
CSC 446 Notes: Lecture 2

Typed by Ryan Yates

January 26, 2012

1 Question from last lecture.

Last lecture we saw that expectation is linear (E[X + Y ] = E[X] + E[Y ]). What about variance? Consider
X = Y :

Var[X + Y ] = Var[2X] = E[(2X − 2X̄)2] = 4 Var[X]

Since expectation is linear the factor of two can come out (being squared on the way). Clearly then
variance is not linear. We can look at a specific example where X is a coin flip and Y is a copy of that flip:

X =

{
0 with probability 1

2

1 with probability 1
2

Var[X] = E[(X − X̄)2] = E[(X − 1
2

)2]

=
1
2

(
0− 1

2

)2

+
1
2

(
1− 1

2

)2

=
1
4

Var[2X] =
1
2

(0− 1)2 +
1
2

(2− 1)2 = 1

Variance can be thought of as how spread out a variable is. Is it massed toward a peak, or spread out?
This is understandable when our variable is a number, but what if it is not a number?

2 Entropy

Entropy is:

H(X) =
∑
x

P (x) log
1

P (x)

=
∫
P (x) log

1
P (x)

dx

We can think of this as a measure of information content. An example of this idea of information content
is seen in Huffman coding. High frequency letters have short encodings while rarer letters have longer
encodings. This forms a binary tree where the letters are at the leaves and edges to the left are 0 bits and
edges to the right are 1 bits. If the probablities for the letters are all equal then this tree is balanced.

In the case of entropy we notice that log 1
P (x) is a non-integer, so it is like an expanded Huffman coding.
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2.1 Bounds on Entropy for a Discrete Random Variable

If the variable is descrete H(X) is maximized when the distribution is uniform since P (x) = 1
K , we see:

H(X) =
K∑
i=1

1
K

logK = logK

If K is 2n then H(X) = log 2n = n. Part of Homework 2 will be to prove that entropy on a discrete
random variable is maximized by a uniform distribution (maxθH(X) where

∑
n θn = 1 using the Lagrange

equation).
To minimize H(X) we want P (xi) = 1 for some i (with all other P (xj) being zero1) giving H(X) =∑
x 1 log 1 = 0. We see then that:

0 ≤ H(X) ≤ logK

If we consider some distribution we can see that if we cut up the “shape” of the distribution and add in
gaps that the gaps that are added do not contribute to P (x) log 1

P (x) .

2.2 Further Entropy Equations

H(X,Y ) =
∑

P (x, y) log
1

P (x, y)

H(X|Y ) =
∑
x,y

P (x|y)P (y) log
1

P (x|y)

= EY EX

[
log

1
P (x|y)

]
=
∑
x,y

P (x, y) log
1

P (x|y)

H(X,Y |Z)
P (X,Y |Z)

3 Mutual Information

Mutual information attempts to measure how correlated two variables are with each other:

I(X;Y ) =
∑
x,y

P (x, y) log
P (x, y)
P (x)P (y)

= E
[
log

1
P (x)

+ log
1

P (y)
− log

1
P (x, y)

]
= H(X) +H(Y )−H(X,Y )

Consider communicating the values of two variables. The mutual information of these two variables is the
difference beween the entropy of communicating these varibales individually and the entropy if we can send
them together. For example if X and Y are the same then H(X) +H(Y ) = 2H(X) while H(X,Y ) = H(X)
(since we know Y if we are given X). So I(X;Y ) = 2H(X)−H(X) = H(X).

1In email after class I asked about how we treat 0 · log 1
0

and professor Gildea said it is standard to define this as equal to
zero (justified by the limit being zero).
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3.1 Covariance

A number version of mutual information is covariance:

Covar[X,Y ] =
∑
x,y

P (x, y)(x− X̄)(y − Ȳ )

Covar[X,X] = Var[X]

Covariance indicates the high level trend, so if both X and Y are generally increasing, or both generally
decreasing, then the covariance will be positive. If one is generally increasing, but the other is generally
decreasing, then the covariance will be negative. Two variables can have a high amount of mutual information
but no general related trend and the covariance will not indicate much (probably be around zero).

3.2 KL divergence

Kullback–Leibler (KL) divergence compares two distributions over some variable:

D(P ‖ Q) =
∑
x

P (x) log
P (x)
Q(x)

= EP

[
log

1
Q(x)

− log
1

P (x)

]
= HP (Q)︸ ︷︷ ︸

Cross Entropy

− H(P )︸ ︷︷ ︸
Entropy

If we have the same distribution then the there is non divergence D(P ‖ P ) = 0. In general the
KL divergence is non-symetric D(P ‖ Q) 6= D(Q ‖ P ). If neither distribution is “special” the average
1
2 [D(P ‖ Q) +D(Q ‖ P )] is sometimes used and is symetric. The units of KL divergence are log probability.

The cross entropy has an information interpretation quantifying how many bits are wasted by using the
wrong code:

HP (Q) =
∑
x

P (x)︸ ︷︷ ︸
Sending P

code for Q︷ ︸︸ ︷
log

1
Q(x)

3.3 Lower Bound for KL divergence

We will show that KL divergence is always greater or equal to zero using Jensen’s inequality. First we need
a definition of convex. A function f is convex if for all x1, x2 and θ where 0 ≤ θ ≤ 1, f(θx1 + (1− θ)x2) ≤
θf(x1) + (1− θ)f(x2). This is saying that any chord on the function is above the function itself on the same
interval.

Some examples of convex include a straight line and f(x) = x2. If the Hessian exists for a function then
∇2f � 0 (the Hessian is positive semidefinite) indicates that f is convex. This works for a line, but not
something like f(x) = |x|.

Jensen’s inequality states that if f is convex then E[f(X)] ≥ f(E[X]).

Proof.

D(P ‖ Q) = EP

[
log

P (x)
Q(x)

]
= EP

[
− log

Q(x)
P (x)

]
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To apply Jensen’s inequality we will let − log be our function and Q(x)
P (x) be our x (note that this ratio is

a number so we can push the EP inside).

EP

[
− log

Q(x)
P (x)

]
≥ − log EP

[
Q(x)
P (x)

]
= − log

∑
x

P (x)
Q(x)
P (x)

= − log 1 = 0

Thinking of our information interpretation, we see that we always pay some cost for using the wrong
code. Also note that log P (x)

Q(x) is sometimes positive and sometimes negative (P and Q both sum to one), yet
D(P ‖ Q) ≥ 0.

3.4 L1 norm

The L1 norm is defined as:

‖P −Q‖1 =
∑
x

|P (x)−Q(x)|

It can be thought of as “how much earth has to be moved” to match the distributions.
Because P and Q sum to one we quickly see that 0 ≤ ‖P −Q‖1 ≤ 2. This property can be advantagous

when bounds are needed.

4 Naive Bayes

The homework for next Wednesday is to implement a naive Bayes classifier to predict if a congress member
is a Republican or a Democrat based on votes on bills. If we let Y be the classification variable and X be
the features we see then we are trying to solve:

argmax
y

P (Y |X)

Using the product rule we have P (Y |X) = P (Y,X)
P (X) = c(Y,X)

c(X) for counts c. But we cannot expect that
congress memebers are going to vote exactly the same making the denominator likely to be zero. Naive
Bayes takes the expansion of joint probability in the chain rule and applies an assumption of independence:
P (Xi, Xj |Y ) = P (Xi|Y )P (Xj |Y ). This gives:

P (Y,X1, X2, . . . , XN ) = P (Y )P (X1|Y )P (X2|Y,X1) · · ·P (XN |Y,X1, . . . , XN )
= P (Y )P (X1|Y ) · · ·P (XN |Y )

Now we can use counts without issue. We note that P (Y |XN
1 ) = P (Y,XN

1 )

P (XN
1 )

has a constant denominator,

so we can just maximize on P (Y,XN
1 ).

argmax
y

P (Y |XN
1 ) = argmax

y
P (Y,XN

1 )

' argmax
y

P (Y )
N∏
n=1

P (Xi|Y )
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We will compute P (Xi|Y ) using counting on training data. Take 80% of the data (first 348 datapoints)
to train, 10% to evaluate and develop (next 43 datapoints), and the last 10% for scoring the result (last 44
datapoints).

Feature selection (development) uses mutual information I(Y ;Xi) for a particular bill i to sort into the
top K features on the development data. The highest accuracy there determines the feature to use for the
final score.
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