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1 Basic Vector Operations

The basic structure of multivariable calculus is the vector. By convention we assume in this class that vectors
are column vectors:

v =


v1
v2
v3
...
vn


The transpose of this vector, vT , is a row vector:

vT =
[
v1 v2 v3 · · · vn

]
The inner product, also known as the dot product, reduces two vectors of equal length to a scalar:

x · y = xT y =
∑

i

xiyi

In contrast, the outer product takes two vectors and produces an n× n matrix:

x× yT = xyT =


x1y1 x1y2 · · · x1yn

x2y1 x2y2
...

. . .
xny1 xnyn


2 Multivariable Functions and Vector Calculus

A multivariable function takes a number of variables (or a vector) as parameters and returns a single value.
In domain terms, a multivariable function f(x) maps from an n-dimensional vector space down to a scalar
domain. The gradient is the basic vector derivative operation. Given a scalar function f(x),

∇f(x) =


∂f
∂x1
∂f
∂x2
...

∂f
∂xn
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yields a vector representing the direction and the rate of change of the function f within Rn-space.
Example 1: Let f(x) = 1T x =

∑
i xi. Then the gradient of f is

∇f(x) =


1
1
...
1

 = 1

Example 2: Let f(x) = xT x =
∑

i x
2
i . Then the gradient of f is

∇f(x) =


2x1

2x2

...
2xn

 = 2x

The product and chain rules hold when dealing with gradients and vector-valued functions, but looks
slightly different:

• Product Rule: ∇(f(x)g(x)) = f(x)∇g(x) + ∇f(x)g(x), where f and g are both vector-to-scalar
functions (f : Rn → R and g : Rn → R).

• Chain Rule: ∂
∂tf(g(t)) = ∇f(g(t))T ∂g

∂t , where f(x) is a vector-to-scalar function and g(t) is a standard
one-parameter vector-valued function (f : Rn → R and g : R→ Rn). Note that in because g is a vector-
valued function, the partial derivative ∂g

∂t is itself a vector: ∂g
∂t =

[
∂g1
∂t

∂g2
∂t · · · ∂gn

∂t

]T
It is important to note the vector operations that make these rules work. In the case of the Product

Rule, the input functions f(x) and g(x) are both scalar, but their gradients ∇f and ∇g are vectors. Thus,
∇(fg) is the sum of two scalar-multiplied vectors, and is therefore a vector. Similarly, ∇f(g(t)) and ∂g(t)

∂t
are both vectors, and so their dot product is the scalar one would expect from a partial derivative of a scalar
function.

Gradients are very useful when plotted on a map of the variable field, such as a contour map. The
gradient points in the direction of the steepest rate of change of f(x) as one moves up and down the variable
axes. On a contour map of a hill, for instance, this represents the direction of fastest ascent. As with scalar
derivatives, ∇f(x) = 0 when the function f is at a local extremum (maximum or minimum).

3 Matrices, Eigenvalues and Eigenvectors

Let A be an n× n matrix, b be an n-element vector, and c be a scalar. The function

f(x) =
1
2
xTAx + bT x + c

is a scalar function. The term xTAx can be thought of as the curvature in direction x. If A is sym-
metric (i.e., ai,j = aj,i), then ∇f = Ax+b. If A is not symmetric, then ∇f = A′x+b, where A′ = 1

2A+AT .

As a side note, If Ax = λx where λ is some scalar value, then the vector x is an eigenvector of A and λ
is an eigenvalue of A. This will come up again later.
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4 Jacobians and Hessians

So far, we have assumed that our function f has a scalar value. But what if we have a vector-valued function
f : Rm → Rn? This function takes an m-element input vector and returns an n-element output vector. The
gradients of each vector element f(x)i form the rows of a special m× n matrix called the Jacobian:

J =


∂f1
∂x1

· · · ∂f1
∂xm

...
. . .

∂fn

∂x1

∂fn

∂xm


Armed with the Jacobian, we can now express the chain rule for a vector-valued multivariable function:

∂

∂t
f(g(t)) = J

∂g

∂t

Another useful matrix is the Hessian ∇2f , which is a matrix of a scalar-valued function f(x)’s second-
order derivatives:

∇2f =


∂2f

(∂x1)2
· · · ∂2f

∂xn∂x1

...
. . .

∂2f
∂x1∂xn

∂2f
(∂xn)2

 =
[

∂2f
∂xi∂xj

]
ij

Definition: A matrix A is positive semidefinite if ∀x xTAx ≥ 0. This also means that all the eigen-
values of A are positive. This definition is important because if f is at a maximum, then −∇2f is positive
semidefinite. Similarly, ∇2f is positive semidefinite when f is at a minimum.

Example: Let f(x) = 1
2xTAx = x2

1 + x2
2, and let A = I =

[
1

1

]
. To find the extrema, we calculate

the gradient ∇f = x. Setting ∇f = x to 0, we find the local extremum at the origin. To determine the
orientation of this extremum, we compute the Hessian:

∇2f =
[

∂2(x2
1+x2

2)
∂xi∂xj

]
ij

=
[
1

1

]
Since all elements in ∇2f are positive, we know that the extremum is a minimum.

Example: Let f(x) = 1
2xTAx = −x2

1 − x2
2, and let A = −I =

[
−1

−1

]
. To find the extrema, we

calculate the gradient ∇f = x. Setting ∇f = x to 0, we find the local extremum at the origin. To determine
the orientation of this extremum, we compute the Hessian:

∇2f =
[

∂2(−x2
1−x2

2)
∂xi∂xj

]
ij

=
[
−1

−1

]
Since all elements in ∇2f are negative, we know that the extremum is a maximum.

5 Newton’s Method

We now have all the tools we need for Newton’s method of approximating a vector-valued function. This is
basically the second-order expansion of a Taylor series about some point x0:
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f̂ = f(x0) +∇f(x0)T (x− x0) +
1
2

(x− x0)T∇2f(x0)(x− x0)

The gradient of this approximation is:

∇f̂ = ∇2f(x0)(x− x0) +∇f(x0)

Remember that this is an approximation about a point x0, and becomes less accurate as one travels from
this point. We can use this gradient to find the maximum of f̂ by setting ∇f̂ to 0 and solving for xmax:

xmax = x0 − (∇2f(x0))−1∇f(x0)

Recall that the Hessian ∇2f is a matrix, so to remove it from one side of the equation you must multiply
both sides by the inverse matrix (∇2f)−1.
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