
Reinforcement Learning

Brandon Shroyer

4/17/2012

HMM Homework

• Use likelihood function P (XN
1) =

∑
ZN

1
P (XN

1 , Z
N
1) =

∑
i α(N, si)

� P (XN
1) =

∑
i α(N, si) = α(N + 1, stop)

� Π(s) = P (z1 = s) = P (s|start)
� Q(θ, θold) = likelihood approximation given θold.

• Special end state is not always meaningful (with weather systems, for
instance�they just keep going).

• To prevent α, β from going to zero, scale them by multiplying in a constant
every ten frames or so.

• To remove scaling factor when plotting, take log and subtract log(const)
from result.

Markov Decision Processes

A Markov Decision Process is an extension of the standard (unhidden) Markov
model [1]. Each state has a collection of actions that can be performed in that
particular state. These actions serve to move the system into a new state. More
formally, the MDP's state transitions can be described by the transition function
T (s, a, s′), where a is an action moving performable during the current state s,
and s′ is some new state.

As the name implies, all MDPs obey the Markov property, which holds that
the probability of �nding the system in a given state is dependent only on the
previous state. Thus, the system's state at any given time is determined solely
by the transition function and the action taken during the previous timestep:

P (St = s′|St−1 = s, at = a) = T (s, a, s′)

Each MDP also has a reward function R : S 7→ R. This reward function
assigns some value R(s) to being in the state s ∈ S. The goal of a Markov
Decision Process is to move from the current state s to some �nal state in a way
that a) maximizes R(s) and b) maximizes R's potential value in the future.

1

Given a Markov Decision Process we wish to �nd a policy � a mapping from
states to actions. The policy function Π : S 7→ A selects the appropriate action
a ∈ A given the current state s ∈ S.

Value Iteration

The consequences of actions (i.e., rewards) and the e�ects of policies are not
always known immediately. As such, we need some mechanisms to control and
adjust policy when the rewards of the current state space are uncertain. These
mechanisms are collectively referred to as reinforcement learning [1].

One common way of trading o� present reward against future reward is by
introducing a discount rate γ. The discount rate is between 0 and 1, and we
can use it to construct a weighted estimate of future rewards:

∞∑
t=0

γtrt

Here, we assume that t = 0 is the current time. Since 0 < γ < 1, greater
values of t (indicating rewards farther in the future) are given smaller weight
than rewards in the nearer future.

Let V Π(s) be the value function for the policy Π. This function V Π : S 7→ R
maps the application of Π to some state s ∈ S to some reward value. Assuming
the system starts in state s0, we would expect the system to have the value

V Π(s) = E

[∞∑
t=0

γtR(st) | s0 = s,Π

]

Since the probability of the system being in a given state s′ ∈ S is determined
by the transition function T (s, a, s′), we can rewrite the formula above for some
arbitrary state s ∈ S as

V Π(s) = R(s) +
∑
s′

T (s, a, s′)γV Π(s′)

where a = Π(s) is the action selected by the policy for the given state s.
Our goal here is to determine the optimal policy Π*(s). Examining the

formula above, we see that R(s) is una�ected by choice of policy. This makes
sense because at any given state s, local reward term R(s) is determined simply
by virtue of the fact that the system is in state s. Thus, if we wish to �nd
the maximum policy value function (and therefore �nd the optimum policy) we
must �nd the action a that maximizes the summation term above:

V Π∗(s) = R(s) + max
a

∑
s′

T (s, a, s′)γV Π∗(s′)

Note that this formulation assumes that the number of states is �nite.

2

Algorithm 1 Value Iteration

1. Initialize V (s).

2. Repeat until converged:

(a) for all s ∈ S:
i. R(s) = R(s) + max

a

∑
s′ T (s, a, s′)γV (s′)

ii. Π(s) = argmax
a

Q(s, a)

The formula above forms the basis of the value iteration algorithm. This
operation starts with some initial policy value function guess and iteratively
re�nes V (s) until some acceptable convergence is reached:

Each pass of the value iteration maximizes V (s) and assigns to Π∗(s) the
action a that maximizes V (s). The function Q(s, a) represents the potential
value for V (s) produced by the action a ∈ A.

Q-Learning

The example of value iteration above presumes that the transition function
T (s, a, s′) is known. If the transition function is not known, then the function
Q(s, a) can be obtained through a similar process of iterative learning, the aptly-
named Q-learning.

The naive guess for a Q-learning formula would be one that closely resembles
the policy value function, such as

Q(s, a) = R(s) + γ
[
max

a′
Qold(s, a′)

]
This formula aggressively replaces old values of Q, though, which is not

always desirable. For better results [1], use a weighted average learning function:

Q(s, a) = ηQold(s) + (1− η)γ
[
max

a′
Qold(s, a′)

]
where η is a user-selected learning parameter.

This formula can be turned into an algorithm much like the value iteration
algorithm above. The only di�erence is that the action is selected by a user-
de�ned function f(s), which returns the appropriate policy action Π(s) most
of the time, but occasionally selects a random action to blunt the e�ects of
sampling bias.

The Q-learning algorithm below is from Ballard's textbook [1]:

3

Algorithm 2 One-Step Q-Learning

1. Initialize Π(s) to argmax
a

Q(s, a).

2. Repeat until Π converges:

(a) For each s ∈ S:
i. Select an action a = f(s).

ii. Q(s, a) = ηQold(s) + (1− η)γ
[
max

a′
Qold(s, a′)

]
iii. Π(s) = argmax

a
Q(s, a).

Temporal Di�erence Learning

One disadvantage of value iteration is that it can take a long time for updates
to later states to propagate back to earlier states. For instance, an MDP at-
tempting to navigate a maze would see its reward function jump once it reaches
the �nal stage N , but it would take N iterations for the e�ects of that jump
propagate back to stage 1.

Temporal di�erence learning remedies this by modifying the output weights
for each state with estimates of the policy value for the next state:

∆w = η (R(st) + γV (st+1)− V (st))
t∑

k=1

λt−k ∂Vk

∂w

Where 0 < λ < 1 and V (s) is presumed to be a function of the weight w.
The temporal di�erence learning algorithm below is adapted from [1]:

Algorithm 3 Temporal Di�erence Learning

1. Initialize all network weights to random values.

2. Repeat until Π converges:

(a) Select current state st.

(b) Use Π(st) to obtain a new state st+1 and calculate V (st+1).

(c) If an actual reward is available, substitute that for estimate V (st+1).

(d) w = w + η (R(st) + γV (st+1)− V (st))
∑t

k=1 λ
t−k ∂Vk

∂w .

References

1. Ballard, D. H. An Introduction to Natural Computation. MIT Press, 1997.

2. Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

4

