lang-MCG is Multiple Class Generalization. The game is an extension of the

Lang-SCG game. It differs from the base game in the following aspects:

• The noun set alternates between six different classes,

• p-quantifier and s-quantifier, plural and singular are all classes,

• No examples are given - ever.

Lang-MCGe Multiple Class Generalization, with Examples. The game is an

extension of the Lang-SCG game. It differs from the base game in the following

aspects:

• The noun set alternates between six different classes,

• p-quantifier and s-quantifier, plural and singular are all classes,

66

• Examples are always given.

Lang-MCCc is MCC in Character Mode. This game is identical to the already

published MCC, with the following complications:

• The game is in character mode. The basic symbol-set is ASCII characters,

concatenated to form the ”higher-level” symbol set of the MCC game. Each

MCC symbol is therefore ”taken apart” when emitted, and reconstructed

back when retrieved from the player. This mechanism allows the players to

construct ”chunks”, which may be close (but not identical) to the correct

response. A similarity measure is applied, with a score proportional to the

similarity of the response to the correct one.

• The word classes are switched (alternately) between two sets every 100

moves.

Lang-MCCcev is Character Mode w/ Examples and Variations. This game is

identical to the already published MCC, with the following complications:

• The game is in character mode. The basic symbol-set is ASCII characters,

concatenated to form the ”higher-level” symbol set of the MCC game. Each

MCC symbol is therefore ”taken apart” when emitted, and reconstructed

back when retrieved from the player. This mechanism allows the players to

construct ”chunks”, which may be close (but not identical) to the correct

response. A similarity measure is applied, with a score proportional to the

similarity of the response to the correct one.

• The word classes are switched (alternately) between two sets every 100

moves.

• Scores include positive consideration for broad usage of the response class

(variations)

67

The results are shown on http://lmw.a-i.com. My player achieved pretty good

results, 5th in Lang-FCC, 6th in Lang-MCC, 1st in Lang-SCG, 4th in Lang-MCG

and 4th Lang-MCGe. In Lang-MCCc and Lang-MCCcev, it worked fine at the

beginning. Unfortunately, due to a certain bug, it failed after a thousand steps.

Overall, The player received the third place in the Challenge.

68

6 Clustering Game

In this chapter, we discuss the clustering problem from the game point of view.

Basically, clustering problem can be abstracted as a the tragedy of the commons

problem. Based on this view, I extend our previous work on clustering.

Clustering problems arise in many disciplines and have a wide range of applica-

tions. The problem of clustering has been studied extensively in the database (Zhang

et al., 1997; Guha et al., 1998), statistics (Berger & Rigoutsos, 1991; Brito et al.,

1997) and machine learning communities (Cheeseman et al., 1988; Fisher, 1995)

with different approaches and different focuses.

The clustering problem can be described as follows: let W be a set of n multi-

dimensional data points, we want to find a partition of W into clusters such

that the points within each cluster are “similar” to each other. Various distance

functions have been widely used to define the measure of similarity.

Most clustering algorithms do not work efficiently in high dimensional spaces

due to the curse of dimensionality. It has been shown that in a high dimensional

space, the distance between every pair of points is almost the same for a wide

variety of data distributions and distance functions (Beyer et al., 1999). Many

feature selection techniques have been applied to reduce the dimensionality of the

space (Kohavi & Sommerfield, 1995). However, as demonstrated in (Aggarwal

69

et al., 1999), the correlations in the dimensions are often specific to data locality;

in other words, some data points are correlated with a given set of features and

others are correlated with respect to different features.

As pointed out in (Hastie et al., 2001), all methods that overcome the di-

mensionality problems have an associated and often implicit or adaptive-metric

for measuring neighborhoods. CoFD, as you will see in the following sections, is

based on an adaptive metric.

The clustering problem aims at identifying the distribution of patterns and

intrinsic correlations in large data sets by partitioning the data points into simi-

larity clusters. If we use agents to represent clusters, each agent aims to collect

similarity data points. Therefore the character of an agent can be depicted by

the data points it collected. The problem can be restated as that each agent aims

to collect data points similar to its character. The clustering problem is, thus,

restated as how agents choose their characters, which are the strategies in the

term of games. In the tragedy of the commons problem, agents are trying to make

different strategies as possible to allocate more resource. In the restated clustering

problem, agents aims to choose their characters to collect more points.

First, I present CoFD1, a non-distance based algorithm for clustering in high

dimensional spaces in Section 6.1. This part was originally published in (Zhu &

Li, 2002). The main idea of CoFD is as follows: given a data set W and the

feature set S, we want to cluster the data set into K clusters. Based on the

maximum likelihood principle, CoFD is to optimize parameters to maximize the

likelihood between the data set W and the model generated by the parameters.

The parameters in the model are the data map D and the feature map F , which

are functions from W and S to {0, C1, C2, · · · , CK}2, respectively. Then several

approximation methods are applied to iteratively optimize D and F . CoFD can

1CoFD is the abbreviation of Co-training between Feature maps and Data maps.
2The number 0 represents the outlier set. C1, · · · , CK represent K different clusters.

70

also be easily adapted to estimate the number of clusters instead of using K as an

input parameter. In addition, interpretable descriptions of the resulting clusters

can be generated by the algorithm since it produces an explicit feature map.

Section 6.2, a distributed version of the algorithm based on a game problem

is presented.

Section 6.3 shows our experimental results on both the synthetic data sets and

a real data set; section 6.4 surveys the related work; finally our conclusions and

directions for future research are presented in section 6.5.

6.1 A Clustering Algorithm: CoFD

In this section, we introduce the core idea and present the details of CoFD. We

first introduce CoFD for binary data sets.

Consider the zoo data set, where most animals are in the cluster of “chicken”,

“crow” and “dove”, have “two legs”. Intuitively, when given an animal with “two

legs”, we would say it has a large chance of being in the cluster. Therefore, we

regard the feature “two legs” as a positive (characteristic) feature of the cluster.

Based on the above observation, we want to find out whether each feature is

a positive feature of some cluster or not. Feature map F is defined as a function

from feature set S to {0, C1, · · · , CK}. F (j) = k(k > 0) if feature j is a positive

feature of cluster k. F (j) = 0 if feature j is not a positive feature of any cluster,

i.e., an outlier feature. Similarly, data map D is a function from data set W to

{0, C1, · · · , CK}. D(i) = Ck(k > 0) if data point i is an instance of cluster k.

D(i) = 0 if data point i is an outlier.

Let N be the total number of data points, and d be the number of features. W

can be represented as a data-feature matrix. By assuming all features are binary,

if Wij is 1, feature j is said active in data point i. Also, data point i is said to be

an active data point of feature j if Wij is 1.

71

The motivating idea behind CoFD is maximum likelihood principle, that is,

to find data map D̂ and its correspondent feature map F̂ from which the data-

feature matrix W is most likely generated. Let Ŵ (D, F) be the model generated

from the data map D and the feature map F . The values of Ŵij is interpreted

as the consistence of D(i) and F (j). We only consider the cases that D(i) is

consistent with F (j), inconsistent with F (j), or an outlier. P (Wij|Ŵi,j(D, F)) is

the probability whether the feature j of data point i is active in the real data, given

the feature j of data point i is active (or not) in the ideal model of maps D and F .

P (Wij|Ŵi,j(D, F)) has the same value for different i’s and j’s if Wij and Ŵi,j(D, F)

have the same values, denoted by w and ŵ(D, F) respectively. Therefore, we count

the number of instances of w and ŵ(D, F), which is dNP (w, ŵ(D, F)). Now we

have Eq. (6.1).

log L(D, F) = log
∏
i,j

P (Wij|Ŵi,j(D, F))

= log
∏
w,ŵ

P (w|ŵ(D, F))dNP (w,ŵ(D,F))

= dN
∑
w,ŵ

P (w, ŵ(D, F)) log P (w|ŵ(D, F))

≡ −dNH(W |Ŵ (D, F)) (6.1)

D̂, F̂ = arg max
D,F

log L(D, F) (6.2)

We apply the hill-climbing method to maximize log L(D, F), i.e., alternatively

optimizing one of D and F by fixing the other. First, we try to optimize F by fixing

D. The problem of optimizing F over all data-feature pairs can be approximately

decomposed into subproblems of optimizing each F (j) over all data-feature pairs

of feature j, i.e., minimizing the conditional entropy H(W·j|Ŵ·j(D, F)). If D

and F (j) are given, the entropies can be directly estimated. Therefore, F (j) is

assigned to the cluster, given which the conditional entropy of W·j is minimum. To

optimize D by fixing F is a dual problem of the problem above. Hence, we only

72

need minimize H(Wi·|Ŵi·(D, F)) for each i. A straightforward approximation

method to minimize H(W·j|Ŵ·j(D, F)) is to assign F (j) to arg maxk |{i|Wij =

k}|. This method also applies to minimize H(Wi·|Ŵi·(D, F)) by assigning D(i) to

arg maxk |{j|Wij = k}|.

6.1.1 Algorithm Description

There are two auxiliary procedures in CoFD: EstimateFeatureMap and Estimate-

DataMap. EstimateFeatureMap is to estimate the feature map from the data map.

For each feature j, the procedure is to find a cluster k which minimizes condi-

tional entropy H(W·j|Ŵ·j(D, F)). If the feature is almost equally active in more

than one cluster, the feature is said to be an outlier feature. EstimateDataMap is

to estimate the data map from the feature map. It is a dual procedure of Esti-

mateDataMap. For each data point i, the procedure is to find a cluster k which

minimizes conditional entropy H(Wi·|Ŵi·(D, F)).

The clustering algorithm proceeds in two steps. The first step is to select seed

data points. CoFD randomly draws nK distinct data points from the set of data

points, and assigns each n of them to a cluster, where n is a small integer number,

for example, 5. CoFD estimates the feature map from the seed points by applying

procedure EstimateFeatureMap.

The second step is an iterative routine. The aim is to find a best cluster by an

iterative process similar to EM algorithm. In this step, CoFD iteratively estimates

the data and feature maps based on previous estimations, until no more change

occurs in the feature map. The pseudo code of CoFD is shown in Figure 4.

However, computing entropies is still time consuming. Here, we propose an

approximating version of EstimateFeatureMap and EstimateDataMap. In EstimateFea-

tureMap, we calculate the cardinality of the set {i|D(i) = C ∧Wij = 1}, i.e., the

number of data points in cluster C whose j-th feature is active, and the cardinal-

73

Algorithm 3 Clustering algorithm

Procedure EstimateFeatureMap(data points: W , data map: D)

begin

for j in 1 · · · d do

if minC H(W·j|Ŵ·j(D, C))/H(W·j)� 1 then

F (j) = arg minC H(W·j|Ŵ·j(D, C));

else

F (j) = outlier;

endif

end

return F

end

Procedure EstimateDataMap(data points: W , feature map:F)

begin

for i in 1 · · ·N do

if minC H(Wi·|Ŵi·(C, F))/H(Wi·)� 1 then

D(i) = arg minC H(Wi·|Ŵi·(C, F));

else

D(i) = outlier;

endif

end

return D;

end

74

Algorithm 4 Clustering algorithm (cont.)

Algorithm CoFD(data points: W , the number of clusters: K)

begin

let W1 be the set of randomly chosen nK

distinct data points from W ;

assign each n of them to one cluster,

say the map be D1;

assign EstimateFeatureMap(W1,D1) to F ;

repeat

assign F to F1;

assign EstimateDataMap(W ,F) to D;

assign EstimateFeatureMap(W ,D) to F ;

until conditional entropy H(F |F1) is zeros;

return D;

end

75

ity of the set {i|Wij = 1}, i.e., the number of data points whose j-th feature is

active, to approximate the conditional entropies. A similar method is also applied

to EstimateDataMap.

It can be observed from the pseudo-code description that the time complexities

of both procedures EstimateFeatureMap and EstimateDataMap are O(K × N × d).

The number of iterations in algorithm CoFD is not related to N or d.

6.1.2 An Example

To illustrate CoFD, an example is given below. Suppose we have a data set

as Fig. 6.1. Initially, data points 2 and 5 are chosen as seed points. Say, data

point 2 is in cluster A, data point 5 in cluster B, i.e., D(2) = A, D(5) = B.

EstimateFeatureMap returns that features a, b and c are positive in cluster A; fea-

tures e and f are positive in cluster B; features d and g are outliers. That is,

F (a) = F (b) = F (c) = A, F (e) = F (f) = B, F (d) = F (g) = 0. After applying

EstimateDataMap, data points 1, 2 and 3 are assigned to cluster A; data points

4, 5 and 6 are assigned to cluster B. After applying EstimateFeatureMap, features

a, b and c are positive in cluster A; features d, e and f are positive in cluster

B; feature g is an outlier. After the next iteration, the result does not change.

Therefore, we has a clustering result that cluster A contains data points 1, 2, and

3 and cluster B contains data points 4, 5, and 6.

6.1.3 Informal Description

CoFD presents an effective method for finding clusters in high dimensional spaces

without explicit distance functions. The clusters are defined as the group of points

that have many features in common. CoFD iteratively selects features with high

accuracy and assigns data points into clusters based on the selected features. A

feature f with high accuracy means that there is a “large” subset V of data set W

76

feature

data point a b c d e f g

1 1 1 0 0 1 0 0

2 1 1 1 1 0 0 1

3 1 0 1 0 0 0 0

4 0 1 0 0 1 1 0

5 0 0 0 1 1 1 1

6 0 0 0 1 0 1 0

Table 6.1: An example of data set

such that f is present in most data points of set V . In other words, feature f has a

small variance on set V . A feature f with low accuracy means that there is no such

a “large” subset V of data set W on which feature f has a small variance. That

is, f spreads largely within data set W . Hence our algorithm repeatedly projects

the data points to the subspaces defined by the selected features of each cluster,

assigns them to the clusters based on the projection, recalculate the accuracies

of the features, then selects the features. As the process moves on, the selected

features tend to converge to the set of features which have small variances among

all the features. For a rigorous proof of convergence in EM-type algorithms, please

refer to (Ambroise & Govaert, 1998; Selim & Ismail, 1984).

Input

Output A B C D E

1 0 0 0 83 0

2 0 0 0 0 81

3 0 0 75 0 0

4 86 0 0 0 0

5 0 75 0 0 0

Table 6.2: Confusion matrix for Experiment 1

77

6.2 Agents for Distributed CoFD

In the agent’s algorithm for distributed CoFD, we use agents to represent clusters,

and each agent aims to collect similarity data points. Therefore the character of

an agent can be depicted by the data points it collected.

Initially, each agent possesses a portion of points and features, and also a

small amount of currency. The procedure is that agents trade goods (features and

points alternatively) with the currency. The price is set at the buyers’ estimation.

Of course, the seller would sell at the highest price, which should be higher than

the seller’s estimation. An agent measure a point with the number of the active

features that the agent holds, and measure a feature with the number of the

points that the agent holds and the feature is active. After a period of trading,

the currency inflates. The system will be stable as no agent can afford any goods.

The detailed algorithm is shown in Algorithm 5.

6.3 Experimental Results

There are many ways to measure how accurately the algorithm performs. One is

the confusion matrix which is described in (Aggarwal et al., 1999). Entry (o, i)

of a confusion matrix is the number of data points assigned to output cluster o

and generated from input cluster i.

For input map I, which maps data points to input clusters, the entropy H(I)

measures the information of the input map. The task of clustering is to find

out an output map O which recover the information. Therefore, the condition

entropy H(I|O) is interpreted as the information of the input map given the

output map O, i.e., the portion of information which is not recovered by the

clustering algorithm. Therefore, the recovering rate of a clustering algorithm

78

Algorithm 5 Agent’s algorithm for Distributed CoFD

Procedure Init()

begin

w = w0

Randomly assign some features and points to the agent

end

Procedure FeatureTransaction()

begin

Set the price of feature j at pj = ||{i|Wij = 1}||;

Sell feature j at price p′j if p′j > pj

Buy feature j at price pj if pj < w

Update w

end

Procedure PointTransaction()

begin

Set the price of point i at pi = ||{j|Wij = 1}||;

Sell point i at price p′i if p′i > pi;

Buy point i at price pi if pi < w;

Update w

end

Procedure Clustering()

begin

repeat

FeatureTransation

PointTransaction

discount w by β

until no transaction happens

end

79

is defined as 1 − H(I|O)/H(I) = MI(I, O)/H(I), where MI(I, O) is mutual

information between I and O.

To test the performance of our algorithm, we did three experiments. Two

experiments ran on synthetic data sets, and one ran on a real data set. The sim-

ulations were performed on a 700MHz Pentium-III IBM Thinkpad T20 computer

with 128M of memory, running on octave 2.1.34 3 on Linux 2.4.10.

6.3.1 Extending to Non-binary Data Sets

In order to handle non-binary data sets, we first translate raw attribute values of

data points into binary feature spaces.

If an attribute is categorical, our translation scheme is similar to the method

described in (Srikant & Agrawal, 1996). We use as many features as the number of

attribute values. The value of a binary feature corresponding to 〈attribute1, value1〉

would be 1 if attribute1 had value1 in the raw attribute space, and 0 otherwise.

If an attribute is continuous, the method presented in (Srikant & Agrawal,

1996) can also be applied as the translation scheme. However, in the experiments

we use Gaussian mixture models to fit each attribute of the original data sets,

since most of them are generated from Gaussian mixture models, i.e., each value

is generated by one of many Gaussian distributions. The number of Gaussian

distributions n can be obtained via maximizing Bayesian information criterion of

the mixture model (Schwarz, 1978). Then the value is translated into n feature

values in the binary feature space. The j-th feature value is 1 if the probability

that the value of the data point is generated from the j-th Gaussian distribution is

the largest. Considering that some value is generated from a uniform distribution

because of outliers, the attribute value is not mapped into any binary feature.

3GNU Octave is a high-level language, primarily intended for numerical computations. The

software can be obtained from http://www.octave.org/.

80

6.3.2 A Binary Synthetic Data Set

First we generate a binary synthetic data set to evaluate our algorithm. N = 400

points are from K = 5 clusters. Each point has d = 200 binary features. Each

cluster has l = 35 positive features, 140 negative features. The positive features

of a point have a probability of 0.8 to be 1 and 0.2 to be 0; the negative features

of a point have a probability of 0.8 to be 0 and 0.2 to be 1; the rest features have

a probability of 0.5 to be 0, and 0.5 to be 1.

Fig. 6.2 shows the confusion matrix of this experiment.

In this experiment, p(D|1) = 83/83 = 1, p(E|2) = 1, p(C|3) = 1, p(A|4) = 1,

p(B|5) = 1, and the rest are zeros. So we have H(I|O) =
∑

p(i|o) log p(i|o) = 0,

i.e. the recovering rate of the algorithm is 1, i.e., all data points are correctly

recovered.

6.3.3 A Continuous Synthetic Data Set

The second experiment is to cluster a continuous data set. We use the method

described in (Aggarwal et al., 1999) to generate a data set. The data set has

N = 100, 000 data points in a 20-dimensional space, with K = 5. All input

clusters were generated in some 7-dimensional subspace. And 5% data points were

chosen to be outliers, which were distributed uniformly at random throughout the

entire space. Using the translation scheme described in section 6.3.1, we map all

the data point into a binary space with 41 features.

Then, 1000 data points are randomly chosen as the bootstrap data set. Run-

ning the algorithm on the bootstrap data set, we have a clustering result of the

bootstrap data set. Using the bootstrap data set as the seed points, we run the

algorithm on the entire data set. Fig. 6.3 shows the confusion matrix of this ex-

periment. About 99.65% of data points are recovered. The conditional entropy

81

H(I|O) is 0.0226 as respect to the input entropy H(I) = 1.72. The recovering

rate of this algorithm is 1−H(I|O)/H(I) = 0.987.

Input

Output A B C D E O.

1 1 0 1 17310 0 12

2 0 15496 0 2 22 139

3 0 0 0 0 24004 1

4 10 0 17425 0 5 43

5 20520 0 0 0 0 6

Outliers 16 17 15 10 48 4897

Table 6.3: Confusion matrix for Experiment 2

Input

Output 1 2 3 4 5 6 7

A 0 0 0 0 0 0 1

B 0 20 0 0 0 0 0

C 39 0 0 0 0 0 0

D 0 0 2 0 0 0 0

E 2 0 1 13 0 0 4

F 0 0 0 0 0 8 5

G 0 0 2 0 3 0 0

Table 6.4: Confusion matrix of Zoo

We made a rough comparison with the result reported in (Aggarwal et al.,

1999). Computing from the confusion matrix reported in their paper, their recov-

ering rate is 0.927.

82

6.3.4 Zoo Database

We also evaluate our algorithm on the zoo database from UCI machine learning

repository. The database contains 100 animals, each of which having 15 Boolean

attributes and 1 categorical attribute4.

In our experiment, all Boolean attributes are translated into two features,

which are “true” and “false” features of the attributes. The numeric attribute,

“legs”, is translated into six features, which represents 0, 2, 4, 5, 6,and 8 legs

respectively.

Fig. 6.3 shows the confusion matrix of this experiment. The conditional en-

tropy H(I|O) is 0.317 while the input entropy H(I) is 1.64. The recovering rate

of this algorithm is 1−H(I|O)/H(I) = 0.807.

In the confusion matrix, we found that the clusters with a large number

of animals are likely correctly clustered, for example, cluster 1, which contains

“aardvark”, “antelope”, etc., is mapped into cluster C; cluster 2, which contains

“chicken”, “crow”, etc., is mapped into cluster B; cluster 4, which contains “bass”,

“carp”, etc., is mapped into cluster E; cluster 5 ,which contains “frog”, “gnat”,

etc., is mapped into cluster F ; and cluster 6 , which contains “flea”, “gnat”, etc.,

is mapped into cluster F .

The algorithm comes with an important by-product that the resulting clusters

can be easily described in terms of features, since the algorithm produces an

explicit feature map. For example, the positive features of cluster A are “no eggs”,

“no backbone”, “venomous” and “8 legs”; the positive features of cluster B are

“feather”, “airborne”, and “2 legs”; the positive features of cluster C are “hair”,

“milk”, “domestic” and “catsize”; the positive feature of cluster D is “0 legs”;

4In the raw data, there are 101 instances and 18 attributes. But there are two instances of

“frog”, which are only counted once in our experiment. Also, the attributes “animal name” and

“type” are not counted.

83

the positive feature of cluster E are “aquatic”, “no breathes”, “fins” and “5 legs”;

the positive features of cluster F are “6 legs” and “no tail”; the positive feature

of cluster G is “4 legs”. Hence, cluster B can be described as animals having

feather and 2 legs, and being airborne, which are the representative features of

the animals called birds. Cluster E can be described as animals being aquatic,

having no breathes, having fins an 5 legs.

Animals “dolphin” and “porpoise” are in cluster 1, but were clustered into

cluster E, because their attributes “aquatic” and “fins” make them more like

animals in cluster E than their attribute “milk” does for cluster C.

6.3.5 Scalability Results

In this subsection we present the computational scalability results for our algo-

rithm. The results were averaged over five runs on each case to eliminate the

randomness effect. We report the scalability results in terms of the number of

points and the dimensionality of the space.

Number of points: The data sets we tested have 200 features (dimensions).

They all contained 5 clusters and each cluster has an average 35 features. Fig-

ure 6.1 shows the scalability result of the algorithm in terms of the number of

data points. The value of the y coordinate in figure 6.1 is the running time in

seconds. We implemented the algorithm using octave 2.1.34 on Linux 2.4.10. If

it were implemented in C, the running time could be reduced considerably. Fig-

ure 6.1 contains two curves: one is the scalability result with bootstrap and one

without. It can be seen from figure 6.1 that with bootstrap, our algorithm scales

sublinearly with the number of points and without bootstrap, it scales linearly

with the number of points. The value of the y coordinate in figure 6.1 is the ratio

of the running time to the number of points. The linear and sublinear scalability

properties can also be observed in figure 6.1.

84

0.1

1

10

100

1000

100 1000 10000 100000
#points

w/o bootstrap

��

��

��

��

�	

�

�
��

w/ bootstrap

+

+

+

+

+

+

+

+

Figure 6.1: Scalability with number of points

2
4
6
8

10
12
14

20 200 500 1000ru
nn

in
g

tim
e

in
se

co
nd

s

#features

��

��

��

��

�	

Figure 6.2: Scalability with number of dimensions

85

Dimensionality of the space: The data sets we tested have 10, 000 data

points. They all contained 5 clusters and the average features (dimensions) for

each cluster is about 1
6

of the total number of features (dimensions). Figure 6.2

shows the scalability result of the algorithm in terms of dimensionality of the space.

The value of the y coordinate in figure 6.2 is the running time in seconds. It can

be seen from figure 6.2 that our algorithm scales linearly with the dimensionality

of the space.

6.4 Relative Work

Traditional clustering techniques can be broadly classified into partitional clus-

tering, hierarchical clustering, density-based clustering and grid-based cluster-

ing (Han et al., 2000). Partitional clustering attempts to directly decompose the

data set into K disjoint clusters such that the data points in a cluster are nearer

to one another than the data points in other clusters. Hierarchical clustering

proceeds successively by building a tree of clusters. It can be viewed as a nested

sequence of partitioning. The tree of clusters, often called dendrogram, shows the

relationship of the clusters and a clustering of the data set can be obtained by

cutting the dendrogram at a desired level. Density-based clustering is to group

the neighboring points of a data set into clusters based on density conditions.

Grid-based clustering quantizes the object space into a finite number of cells that

form a grid-structure and then performs clustering on the grid structure. Most of

the traditional clustering methods use the distance functions as objective criteria

and are not effective in high dimensional spaces.

Next we review some recent clustering algorithms which have been proposed

for high dimensional spaces or without distance functions and are largely related

to our work.

CLIQUE (Agrawal et al., 1998) is an automatic subspace clustering algorithm

86

for high dimensional spaces. It uses equal-size cells and cell density to find dense

regions in each subspace of a high dimensional space. Cell size and the density

threshold need to be provided by the user as inputs. CLIQUE does not produce

disjoint clusters and the highest dimensionality of subspace clusters reported is

about 10. CoFD and the derivative produce disjoint clusters and does not require

the additional parameters such as the cell size and density. Also it can find clusters

with higher dimensionality.

In (Aggarwal & Yu, 2000; Aggarwal et al., 1999), the authors introduced the

concept of projected clustering and developed algorithms for discovering inter-

esting patterns in subspaces of high dimensional spaces. The core idea of their

algorithm is a generalization of feature selection which allows the selection of dif-

ferent sets of dimensions for different subsets of the data sets. However, their

algorithms are based on the Euclidean distance or Manhattan distance and their

feature selection method is a variant of singular value decomposition (SVD). Also

their algorithms assume that the number of projected dimensions are given before-

hand. CoFD and its derivative do not need the distance measures and the number

of dimensions for each cluster. Also it does not require all projected clusters to

have the same number of dimensions.

Ramkumar and Swami (1998) proposed a new method for clustering with-

out distance function. Their method is based on the principles of co-occurrence

maximization and label minimization which are normally implemented using the

association rules and classification techniques. Their method does not consider

the correlations of dimensions with respect to data locality and critically depend

on the input parameters like parameter w and thresholds for association. CoFD

and its derivative are quite different. We consider the fact that the correlations

of dimensions are often specific to data distribution.

Liu et al. (1998) proposed a method to find sparse and data regions using

decision tree. The method is a grid-based method and it does not work well for

87

high dimensional space. It is also hard to decide the size of the grids and the

density threshold. In (Liu et al., 2000), a clustering technique based on decision

tree construction is presented. The technique first introduces non-existing points

to the data space and then performs the decision tree algorithm to partitioning

the data space into dense and sparse regions.

Cheng et al. (1999) proposed an entropy-based subspace clustering for mining

numerical data. The method is motivated by the fact that a subspace with clusters

typically has lower entropy than a subspace without clusters.

Strehl and Ghosh (2000) proposed OPOSSUM, a similarity-based clustering

approach based on constrained, weighted graph-partitioning. OPOSSUM is based

on Jaccard Similarity and is particularly attuned to real-life market baskets, char-

acterized by high-dimensional sparse customer-product matrices.

Fasulo (1999) also gave a detailed survey on clustering approaches based on

mixture models (Banfield & Raftery, 1993), dynamical systems (Kleinberg, 1997)

and clique graphs (Ben-Dor et al., 1999).

6.5 Conclusions

In this paper, we proposed a novel clustering method which does not require the

distance function for high dimensional spaces. The algorithm performs clustering

by iteratively optimize the data map and the feature map. We have adopted

several approximation methods to maximize the likelihood between the given data

set and the generated model. Extensive experiments have been conducted and the

results show that CoFD and its derivative are both efficient and effective.

Our contributions are:

• We propose CoFD and its derivative, a non-distance based clustering algo-

rithm in high dimensional spaces based on maximum likelihood principle.

88

• We come up with a new perspective of viewing the clustering problem by

interpreting it as the dual problem of optimizing the feature map.

• As a by-product, CoFD and its derivative also produce the feature map

which can provide interpretable descriptions of the resulting clusters.

• CoFD and its derivative also provide a method to select the number of

clusters based on the conditional entropy.

• We introduce the recovering rate, an accuracy measure of clustering, to

measure the performance of clustering algorithms and to compare clustering

results of different algorithms.

Our future work includes developing more direct methods to optimize the data

map and the feature map, designing the parallel and distributed versions of our

algorithm and the incremental clustering algorithm based on our algorithm.

89

7 Summary

Multi-agent learning plays an important role in distributed intelligent systems,

especially where agents can not be preprogrammed to operate as desired. Rein-

forcement learning is addressing the problem by dynamically learning knowledge

and improving utilities. However, most reinforcement learning algorithms are

designed for stationary single agent contexts. In a multi-agent system, learning

agents should adapt to gradual improvement of their peers or drift in its environ-

ment. For this reason, those explorations assuming a stationary circumstance are

unrealistic. To be adaptive, the agents should keep exploring the system in their

lifetime to seek possibly better rewards owing to the changes.

Besides the dilemma of exploration and exploitation in a multi-agent system,

another dilemma is that the exploration of the agents may result the instability of

the system. Therefore, the learning agents should understand possible irregular

behaviors of their peers and be able to recover from the tragic situation owing to

the exploration. It is one reason why the tit-for-tat strategy of prisoners’ dilemma

fails to be learned as the optimal strategy in a multi-agent system.

In this work, I propose an approach that learning agents adapt their strate-

gies to their opponents’ strategies through statistical analysis of their opponents’

responses in iterated games. The simulations show that learning agents can effi-

90

ciently learn to compete against, cooperate with each other in respective settings

and adapt to changes in their opponents’ strategies. Also, learning agents are able

to tolerate noise in environments and exploit weak opponents.

I also formalize Sutton’s recency-based exploration bonus with the Brownian

bandit problem. To illustrate the efficiency of the recency-based exploration, we

build Q-learning agents with the smoothed best response dynamics. The simu-

lations demonstrate that systems with the recency-based exploration can reach

expected equilibria more efficiently than those with Boltzmann exploration. The

simulations also show that the learning agents can efficiently adapt to the new

context owing to changes of their peers’ behaviors or drift of their environment.

At last, I propose a novel clustering method which does not require the dis-

tance function for high dimensional spaces. The algorithm performs clustering by

iteratively optimize the data map and the feature map. We have adopted several

approximation methods to maximize the likelihood between the given data set

and the generated model. Extensive experiments have been conducted and the

results show that CoFD and its derivative are both efficient and effective.

91

Bibliography

Aggarwal, C., & Yu, P. S. (2000). Finiding generalized projected clusters in high

dimensional spaces. SIGMOOD-00.

Aggarwal, C. C., Wolf, J. L., Yu, P. S., Procopiuc, C., & Park, J. S. (1999). Fast

algorithms for projected clustering. ACM SIGMOD Conference.

Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (1998). Automatic

subspace clustering for high dimensional data for data mining applications.

SIGMOD-98.

Ahmed, E., & Elgazzar, A. S. (2000). On the dynamics of local hawk-dove game.

International Journal of Modern Physics C, 11, 607–614.

Ambroise, C., & Govaert, G. (1998). Convergence of an EM-type algorithm for

spatial clustering. Pattern Recognition Letters, 19, 919–927.

Astrom, K. J. (1965). Optimal control of markov decision processes with incom-

plete state estimation. J. Math. Anal. Appl., 10, 174–205.

Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.

Banfield, J., & Raftery, A. (1993). Model-based gaussian and non-gaussian clus-

tering. Biometrics, 49, 803–821.

Barto, A. G., & Duff, M. O. (1994). Monte Carlo matrix inversion and reinforce-

ment learning. In Nips ’94, vol. 6. San Mateo, CA: Morgan Kaufman.

92

Barto, A. G., Sutton, R., & Anderson, C. (1983). Neuron-like elements that can

solve difficult learning control problems. IEEE Trans. on systems, Man, and

Cybernetics, 13, 834–846.

Bellman, R. (1956). A problem in the sequential design of experiments. Sankhya,

16, 221–9.

Bellman, R., & Kalaba, R. (1959). On adaptive control processes. IRE Trans., 4,

1–9.

Bellman, R. E. (1957). A markov decision process. Journal of Mathematical

Mech., 6, 679–84.

Bellman, R. E. (1961). Adaptive control processes: A guided tour. Princeton

University Publisher.

Ben-Dor, A., Shamir, R., & Yakhini, Z. (1999). Clustering gene expression pat-

terns. J. of Comp. Biology, 6, 281–297.

Berger, M., & Rigoutsos, I. (1991). An algorithm for point clustering and grid

generation. IEEE Trans. on Systems, Man and Cybernetics, 21, 1278–1286.

Beyer, K., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When is nearest

neighbor meaningful? ICDT Conference.

Billings, D. (2000). The first international RoShamBo programming competition.

International Computer Games Association Journal, 23, 42–50.

Bowling, M., & Veloso, M. (2001). Convergence of gradient dynamics with a

variable learning rate. Proc. 18th International Conf. on Machine Learning

(pp. 27–34). Morgan Kaufmann, San Francisco, CA.

Boyan, J. A. (1992). Modular neural netowrks for learning context-dependent

game strategies. Master’s thesis, University of Cambridge, Cambridge, England.

93

Brafman, R. I., & Tennenholtz, M. (2001). R-MAX - a general polynomial time

algorithm for near-optimal reinforcement learning. IJCAI (pp. 953–958).

Brito, M., Chavez, E., Quiroz, A., & Yukich, J. (1997). Connectivity of the mutual

K-Nearest-Neighbor graph for clustering and outlier detection. Statistics and

Probability Letters, 35, 33–42.

Bui, H. H., Kieronska, D., & Venkatesh, S. (1996). Learning other agents’ prefer-

ences in multiagent negotiation. IAAI (pp. 114–119).

Carmel, D., & Markovitch, S. (1996). Learning models of intellignet agents. AAAI-

96.

Carmel, D., & Markovitch, S. (1999). Exploration strategies for model-based

learning in multi-agent systems. Journal of Autonomous Agents and Multi-

Agent System, 2.

Cheeseman, P., Kelly, J., & Self, M. (1988). AutoClass: A bayesian classification

system. ICML’88.

Cheng, C.-H., Fu, A. W.-C., & Zhang, Y. (1999). Entropy-based subspace clus-

tering for mining numerical data. KDD-99.

Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The per-

ceptual distinctions approach. Proceedings of the Tenth National Conference on

Artificial Intelligence (pp. 183–8).

Chrisman, L., Caruana, R., & Carriker, W. (1991). Intelligent agent design issues:

Internal agent state and incomplete perception. AAAI Fall Symposium Series:

Sensory Aspects of Robotic Intelligence.

Claus, C., & Boutillier, C. (1998). The dynamics of reinforcement learning in

cooperative multiagent systems. AAAI ’98.

94

Crites, R., & Barto, A. (1996). Improving elevator performances using reinforce-

ment learning. In D. Touretzky, M. Mozer and M. Hasselmo (Eds.), Advances

in neural information processing systems. Cambridge, MA: MIT Press.

Dayan, P., & Hinton, G. E. (1993). Feudal reinforcement learning. NIPS ’93 (pp.

271–278). Morgan Kaufmann.

Dayan, P., & Sejnowski, T. (1996). Exploration bonuses and dual control. Machine

Learning, 25, 5–22.

Digney, B. (1996). Emergent hierarchical control structures: Learning reac-

tive/hierarchical relationships in reinforcement environment. Proceedings of the

Fourth International Conference on the Simulation of Adaptive Behavior: From

Animals to Animats (pp. 363–72). Cambridge, MA: MIT Press/Bradford Books.

Fasulo, D. (1999). An analysis of recent work on clustering algorithms (Technical

Report 01-03-02). U. of Washington, Dept. of Comp. Sci. & Eng.

Fisher, D. H. (1995). Iterative optimization and simplification of hierarchical clus-

terings (Technical Report CS-95-01). Vanderbilt U., Dept. of Comp. Sci.

Fudenberg, D., & Kreps, D. (1993). Learning mixed equilibria. Games and Eco-

nomic Behavior, 5, 320–67.

Fudenberg, D., & Levine, D. K. (1998). The theory of learning in games. Cam-

bridge, MA: The MIT Press.

Gittins, J. C., & Jones, D. M. (1974). A dynamic allocation index for the sequential

design of experiments. In Progress in statistics, vol. I, 241–66. North-Holland.

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An efficient clustering algorithm

for large database. Proceedings of the 1998 ACM SIGMOD Conference.

95

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate

generation (pp. 1–12.).

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elemetns of statistical

learning: Data mining, inference, prediction. Springer.

Hellman, M. E., & Cover, T. M. (1970). Learning with finite memory. Ann. Math.

Stat., 41, 765–82.

Holland, J. H. (1975). Adaptation in natural and artificial systems. University of

Michigan Press. (Second edition: MIT Press, 1992).

Howard, R. (1960). Dynamic programming and markov processes. Cambridge,

MA: MIT Press.

Hu, J., & Wellman, M. P. (1998). Multiagent reinforcement learning: Theoretical

framework and an algorithm. ICML ’98 (pp. 242–250). Madison, WI.

Humphrys, M. (1996). Action selection methods using reinforcement learning.

Proceedings of the Fourth International Conference on the Simulation of Adap-

tive Behavior: From Animals to Animats (pp. 135–44). Cambridge, MA: MIT

Press/Bradford Books.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive

mixtures of local experts. Neural Computation, 3, 79–87.

Jain, S., & Sharma, A. (1995). On aggregating teams of learning machines. The-

oretical Computer Science, 137, 85–108.

Jordan, M. I., & Jacobs, R. A. (1992). Hierarchies of adaptive experts. Advances

in Neural Information Processing Systems 4. Proceedings of the 1991 Conference

(pp. 985–992). San Mateo, CA: Morgan Kaufmann.

96

Kaelbling, L. P. (1993). Learning in embedded systems. Cambridge, MA: MIT

Press.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning:

A survey. Journal of Artificial Intelligence Research, 4, 237–85.

Kleinberg, J. M. (1997). Two algorithms for nearest-neighbor search in high

dimensions. ACM Symp. on Theory of Computing.

Kohavi, R., & Sommerfield, D. (1995). Feature subset selection using the wrapper

method: overfitting and dynamic search space technology. KDD 1995.

Lin, L.-J. (1993). Reinforcement learning for robots using neural networks. Doc-

toral dissertation, Carnegie Mellon University.

Lin, L.-J., & Mitchell, T. M. (1992). Reinforcement learning with hidden states.

Proceedings of the Second International Conference on Simulation of Adaptive

Behavior: From Animals to Animats (pp. 271–80).

Littman, M., & Boyan, J. (1993). A distributed reinforcement learning scheme

for network routing (Technical Report CMU-CS-93-165). School of Computer

Science, Carnegie Mellon University.

Littman, M. L. (1994). Markov games as a frame work for multi-agent reinforce-

ment learning. ICML ’94.

Liu, B., Wang, K., Mun, L., & Qi, X. (1998). Using decision tree for discovering.

PRICAI-98.

Liu, B., Xia, Y., & Yu, P. S. (2000). Clustering through decision tree construction.

SIGMOD-00.

Mahadevan, S. (1996). Average reward reinforcement learning: Foundations, al-

gorithms, and empirical results. Machine Learning, 22, 159–96.

97

Markey, K. L. (1994). Efficient learning of multiple degree-of-freedom control

problems with quasi-independent q-agents. Proceedings of the 1993 Connec-

tionist Models Summer School. Hillsdale, NJ: Erlbaum Assoiciates.

McCallum, A. K. (1995). Reinforcement learning with selective perception and

hidden state. Doctoral dissertation, University of Rochester.

McCallum, R. A. (1993). Overcoming incomplete perception with utile distinc-

tion memory. Proceedings of the Tenth International Conference on Machine

Learning.

Meuleau, N., & Bourgine, P. (1999). Exploration of multi-state environments:

Local measures and back-propagation of uncertainty. Machine Learning, 1–43.

Munos, R., & Moore, A. (1999). Variable resolution discretization for high-

accuracy solutions of optimal control problems. IJCAI ’99.

Nash, J. (1951). Non-cooperative games. Annals of Mathematics, 54, 286–295.

Nowak, M. A., & May, R. M. (1993). The spatial dilemma of evolution. Int. J.

Bifurc. & Chaos, 3.

Ormoneit, D., & Sen, Ś. (2002). Kernel-based reinforcement learning. Machine

Learning, 49, 161–178.

Owen, G. (1982). Game theory. New York: Academic Press. second edition.

Owen, G. (1995). Game theory. New York: Academic Press. third edition.

Puterman, M. (1994). Markov decision processes: Discrete stochastic dynamic

programming. New York: Wiley.

Pyeatt, L. D., & Howe, A. E. (1999). Integrating pomdp and reinforcement learn-

ing for a two layer simulated robot architecture. Proceedings of the Third Annual

Conference on Autonomous Agents (pp. 168–74). Seattle, WA.

98

Ramkumar, G., & Swami, A. (1998). Clustering data without distance function.

IEEE Data(base) Engineering Bulletin, 21, 9–14.

Ring, M. (1993). Learning sequential tasks by incrementally adding higher. In

S. J. Hanson, J. D. Cowan and C. L. Giles (Eds.), Nips ’93, vol. 5. San Mateo,

CA: Morgan Kaufmann.

Ron, D. (1995). Automata learning and its applications. Doctoral dissertation,

Hebrew University.

Ron, D., Singer, Y., & Tishby, N. (1994). Learning probabilistic automata with

variable memory length. Proceedings of Computational Learning Theory. ACM

Press.

Rubinstein, A. (1986). Finite automata play the repeated prisoner’s delemma.

Journal of Economic Theory, 39, 83–96.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3, 211–29. Reprinted in E. A.

Feigenbaum and J. Feldman, editors, Computers and Thought, McGraw-Hill,

New York 1963.

Sandholm, T. W., & Crites, R. H. (1996). Multiagent reinforcement learning in

the iterated prisoner’s dilemma. Biosystems, 37, 147–66.

Santamaŕıa, J. C., Sutton, R. S., & Ram, A. (1998). Experiments with reinforce-

ment learning in problems with continuous state and action spaces. Adaptive

behavior, 6, 163–218.

Sato, M., Abe, K., & Takeda, Y. (1990). Learning control of finite markov chains

with explicit trade-off between estimation and control. Connectionist Models

Proceedings of the 1990 Summer School (pp. 287–300). San Mateo, CA: Morgan

Kaufmann.

99

Schaerf, A., Shoham, Y., & Tennenholtz, M. (1995). Adaptive load balancing:

A study in multi-agent learning. Journal of Artificial Intelligence Research, 2,

475–500.

Schraudolph, N. N., Dayan, P., & Sejnowski, T. J. (1994). Using the TD(λ)

algorithm to learn an evaluation function for the game of Go. In Nips ’94,

vol. 6. San Mateo, CA: Morgan Kaufman.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics,

6, 461–464.

Selim, S. Z., & Ismail, M. A. (1984). K-Means-Type algorithms: A generalized

convergence theorem and characterization of local optimality. IEEE Trans.,

PAMI-6.

Sen, S., & Arora, N. (1997). Learning to take risks. Collected papers from AAAI-97

workshop on Multiagent Learning (pp. 59–64). AAAI.

Shapley, L. S. (1953). Stochastic games. Proceedings of National Academy of

Sciences of the United States of America (pp. 1095–100).

Singh, S., Kearns, M., & Mansour, Y. (2000). Nash convergence of gradient

dynamics in general sum games. UAI (pp. 541–548).

Smith, C. (1982). The power of pluralism for automatic program synthesis. Jour-

nal of the ACM, 29, 1144–1165.

Srikant, R., & Agrawal, R. (1996). Mining quantitative association rules in large

relational tables. SIGMOD-96 (pp. 1–12). Montreal, Quebec, Canada.

Stone, P., & Veloso, M. (1999). Team-partitioned, opaque-transition reinforce-

ment learning. Proceedings of the 3rd International Conference on Autonomous

Agents.

100

Strehl, A., & Ghosh, J. (2000). A scalable approach to balanced, high-dimensional

clustering of market-baskets. HiPC-2000.

Sugawara, T., & Lesser, V. (1998). Learning to improve coordinated actions in

cooperative distributed problem-solving environments. Machine Learning, 33,

129.

Sutton, R. S. (1984). Temporal credit assignment in reinforcement learning. Doc-

toral dissertation, University of Massachusetts at Amherst.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.

Machine Learning, 3, 9–44.

Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting

based on approximating dynamic programming. Proceedings of the Seventh

International Conference on Machine Learning (pp. 216–224). San Mateo CA:

Morgan Kaufman.

Sutton, R. S. (1991). Planning by incremental dynamic programming. Proceedings

of the Eighth International Workshop on Machine Learning (pp. 353–7). Morgan

Kaufmann.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful ex-

amples using sparse coarse coding. Advances in Neural Information Processing

Systems 8 (pp. 1038–1044). MIT Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. MIT Press.

Tan, M. (1991). Learning a cost-sensitive internal representation for reinforce-

ment learning. Proceedings of the Eighth International Workshop on Machine

Learning (ML’91).

101

Tan, M. (1993). Multi-agent reinforcement learning: independent vs. cooperative

agents. Proceedings of the Tenth International Conference on Machine Learning.

Amherst, Massachusetts: Morgan Kaufmann.

Tesauro, G. J. (1992). Practical issues in temporal difference. In J. E. Moody,

D. S. Lippman and S. J. Hanson (Eds.), Nips ’92, vol. 4. San Mateo, CA: Morgan

Kaufman.

Tham, C., & Prager, R. (1994). A modular q-learning architecture for manipulator

task decomposition. Proceedings of the Eleventh International Conference on

Machine Learning. Morgan Kaufmann.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds

another in view of the evidence of two samples. Biometrika, 25, 275–94.

van der Wal, J. (1981). Stochastic dynamic programming. In Mathematical centre

tracts 139. Amsterdam: Morgan Kaufmann.

von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic

behavior. Princeton, New Jersey: Princeton University Press.

Watkins, C. (1989). Learning from delayed rewards. Doctoral dissertation, Cam-

bridge University.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.

Weiss, G. (1998). A multiagent perspective of parallel and distributed ma-

chine learning. Proceedings of the 2nd International Conference on Autonomous

Agents (pp. 226–230).

Whitehead, S. D. (1992). Reinforcement learning for the adaptive control of per-

ception and action. Doctoral dissertation, University of Rochester.

102

Wiering, M., & Schmidhuber, J. (1997). HQ-learing. Adaptive Behavior, 6, 219–

46.

Williams, N. (2001). Stability and long run equilibrium in stochastic fictitious

play. working paper.

Yanco, H., & Stein, L. A. (1993). An adaptive communication protocol for coop-

erating mobile robots. Proceedings of the Second International Conference on

the Simulation of Adaptive Behavior: From Animals to Animats (pp. 478–85).

MIT Press/Bradford Books.

Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: A new data clustering

algorithm and its applications. Data Mining and Knowledge Discovery, 1, 141–

182.

Zhu, S., & Li, T. (2002). An algorithm for non-distance based clustering in high

dimensional spaces. IJCNN’02.

