CSC 446 Notes: Multivariable Calculus Review

Typed by Brandon D. Shroyer

January 28, 2012

1 Basic Vector Operations

The basic structure of multivariable calculus is the vector. By convention we assume in this class that vectors are column vectors:

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_n \end{bmatrix}$$

The transpose of this vector, \mathbf{v}^T , is a row vector:

$$\mathbf{v}^T = \begin{bmatrix} v_1 & v_2 & v_3 & \cdots & v_n \end{bmatrix}$$

The *inner product*, also known as the *dot product*, reduces two vectors of equal length to a scalar:

$$\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y} = \sum_i x_i y_i$$

In contrast, the *outer product* takes two vectors and produces an $n \times n$ matrix:

$$\mathbf{x} \times \mathbf{y}^T = \mathbf{x} \mathbf{y}^T = \begin{bmatrix} x_1 y_1 & x_1 y_2 & \cdots & x_1 y_n \\ x_2 y_1 & x_2 y_2 & & \\ \vdots & & \ddots & \\ x_n y_1 & & & x_n y_n \end{bmatrix}$$

2 Multivariable Functions and Vector Calculus

A multivariable function takes a number of variables (or a vector) as parameters and returns a single value. In domain terms, a multivariable function $f(\mathbf{x})$ maps from an *n*-dimensional vector space down to a scalar domain. The gradient is the basic vector derivative operation. Given a scalar function $f(\mathbf{x})$,

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

yields a vector representing the direction and the rate of change of the function f within \mathbb{R}^n -space. Example 1: Let $f(\mathbf{x}) = \mathbf{1}^T \mathbf{x} = \sum_i x_i$. Then the gradient of f is

$$abla f(\mathbf{x}) = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix} = \mathbf{1}$$

Example 2: Let $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x} = \sum_i x_i^2$. Then the gradient of f is

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1\\2x_2\\\vdots\\2x_n \end{bmatrix} = 2\mathbf{x}$$

The product and chain rules hold when dealing with gradients and vector-valued functions, but looks slightly different:

- Product Rule: $\nabla(f(\mathbf{x})g(\mathbf{x})) = f(\mathbf{x})\nabla g(\mathbf{x}) + \nabla f(\mathbf{x})g(\mathbf{x})$, where f and g are both vector-to-scalar functions $(f: \mathbb{R}^n \to \mathbb{R} \text{ and } g: \mathbb{R}^n \to \mathbb{R})$.
- Chain Rule: $\frac{\partial}{\partial t} f(g(t)) = \nabla f(g(t))^T \frac{\partial g}{\partial t}$, where $f(\mathbf{x})$ is a vector-to-scalar function and g(t) is a standard one-parameter vector-valued function $(f : \mathbb{R}^n \to \mathbb{R} \text{ and } g : \mathbb{R} \to \mathbb{R}^n)$. Note that in because g is a vector-valued function, the partial derivative $\frac{\partial g}{\partial t}$ is itself a vector: $\frac{\partial g}{\partial t} = \begin{bmatrix} \frac{\partial g_1}{\partial t} & \frac{\partial g_2}{\partial t} & \cdots & \frac{\partial g_n}{\partial t} \end{bmatrix}^T$

It is important to note the vector operations that make these rules work. In the case of the Product Rule, the input functions $f(\mathbf{x})$ and $g(\mathbf{x})$ are both scalar, but their gradients ∇f and ∇g are vectors. Thus, $\nabla(fg)$ is the sum of two scalar-multiplied vectors, and is therefore a vector. Similarly, $\nabla f(g(t))$ and $\frac{\partial g(t)}{\partial t}$ are both vectors, and so their dot product is the scalar one would expect from a partial derivative of a scalar function.

Gradients are very useful when plotted on a map of the variable field, such as a contour map. The gradient points in the direction of the steepest rate of change of $f(\mathbf{x})$ as one moves up and down the variable axes. On a contour map of a hill, for instance, this represents the direction of fastest ascent. As with scalar derivatives, $\nabla f(\mathbf{x}) = \mathbf{0}$ when the function f is at a local extremum (maximum or minimum).

3 Matrices, Eigenvalues and Eigenvectors

Let A be an $n \times n$ matrix, **b** be an *n*-element vector, and c be a scalar. The function

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A\mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$

is a scalar function. The term $\mathbf{x}^T A \mathbf{x}$ can be thought of as the *curvature* in direction \mathbf{x} . If A is symmetric (i.e., $a_{i,j} = a_{j,i}$), then $\nabla f = A \mathbf{x} + \mathbf{b}$. If A is *not* symmetric, then $\nabla f = A' \mathbf{x} + \mathbf{b}$, where $A' = \frac{1}{2}A + A^T$.

As a side note, If $A\mathbf{x} = \lambda \mathbf{x}$ where λ is some scalar value, then the vector x is an *eigenvector* of A and λ is an *eigenvalue* of A. This will come up again later.

4 Jacobians and Hessians

So far, we have assumed that our function f has a scalar value. But what if we have a vector-valued function $f : \mathbb{R}^m \to \mathbb{R}^n$? This function takes an *m*-element input vector and returns an *n*-element output vector. The gradients of each vector element $f(\mathbf{x})_i$ form the rows of a special $m \times n$ matrix called the *Jacobian*:

$$J = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & & \frac{\partial f_n}{\partial x_m} \end{bmatrix}$$

Armed with the Jacobian, we can now express the chain rule for a vector-valued multivariable function:

$$\frac{\partial}{\partial t}f(g(t))=J\frac{\partial g}{\partial t}$$

Another useful matrix is the Hessian $\nabla^2 f$, which is a matrix of a scalar-valued function $f(\mathbf{x})$'s second-order derivatives:

$$\nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{(\partial x_1)^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \vdots & \ddots & \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & & \frac{\partial^2 f}{(\partial x_n)^2} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_i \partial x_j} \end{bmatrix}_{ij}$$

Definition: A matrix A is positive semidefinite if $\forall \mathbf{x} \ \mathbf{x}^T A \mathbf{x} \ge 0$. This also means that all the eigenvalues of A are positive. This definition is important because if f is at a maximum, then $-\nabla^2 f$ is positive semidefinite. Similarly, $\nabla^2 f$ is positive semidefinite when f is at a minimum.

Example: Let $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} = x_1^2 + x_2^2$, and let $A = I = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. To find the extrema, we calculate the gradient $\nabla f = \mathbf{x}$. Setting $\nabla f = \mathbf{x}$ to **0**, we find the local extremum at the origin. To determine the orientation of this extremum, we compute the Hessian:

$$\nabla^2 f = \left[\frac{\partial^2 (x_1^2 + x_2^2)}{\partial x_i \partial x_j} \right]_{ij} = \begin{bmatrix} 1 \\ & 1 \end{bmatrix}$$

Since all elements in $\nabla^2 f$ are positive, we know that the extremum is a minimum.

Example: Let $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} = -x_1^2 - x_2^2$, and let $A = -I = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$. To find the extrema, we calculate the gradient $\nabla f = \mathbf{x}$. Setting $\nabla f = \mathbf{x}$ to $\mathbf{0}$, we find the local extremum at the origin. To determine the orientation of this extremum, we compute the Hessian:

$$\nabla^2 f = \begin{bmatrix} \frac{\partial^2 (-x_1^2 - x_2^2)}{\partial x_i \partial x_j} \end{bmatrix}_{ij} = \begin{bmatrix} -1 & \\ & -1 \end{bmatrix}$$

Since all elements in $\nabla^2 f$ are negative, we know that the extremum is a maximum.

5 Newton's Method

We now have all the tools we need for Newton's method of approximating a vector-valued function. This is basically the second-order expansion of a Taylor series about some point \mathbf{x}_0 :

$$\hat{f} = f(\mathbf{x_0}) + \nabla f(\mathbf{x_0})^T (\mathbf{x} - \mathbf{x_0}) + \frac{1}{2} (\mathbf{x} - \mathbf{x_0})^T \nabla^2 f(\mathbf{x_0}) (\mathbf{x} - \mathbf{x_0})$$

The gradient of this approximation is:

$$\nabla \hat{f} = \nabla^2 f(\mathbf{x_0})(\mathbf{x} - \mathbf{x_0}) + \nabla f(\mathbf{x_0})$$

Remember that this is an approximation about a point \mathbf{x}_0 , and becomes less accurate as one travels from this point. We can use this gradient to find the maximum of \hat{f} by setting $\nabla \hat{f}$ to 0 and solving for \mathbf{x}_{max} :

$$\mathbf{x_{max}} = \mathbf{x_0} - (\nabla^2 f(\mathbf{x_0}))^{-1} \nabla f(\mathbf{x_0})$$

Recall that the Hessian $\nabla^2 f$ is a matrix, so to remove it from one side of the equation you must multiply both sides by the inverse matrix $(\nabla^2 f)^{-1}$.