
CSC 446 Notes: Lecture 8

1 Review Support Vector Machines

Goal: To solve equation:

min
w

(
1
2
||w||2 + C

∑
n

ξn

)
s.t. yn(wTxn + b) + ξn ≥ 1

ξn ≥ 0

where
xn = [x1, x2, ..., xK ]T , n ∈ 1, ..., N

This is a K-dimensional problem, which means the more features the data has, the more complicated to
solve this problem.

In the meantime, this equation is equal to

max
α

(
−1

2

∑
n

∑
m

αnαmy
nymxnTxm +

∑
n

αn

)
s.t. αn ≥ 0

αn ≤ C

This is a N-dimensional problem, which means the more data points we include in the training set, the
more time it takes to find the optimized classifier.

To train the classifier is actually to solve this problem inside the box of alpha.
According to KKT,

λifi (x) = 0
λi ≥ 0

fi (x) ≤ 0

As shown in the figure below,

w =
∑
n

αny
nxn

Points on the right side but not on the margin contribute nothing because alpha equals to 0. (The green
point)

For points on the wrong side (the red point), alpha equals to C, and

ξn > 0

so they along with points on the margin contribute to the vector, but no point is allowed to contribute more
than C.

SVM can train classifier better than naive bayes in the most of time, but since its still binary classification
it is not able to deal with situation like this one below:
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2 Kernel Function

Now when we look back, the classification formula is

Sign
(
wTx

)
= Sign

(∑
n

αny
nxn

)T
x

 = Sign

(∑
n

αny
n
(
xnTx

))
We can introduce Kernel Function K now, the simplest one is:

xnTx = K (xn, x)

Now the problem is transformed into:

max
α

(
−1

2

∑
n

∑
m

αnαmy
nymK (xn, xm) +

∑
n

αn

)

where
K (x, y) = φ (x)T φ (y)

for some φ.
The most commonly seen Kernel Functions are:

K (x, y) = xT y

K (x, y) =
(
xT y

)m
K (x, y) = e−c||x−y||

2

Generally, Kernel function is a measure of how x and y are similar, then they are the same, it has the
peak output.
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3 Proof that φ exists

For a two dimensional
x = [x1, x2]

T
y = [y1, y2]

T

K (x, y) = (x1y1 + x2y2)
m

Let m = 2, then
K (x, y) = (x1y1)

2 + (x2y2)
2 + 2 (x1y1x2y2) = φ (x)T φ (y)

Thus, we can conclude that

φ (x) =
[√

2x1x2, x
2
1, x

2
2

]T
Basically, φ transforms x from a linear space to a multi nominal space like shown below:

so that the points can be classified.
For

K (x, y) = e−||x−y||
2

because we have

ex = 1 + x+
x2

2
+ ...

it transforms feature into a infinite dimensional space. Generally Kernel Functions lead to more dimension
of w which is K-dimensional so solve dual is more practical.

For perceptron, its error term and w have a relationship drawn as below: (not convex) so that we cant

do the same thing to perceptron.
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4 Regression

When we are predicting output we actually have a space like this: The line is the prediction line, the points
around it are the data set we have. We predict y with formula:

ŷ = wTx

w =
(
XTX

)−1
XT ~y

its known as linear regression. The goal is to

min
w

∑
n

1
2
||ŷn − yn||2

which leads us to Support Vector Regression:

min
w

1
2
||w||2 + C

∑
n

(
ξn + ξ̂n

)
s.t. yn − wTx− ξn ≤ ε

− (yn − wTx)− ξ̂n ≤ ε
ξn ≥ 0

ξ̂n ≥ 0
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