
The Convex Dual

CS 246/446 Notes

1 Constrained Optimization

Consider a constrained optimization problem:

min
x

f(x)

s.t. g(x) = 0

At the solution, the gradient of the objective function f must be perpendicular to the

constraint surface (feasible set) defined by g(x) = 0, so there exists a scalar Lagrange

multiplier λ such that
∂f

∂x
+ λ

∂d

∂x
= 0

at the solution.

2 Inequalities

Consider an optimization problem with constraints specified as inequalities:

min
x

f(x)

s.t. g(x) ≥ 0

If, at the solution, g(x) = 0, then as before there exists a λ such that

∂f

∂x
+ λ

∂d

∂x
= 0 (1)

and furthermore λ > 0, otherwise we would be able to decrease f(x) by moving in the

direction +∂f
∂x

without leaving the feasible set defined by g(x) ≥ 0.

If, on the other hand, at the solution g(x) > 0, then we must be at a maximum of

f(x), so ∂f
∂x

= 0 and

∂f

∂x
+ λ

∂d

∂x
= 0

with λ = 0. In either case, the following system of equations (known as the KKT

conditions) holds:

λg(x) = 0

λ ≥ 0

g(x) ≥ 0
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3 Convex Optimization

Suppose now that f(x) is convex, and g(x) is concave, and both are continuously

differentiable. Define

L(x, λ) = f(x) + λg(x)

and Equation 1 is equivalent to
∂L

∂x
= 0

For any fixed λ ≥ 0, L is convex in x, and has a unique minimum. For any fixed x, L
is linear in λ.

Define

h(λ) = min
x

L(x, λ)

The minimum of a set of linear functions is concave, and has a maximum corresponding

to the linear function with derivative of 0. Thus h(λ) also has a unique maximum over

λ ≥ 0. Either the maximum of h occurs at λ = 0, in which case

h(0) = min
x

L(x, 0) = min
x

f(x)

and we are at the global minimum of f , or the maximum of h occurs at

∂L

∂λ
= g(x) = 0

and we are on the boundary of the feasible set. In either case, the problem

max
λ

h(λ)

s.t. λ ≥ 0

is equivalent to

max
λ,x

L(x, λ)

s.t. λ ≥ 0

∂L

∂x
= 0

This is known as the dual problem, and its solution is also the solution to the original

(primal) problem

min
x

f(x)

s.t. g(x) = 0
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4 An Example

Minimize x2 subject to x ≥ 2.

L(x, λ) = f(x) + λg(x)

= x2 + λ(2− x)

The Lagrangian function L has a saddle shape:
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Projecting onto the λ dimension, we see the concave function h formed from the

minimum of linear functions L(c, λ)
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To find h, set

∂L

∂x
= 0

2x− λ = 0

and solve for x: x = λ/2. Substituting x = λ/2 into L gives h(λ) = −
1

4
λ2 − 2λ.

Setting ∂h
∂λ

= 0 yields λ = 4, which we see is the maximum of the concave shape in

the figure. Substituting back into the original problem yields x = 2, a solution on the

boundary of the constraint surface.
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