
CSC 446 Notes: Lecture 11

1 Preface

In last lecture, we introduced Tree Decomposition. Till now, we have covered a lot as regards how to do
inference in a graphical model. In this lecture, we will move back to the learning part. We will consider
how to set parameters for the variables.

2 Parameter Setting: An Example

In the discrete case, we set the parameters just by counting how often each variable occurs. However, we
may not know the value of some variables. Thus, in the following, we will discuss learning with hidden
(latent) variables. The simplest model is shown below. This model has been used in the Aspect Model

for probabilistic Latent Semantic Analysis (pLSA). The variable’s value is called an aspect. pLSA has been
widely used in information retrieval. In this example, let x1 and x2 respectively denote the document ID
and word ID. Then, there is a sequence of pair (x1, x2), e.g., (1, “the”), (1, “green”), ..., (1000, “the”). In this
context, we may have various tasks, e.g., to find the words which co-occur, to find the words on the same
topic, or to find the documents containing the same words.

Now, we will introduce the term cluster. The reasons why we need the cluster representation are as
followed: (1) There are a large amount (e.g., 10,000) of documents, each of which is formed of a large
amount (e.g., 10,000) of words. Without a cluster representation, we have to handle a huge query table with
too many (say, 10, 0002) entries. That makes any query difficult. (2) If we still set the parameters just by
counting how often each variable occurs, then there is a risk of over-fitting the individuals (i.e., the pair
of (document, word)). Because of them, we need to do something smart: clustering. Recall the graphical
model displayed above, the hidden (latent) variable z is just the cluster ID.

Note that x1⊥x2‖z. Therefore, the joint distribution p(x1, x2) =
∑
z p(z)p(x1|z)p(x2|z). As shown in

the figure below, now we will not directly compute each entry to obtain the 10, 000 × 10, 000 query table
P (x1, x2). Instead, we maintain low-rank matrices P (z), P (x1|z) and P (x2|z).

1

Now, we have a set of observed variables X = {(x1
1, x

1
2), (x

2
1, x

2
2), ...}, a set of hidden variables Z =

{z1, z2, ...} and a set of parameters θ = {θz, θx1|z, θx2|z}. Note that xi1 are i.i.d. variables, and the same for
xi2. To choose θ, we maximize the likelihoods (MLE): maxθ P (X; θ).

θ = argmax
θ

∏
n

Pθ(xn1 , x
n
2) = argmax

θ

∏
n

∑
z

p(z)p(xn1 |z)p(xn2 |z) = argmax
θ

∑
n

log
∑
z

p(z)p(xn1 |z)p(xn2 |z) (1)

If there is no hidden variable z, we will just count, instead of summing over z. However now, we need
to sum over z and find the maximum of the above objective function, which is not a closed-form expression.
Thus, it is not feasible to directly set the derivative to zero. To solve this tough optimization problem, we
will introduce the Expectation-Maximization (EM) algorithm.

3 Expectation-Maximization Algorithm

The EM algorithm is an elegant and powerful method for finding maximum likelihood solutions for models
with hidden (latent) variables. It breaks down the potentially tough problem of MLE into two stages. The
basic idea is shown below.

E-step:
Guess z

M-step:
MLE to fit θ to X,Z

Following the above example, we present the EM algorithm in detail.

REPEAT
E-step:
for i = 1 . . . N

for z = 1 . . .K
p(z, n) = pθt(z) · pθt(xn1 |z) · pθt(Xn

2 |z)
sum+= p(z, n)

for z
p(z, n)← p(z,n)

sum(
An alternative:
ec(z) += p(z, n)
ec(z, xn1) += p(z, n)
ec(z, xn2 += p(z, n)

)
M-step:
for z

ec(z) =
∑N

1 p(z, n)

2

θt+1 ← ec(z)
N

for z, x1

ec(z, x) =
∑N

1 I(xn1 = x1)p(z, n)
θx1|z = θ(z,x1)

ec(z)

for z, x2

ec(z, x2) =
∑N

1 I(xn2 = x2)p(z, n)
θx2|z = θ(z,x2)

ec(z)

UNTIL convergence

where sum is for normalization and ec(·) denotes the expected count, which is not a real count but an
average on what we think z is. Namely, this count is probabilistic. The intuition is to assign some credit to
each possible value. Also note that I(·) is an indicator function (return 1/0 if the condition is true/fasle). In
the following, we will derive how to approximate the maximum of the likelihood by maximizing the joint
probability’s log likelihood iteratively through E-M steps. For the example present in Sec.2, now let us go
further using the same formulation with Eqn. (??).

θ = argmaxθ Q(θ; θold)
= argmaxθ Ep(z|x,θold) log p(X,Z)
= argmaxθ Ep(z|x,θold)

[
log
∏
n p(x

n
1 , x

n
2 , z

n)
]

= argmaxθ E
[
log
∏
n p(z

n) · p(xn1 |zn) · p(xn2 |zn)
]

= argmaxθ E
[∑

n log p(zn) +
∑
n log p(xn1 |zn) +

∑
n log p(xn2 |zn)

](
= argmaxθ E

[∑
n logθzn +

∑
n log θxn1 |zn +

∑
n log θxn2 |zn

])
= argmaxθ E

[∑
k

∑
n I(z

n = k) log p(z = k) +
∑
k

∑
n I(x

n
1 = x1|zn = k) log p(x1|z = k)

+
∑
k

∑
n I(x

n
2 = x2|zn = k) log p(x2|z = k)

](
sum over values z can take and individually group together

)
= argmaxθ E

[∑
k c(z = k) log p(z = k) +

∑
k c(x1, z = k) log p(x1|z = k) +

∑
k c(x2, z = k) log p(x2|z = k)

](
= argmaxθ

∑
k E
[
c(z = k)

]
log θz=k +

∑
k E
[
c(x1, z = k)

]
log θx1|z=k +

∑
k E
[
c(x2, z = k)

]
log θx2|z=k

= argmaxθ
∑
k ec(z) log θz=k +

∑
k ec(x1, z) log θx1|z=k +

∑
k ec(x2, z) log θx2|z=k

)

(2)

Therefore, θ = 1
sum0

ec(z), θx1|z = 1
sum1

ec(x1, z), and θx2|z = 1
sum2

ec(x2, z), but make sure that normal-
ization is done (sum to 1). Notably, c(·) denotes the count and ec(·) denotes the expected count. Also note
that E

[
c(z = k)

]
= ec(z) which we have mentioned in the EM algorithm flow, and similar for ec(x1, z) and

ec(x2, z).

4 EM Algorithm in General

Now, we will give a general derivation for the EM algorithm. The denotation will be the same with the
above. Similarly, we have θ = argmaxθ Q(θ; θold) = argmaxθ Ep(z|x,θold) log p(X,Z). Let us focus on the
objective function Q.

Q(θ; θold)
= Ep(z|x,θold) log p(X,Z)
= Ep(z|x,θold) log

[
p(Z|X) · p(X)

]
= Ep(z|x,θold)

[
log p(Z|X) + log p(X)

]
= E

[
log p(Z|X)

p
θold

(Z|X) · pθold(Z|X)
]

+ log p(X)(
make it look like K − L divergence

)
= E

[
− log p

θold
(Z|X)

p(Z|X)

]
− E

[
− log pθold(Z|X)

]
+ log p(X)

= −D
(
Z|X, θold

∥∥∥Z|X, θ)−H(Z|X, θold)+ L(θ)

(3)

where D, H , L are respectively the K-L divergence, the entropy and the likelihood. Note that our objective
is to maximize the likelihood log p(X). It does not have Z inside, so it can be put out of E(·). Now, we write

3

down L(θ) with simplified notations:

L(θ) = Q(θ; θold) +H(θold) +D(θold‖θ) (4)

whereQ,H andD are all dynamic functions. The approximation can be illustrated in the space of parameter
θ, as shown schematically in the figure below. Here the red curve depicts L(θ) (incomplete data) which we

wish to maximize. We start with some initial parameter value θold, and in the first E step we evaluate the
distribution of Q(θ; θold) + H(θold), as shown by the blue curve. Since the K-L divergence D(θold‖θ) is
always positive, the blue curve gives a lower bound to the red curve L(θ). And D(θold‖θ) just gives the
gap between the two curves. Note that the bound makes a tangent contact with L(θ) at θold, so that both
curves have the same gradient and D(θold‖θold) = 0. Thus, L(θold) = Q(θold; θold) + H(θold). Besides, the
bound is a convex function having a unique maximum at θnew = argmaxθ

[
Q(θ; θold)

]
. In the M step, the

bound is maximized giving the value θnew, which also gives a larger value of L(θ) than θold: L(θnew) =
Q(θnew; θold) + H(θold) + D(θold‖θnew). In practice, during the beginning iterations, this point is usually
still far away from the maximum of L(θ). However, if we run one more iteration, the result will get better.
The subsequent E step then constructs a bound that is tangential at θnew as shown by the green curve.
Iteratively, the maximum will be accessed in the end, in a manner kind of similar with gradient ascent. In
short, there are two properties for the EM algorithm: (1) the performance gets better step by step. (2) it will
converge. At last, it should also be emphasized that EM is not guaranteed to find the global maximum,
for there will generally be multiple local maxima. Being sensitive to the initialization, EM may not find the
largest of these maxima.

In this lecture, we quickly go through the details of the EM algorithm, which maximizes L through
maximizing Q at each iteration step. Then, the remaining problems are how to compute Q, and exactly
how to compute p(Z|X, θold).

Xiang Xiang 2/12; DG 2/13

4

