
CSC 446 Notes: Lecture 13

1 The Problem

We have already studied how to calculate the probability of a variable or variables using the message
passing method. However, there are some times when the structure of the graph is too complicated to be
calculated. The relation between the diseases and symptoms is a good example, where the variables are all
mixed together and brings the graph a high tree width. Another case is that of continuous variable, where
during the message passing,

rm→n =
∫

f(~xm)
∏
n′

qn′→m(xn′)d(~xm\xn).

If this integration can not be calculated, what can we do to evaluate the probability of variables? This is
what sampling is used for.

2 How to Sample a Continuous Variable: Basics

Now let us forget the above for a moment, say if we want to sample for a continuous variable, how can
we ensure that the points we pick up satisfy the distribution of that variable? This question is easy for
variables with uniform distribution, since we can generate random numbers directly using a computer.
For some complicated distributions, we could use the inverse of cumulative distribution function (CDF)
to map the uniform distribution onto the required distribution to generate samples, where the CDF for a
distribution with probability distribution function (PDF) of P is

CDF(x) =
∫ x

−∞
P (t)dt.

For example, if we want to sample from a variable with standard normal distribution, the points we
pick up are calculated from

X = erf−1(x),

where x is drawn from a uniform distribution, and

erf(x) =
∫ x

0

N (t, 0, 1)dt,

We could play the same trick for many other distributions. However, there are some distributions which
do not have a closed-form integral to calculate their CDF, which makes the above method fail. Under such
conditions, we could turn to a framework called Markov chain Monte Carlo (MCMC).

3 The Metropolis-Hastings Algorithm

Before discussing this method in more detail, let us review some basic properties of Markov chains. A first-
order Markov chain is a series of random variables such that each variable depends only on its previous
state, that is,
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xt ∼ P (xt|xt−1).

Our goal is to find a Markov chain which has a distribution similar to a given distribution which we
want to sample from, so that by running the Markov chain, we get results as if we were sampling from
the original distribution. In other words, we want to have the Markov chain that eventually be able to 1)
explore over the entire space of the original distribution, 2) reflect the original PDF.

The general algorithm for generating the samples is called the Metropolis-Hastings algorithm. Such an
algorithm draws a candidate

x′ ∼ Q(x′; xt),

and then accepts it with probability

min
{

1,
P (x′)Q(xt; x′)
P (xt)Q(x′; xt)

}
.

The key here is the function Q, called proposed distribution which is used to reduce the complexity of the
original distribution. Therefore, we have to select a Q that is easy to sample from, for instance, a Gaussian
function. Note that there is a trade-off on choosing the variance of the Gaussian, which determines the step
size of the Markov chain. If it is too small, it will take a long time, or even make it impossible for the states
of the variable to go over the entire space. However, if the variance is too large, the probability of accepting
the new candidate will become small, and thus it is possible that the variable will stay on the same state for
ever. All these extremes will make the chain fail to simulate the original PDF.

If we sample from P directly, that is Q(x′; xt) = P (x′), we have

P (x′)Q(xt; x′)
P (xt)Q(x′; xt)

= 1,

which means that the candidate we draw will always be accepted. This tells us that Q should approximate
P .

By the way, how do we calculate P (x)? There are two cases.

• Although we cannot get the integration of P (x), P (x) itself is easy to compute.

• P (x) = f(x)/Z, where Z =
∫

f(x)dx is what we do not know. But since we know f(x) = ZP (x), we
could just substitute f(x) instead of P (x) in calculating the probability of acceptance of a candidate.

4 Proof of the method

In this section, our goal is to prove that the Markov chain generated by the Metropolis-Hastings algorithm
has a unique stationary distribution. We will first introduce some basics about the definition of the sta-
tionary distribution, and the method to prove this “stationary”. Then we will apply those knowledge to
accomplish our goal.

(a) Stationary distribution

A distribution with respect to a Markov chain is said to be stationary if the distribution remains the same
before and after taking one step in the chain, which could be denoted as

Πt = T ×Πt−1 = Πt−1,

or
Πi =

∑
j

TijΠj , ∀i,

where Π is a vector which contains the stationary distribution of the state of the variable in each step
with its element Πi = P (x = i), and T is the transition probability matrix where its element Tij =
P (xt = i|xt−1 = j) denotes the probability that the variable transits from state j to i. For example, the

two Markov chains in item 1a and item 1b all have a stationary distribution Π =
[
0.5
0.5

]
.
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Figure 1: Example Markov Chains

The stationary distribution of a Markov chain could be calculated by solving the equation
TΠ = Π∑

i

Πi = 1 .

Note that there might be more than one stationary distribution for a Markov chain. A rather simple
example would be a chain with a identity transition matrix shown in item 1c.

If a Markov chain has a stationary distribution and the stationary distribution is unique, it is ensured
that it will converge eventually to that distribution no matter what the original state the chain is.

(b) Detailed Balance: Property to ensure the stationary distribution

Once we know a Markov chain is uniquely stationary, then we can use it to sample from a given distri-
bution. Now, we will see a sufficient (but not necessary) condition for ensuring a Π is stationary, which
is a property of the transition matrix called Detailed Balance. The definition of such a property is

∀ij, TijΠj = TjiΠi,

which means Pi→j = Pj→i, and is also called reversibility due to the symmetry of the structure.

Starting from such definition, we have

∀i,
∑

j

TijΠj =
∑

j

TjiΠi = Πi

∑
j

Tji.

Note that
∑

j Tji = 1, we come up with

∀i,
∑

j

TijΠj = Πi · 1 = Πi,

which is exactly the second definition of stationary distribution we have just discussed. Therefore, if a
distribution makes the transition matrix of a Markov chain satisfy detailed balance, that distribution is
the stationary distribution of that chain. Note that although a periodic Markov chain like that shown
in item 1d satisfies detailed balance, we do not call it stationary. This because it will not truly converge
and thus is not guaranteed to approximate the original PDF. What is more, it is often the case that we
add a probability like shown in item 1e to avoid such a periodic circumstance.
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Note that the Detailed Balance does not ensure the uniqueness of the stationary distribution of a Markov
chain. However, such uniqueness is necessary, or the Markov chain would not go to the PDF we want.
What we could do is that, when we construct the chain at the very beginning, we make the chain such
that 1) any state is reachable for any other and 2) the chain is aperiodic. Under that condition, we could
ensure the uniqueness of the stationary distribution.

(c) Final proof

Now, let us be back to the Metropolis-Hastings algorithm and prove that the transition matrix of its
Markov chain has the detailed balance property. If we can prove that, it is obvious that such a Markov
chain has a unique stationary distribution.

According to the Metropolis-Hastings algorithm, the transition probability of the Markov chain of the
algorithm is

T (x′; x) = Q(x′; x) ·min
{

1,
P (x′)Q(x; x′)
P (x)Q(x′; x)

}
If x′ = x, then it is automatically detailed balancing due to the symmetry of the definition of detailed
balance. To be specific, the condition of detailed balance, which is

∀ij, TijΠj = TjiΠi,

will always be valid if i = j, which is just the case of x′ = x.

For the circumstances that x′ 6= x, by using the distributive property of multiplication, the transition
probability is derived as,

T (x′; x) = min
{

Q(x′; x),
P (x′)Q(x; x′)

P (x)

}
.

Multiply both sides by P (x), it turns out that

T (x′; x)P (x) = min {Q(x′; x)P (x), P (x′)Q(x; x′)}︸ ︷︷ ︸
symmetric for x & x′

= T (x; x′)P (x′)

Therefore, we proved the detailed balance of the transition matrix, and thus the Markov chain of the
Metropolis-Hastings algorithm does have a stationary distribution, which means that we could use
such a Markov chain to simulate the original PDF.

5 Gibbs Sampling

Now, back to the very first problem of this class, we want to get the result of

P (xk) =
∑
~x\xk

1
Z

∏
m

f(~xm)

without knowing Z. We could use the Gibbs Sampling, shown in Algorithm 1, where x¬k means all the
variables x except xk. Note that the Gibbs Sampling is actually a particular instance of the Metropolis-
Hastings algorithm where the new candidate is always accepted. This is proved as follows.
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Algorithm 1: Gibbs Sampling

for k = 1 . . . K do
xk ∼ P (xk|x¬k) = 1

Z′

∏
m∈M(k) f(~xm);

Substitute 

P (x) = P (x¬k)P (xk|x¬k)
P (x′) = P (x′¬k)P (x′k|x′¬k)

Q(x′; x) = P (x′k|x¬k)
Q(x; x′) = P (xk|x′¬k)

x′¬k = x¬k

into the probability of the accepting the new candidate, we have

P (x′)Q(x; x′)
P (x)Q(x′; x)

=
P (x′¬k)P (x′k|x′¬k)P (xk|x′¬k)
P (x¬k)P (xk|x¬k)P (x′k|x¬k)

= 1.

Therefore, the Gibbs Sampling algorithm will always accept the candidate.
Shujie Chen 3/12; DG 3/13
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