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1 Leave One Out

Assume the data points are linear separable and iid. And the training and test data are D dimen-
sions, while D is unknown, meaning our problem setting is distribution free.

Q(x, a) =
{

1 y 6= ŷ(x)
0 otherwise

Where Q is called loss. Risk is defined as expected loss:

R(a) =
∫
Q(x, a)P (x)dx

Now we need to know the maximum valve of the expectation of the risk over possible training
sets. This means we need to calculate E(R(a)) ≤?; In the past lecture notes, we know W = φ =∑

i αiXiYi where Xi is the ith data point.

Yi =
{
−1
1

In order to estimate the risk for the function Q(z, a) , we need to use the following statistics: exclude
the first vector z1 from the sequence and obtain the function that minimizes the empirical risk for
the remaining l − 1 elements of the sequence for the given sequence z1, z2, . . . , zl;

Let the function be Q(z1, al−1|z1). In this notation, we indicate that the vector z1 was excluded
from the sequence. We use this excluded vector for computing the value Q(z1, al−1|z1).

Now we excluded the second z2 from the sequence (while the first vector is retained) and compute
the value Q(z2, al−1|z2).

In this manner, we compute the values for all the vectors and calculator the number of errors
in the leave on out procedure;

L(z1, z2....zl) =
l∑

i=1

Q(zi, al−1|zi)
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2 One Way to Compute an Error Bound

We will use L as an estimate for the expectation of the function Q(z, al) that minimizes the empirical
risk.

First we need to prove E(L(z1, .....zl+1)/(l + 1)) = ER(al).
The proof consists of the following chain of transformations:

EL(z1, z2, ......zl+1)/(l + 1) =
∫

1/(l + 1)
l+1∑
i=1

Q(zi, al|zi)dP (z1), ......, dP (zl+1)

=
∫

1/(l + 1)
l+1∑
i=1

(
∫
Q(zi, al||zi)dP (zi))

= E(1/(l + 1).
l+1∑
i=1

R(al|zi))

= ER(al)

We will introduce the essential support vectors: Essential support vectors are the vectors that,
if removed, would result in learning a different SVM. Indeed, if the vector xi is not an essential
support vector, then there exists an expansion of the vector φ that defines the optimal hyperplane
that doesn’t contain the vector xi.

Since the optimal hyperplane is unique, removing this vector from the training set doesn’t change
it. Therefore in the leave one out method it will be recognized correctly.

Thus the leave one out method recognizes correctly all the vectors. Therefore the number of
L(z1, ..., zl+1) of errors in the leave one out method doesn’t exceed Kl+1, the number of the essential
support vectors; that is,

L(z1, . . . , zl+1) ≤ Kl+1

Then the equation we will get:

ER(al) = EL(z1, z2, . . . , zl+1)/(l + 1) <= EKl+1/(l + 1)

3 Another Way to Compute and Error Bound

In order to use another way to prove the bound of the number of errors in the leave on out estimator
for the optimal hyperplanes, we use the following method.

Suppose we are given the training set:

(x1,y1), . . . , (xl+1, yl+1)

And the maximum of W (a) in the area a ≥ 0 is achieved at the vector a0 = (a0
1, . . . , a

0
l ). Let the

vector

φ0 =
a∑

i=1

a0
ixiyi

Define the optimal hyperplane passing through the original, where we enumerate the support vectors
with i = 1 : a

Let us denote by ap the vector providing the maximum for the functional W (a) under the
constraint ap = 0

ai ≥ 0 where(i 6= p)
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Let the vector φp =
a∑

i=1

ap
i xiyi

The above defines the coefficients of the corresponding separating hyperplane passing through
the origin.

Now denote by W p
0 the value of the W (a) for:

ai = a0
i where(i 6= p)

ap = 0;

Consider the vector ap that maximize the function W (a) under the above constraint. The following
obvious inequality is valid:

W p
0 ≤W (ap)

On the other hand the following inequality is true:

W (ap) ≤W (a0)

Therefore the inequality:
W (a0)−W (ap) ≤W (a0)−W p

0

is valid.
Now let us rewrite the right-hand side of the inequality in the explicit form;

W (a0)−W (ap) =
a∑

i=1

a0
i − 1/2 ∗ (φ0 ∗ φ0)− (

a∑
i=1

a0
i − a0

p − 1/2∗((φ0−a0
p∗yp∗xp)∗(φ0−a0

p∗yp∗xp)))

= a0
p − a0

pyp(xpφ0) + 1/2 ∗ (a0
p)2 ∗ |xp|2

Taking into account that xp is a support vector, we have

W (a0)−W (ap) = 1/2 ∗ (a0
p)2 ∗ |xp|2

Suppose the optimal hyperplane passing through the origin recognizes the vector xp incorrectly.
This means that the inequality:

yp(xp ∗ φ0) ≤ 0

is valid. This is possible only if the vector xp is an essential support vector. Now let us make one
step in maximization the function W (a) by fix ai, i 6= p and change only one parameter ap > 0.
We obtain:

W (a) = W (ap) + ap(1− yp(xpφp))− 1/2 ∗ (a0
p)2 ∗ |xp|2

From the equality we obtain the best value of ap:

ap = (1− yp(xpφp))÷ |xp|2

The increment of the W(a) at this moment equals

∆Wp = 1/2 ∗ (1− yp(xpφp))2 ÷ |xp|2

Since ∆Wp does not exceed the increment of the function W (a) for the complete maximization, we
obtain:

W (a0)−W (ap) >= ∆Wp = 1/2 ∗ (1− yp(xpφp))2 ÷ |xp|2
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Combining the equations above, finally we get:

1/2 ∗ (a0
p)2 ∗ |x|2 >= 1/2 ∗ (1− yp(xpφp))2 ÷ |xp|2

From this equation and use the equation above, we could obtain:

a0
p >= (1− yp(xpφp))/|xp|2 >= 1/|xp|2

Taking into account that |xp| <= Dl+1 , we obtain

a0
p >= 1/D2

l+1

Thus if the optimal hyperplane makes the error classifying vector xp in the leave one out procedure,
then the inequality holds. Therefore

a∑
i=1

a0
i >= Ll+1/D

2
l+1

Where L((x1, y1), ..., (xl+1, yl+1)) is the number of errors in the leave one out procedure on the
sample(x1, y1), ..., (xl+1, yl+1).

Now let us recall the properties of the optimal hyperplane

(φ0 ∗ φ0) =
a∑

i=1

a0
i

and
(φ0 ∗ φ0) = 1/p2

l+1

Combing the above equations, we conclude that the inequality:

Ll+1 ≤ D2
l+1/p

2
l+1

is true with probability 1. Finally we get:

ER(al) = ELl+1/(l + 1) ≤ E
D2

l+1/p
2
l+1

l + 1

Most of the notes are quoted from the material the professor gives us in the class.
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