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1 What Is Machine Learning?

Machine learning is about automatically analyzing data; it mostly focuses on the problems of classification
and regression. In this class, we will learn multiple methods for solving each of these problems.

• Classification is the problem of assigning datapoints to discrete categories; the goal is to pick the best
category for each datapoint.

• Regression is the problem of learning a function from datapoints to numbers; fitting a line or a curve
to the data is an example of a regression problem.

One example of a classification problem would be: given heights and weights, classify people by sex. We
are given a number of training datapoints, whose heights, weights, and sexes we know; we can plot these
datapoints in a two-dimensional space. Our goal is to learn a rule from these datapoints that will allow us
to classify other people whose heights and weights are known but whose sex is unknown. This rule will
take the form of a curve in our two-dimensional space: then, when confronted with future datapoints, we
will classify those datapoints which fall below the curve as female those which fall above the curve as male.
So how should we draw this curve?

One idea would be to draw a winding curve which carefully separates the datapoints, assuring that all
males are on one side and all females are on the other. But this is a very complicated rule, and it’s likely to
match our training data too closely and not generalize well to new data. Another choice would be to draw
a straight line; this is a much simpler rule which is likely to do better on new data, but it does not classify
all of the training datapoints correctly. This is an example of a fundamental tradeoff in machine learning,
that of overfitting vs. generalization. We will return to this tradeoff many times during this class, as we
learn methods of preventing overfitting.

An example of a regression problem would be: given weights of people, predict their heights. We
can apply the nearest neighbor model to solve this problem. The nearest neighbor model remembers the
weights and corresponding heights of the people in the training data. Then for a new test weight, it looks up
the person with the closest weight in the training data, and returns the corresponding height. This results
in a piece-wise constant function that may be affected by outliers and may result in overfitting. Another
choice would be to fit a straight line.
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2 Probability Theory

This section contains a quick review of basic concepts from probability theory.
Let X be a random variable, i.e., a variable that can take on various values, each with a certain proba-

bility. Let x be one of those values. Then we denote the probability that X = x as P (X = x). (We will often
write this less formally, as just P (x), leaving it implicit which random variable we are discussing. We will
also use P (X) to refer to the entire probability distribution over possible values of X .)

In order for P (X) to be a valid probability distribution, it must satisfy the following properties:

• For all x, P (X = x) ≥ 0.

•
∑
x P (X = x) = 1 or

∫
P (x)dx = 1, depending on whether the probability distribution is discrete or

continuous.

If we have two random variables, X and Y , we can define the joint distribution over X and Y , denoted
P (X = x, Y = y). The comma is like a logical “and”; this is the probability that both X = x and Y = y.
Analogously to the probability distributions for a single random variable, the joint distribution must obey
the properties that for all x and for all y, P (X = x, Y = y) ≥ 0 and either

∑
x,y P (X = x, Y = y) = 1 or∫ ∫

P (x, y)dydx = 1, depending on whether the distribution is discrete or continuous.
From the joint distribution P (X,Y ), we can marginalize to get the distribution P (X): namely, P (X =

x) =
∑
y P (X = x, Y = y). We can also define the conditional probability P (X = x|Y = y), the probability

that X = x given that we already know Y = y. This is P (X = x|Y = y) = P (X=x,Y=y)
P (Y=y) , which is known as

the product rule. Through two applications of the product rule, we can derive Bayes rule:

P (X = x|Y = y) =
P (Y = y|X = x)P (X = x)

P (Y = y)

Two random variables X and Y are independent if knowing the value of one of the variables does not
give us any further clues as to the value of the other variable. Thus, for X and Y independent, P (X =
x|Y = y) = P (X = x), or, written another way, P (X = x, Y = y) = P (X = x)P (Y = y).

The expectation of a random variable X with respect to the probability distribution P (X) is defined as
EP [X] =

∑
x P (X = x)x or EP [X] =

∫
P (x)xdx, depending on whether the random variable is discrete

or continuous. The expectation is a weighted average of the values that a random variable can take on. Of
course, this only makes sense for random variables which take on numerical values; this would not work
in the example from earlier where the two possible values of the “sex” random variable were “male” and
“female”.

We can also define the conditional expectation, the expectation of a random variable with respect to a
conditional distribution: EP (X|Y )[X] =

∑
x P (X = x|Y = y)x. This is also sometimes written as EP [X|Y ].

Lastly, we are not restricted to taking the expectations of random variables only; we can also take the
expectation of functions of random variables: EP [f(X)] =

∑
x P (X = x)f(x). Note that we will often leave

the probability distribution implicit and write the expectation simply as E[X].
Expectation is linear, which means that the expectation of the sum is the sum of the expectations, i.e.,

E[X + Y ] = E[X] +E[Y ], or, more generally, E[
∑N
i=1Xi] =

∑N
i=1E[Xi]. For the two-variable case, this can

be proven as follows:

E[X + Y ] =
∑
x,y

P (X = x, Y = y)(x+ y)

=
∑
x,y

P (X = x, Y = y)x+
∑
x,y

P (X = x, Y = y)y

=
∑
x

P (X = x)x+
∑
y

P (Y = y)y

= E[X] + E[Y ]

The N -variable case follows from this by induction.
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For readability, let x̄ = E[X]. Then we can define the variance, V ar[X] = E[(x − x̄)2]. In words, the
variance is the weighted average of the distance from the mean squared. Why is the distance squared?
Well, if we take out the square, we get that V ar[X] = E[x − x̄], which by linearity of expectation equals
E[x] − E[x̄] = E[X] − x̄ = 0, so we put the square in to keep that from happening. The reason we do not
use absolute value instead is that the absolute value function is nondifferentiable. As a result of squaring,
the variance penalizes further outliers more.

Unlike expectation, variance is not linear; that means in general V ar[X + Y ] 6= V ar[X] + V ar[Y ]. The
covariance of X and Y is defined as: Cov[X,Y ] = E [(X − E[X])(Y − E[Y ])]. We can show that V ar[aX] =
a2V ar[X] and V ar[X+Y ] = V ar[X]+V ar[Y ]+2Cov[X,Y ]. IfX and Y are independent, then Cov[X,Y ] =
0.

3 Concentration Bounds

Markov’s Inequality For a non-negative random variable, X > 0, and for any δ > 0,

P (X ≥ δE[X]) ≤ 1

δ

or equivalently,

P (X ≥ a) ≤ E[X]

a

Proof: Your homework.

Chebyshev’s Inequality For any random variable with finite variance σ2, and for any k > 0

P (|X − E[X]| ≥ kσ) ≤ 1

k2

Proof: Your homework.

4 Maximum Likelihood Estimation

Consider a set of N independent and identically distributed random variables X1, . . . , XN . “Independent
and identically distributed”, which is usually abbreviated as i.i.d., means that the random variables are
pairwise independent (i.e., for each i, j such that i 6= j, Xi and Xj are independent) and that they are all
distributed according to the same probability distribution, which we will call P . Much of the data that we
will look at in this class is i.i.d. Since our goal is to automatically infer the probability distribution P that is
the best description of our data, it is essential to assume that all of our datapoints were actually generated
by the same distribution. One of the implications of i.i.d. is that the joint probability distribution over all of
the random variables decomposes as follows: P (X1, . . . , XN ) =

∏N
n=1 P (Xn).

Again, our task is to automatically infer the probability distribution P which best describes our data.
But how can we quantify which probability distribution gives the best description? Suppose that our ran-
dom variables are discrete and have K possible outcomes such that each datapoint X takes on a value in
{1, . . . ,K}. We can describe P with a K-dimensional vector that we will call θ, letting θk = P (X = k) for
each k; θ is called the parameters of the distribution. It’s useful to describe the probabilities in our distribu-
tion using a vector, because then we can employ the powerful tools of vector calculus to help us solve our
problems.

Now the question of finding the best probability distribution becomes a question of finding the optimal
setting of θ. A good idea would be to pick the value of θ which assigns the highest probability to the data:

θ∗ = argmax
θ

P (X1, . . . , XN ; θ)

This method of estimating θ is called maximum likelihood estimation, and we will call the optimal setting
of the parameters θMLE. It is a constrained optimization problem that we can solve using the tools of vector
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calculus, though first we will introduce some more convenient notation. For each k, let c(k) =
∑N
n=1 I(Xn =

k) be the number of datapoints with value k. Here, I is an indicator variable which is 1 when the statement
in the parentheses is true, and 0 when it is false.

Using these counts, we can rewrite the probability of our data as follows:

P (X1, . . . , XN |θ) =

N∏
n=1

θxn

=

K∏
k=1

θ
c(k)
k

This switch in notation is very important, and we will do it quite frequently. Here we have grouped our
data according to outcome rather than ordering our datapoints sequentially.

Now we can proceed with the optimization. Our goal is to find argmaxθ
∏K
k=1 P (X = k)c(k) such

that
∑K
k=1 θk = 1. (We need to add this constraint to assure that whichever θ we get describes a valid

probability distribution.) If this were an unconstrained optimization problem, we would solve it by setting
the derivative to 0 and then solving for θ. But since this is a constrained optimization problem, we must
use a Lagrange multiplier.

In general, we might want to solve a constrained optimization problem of the form max~x f(~x) such
that g(~x) = c. Here, f(~x) is called the objective function and g(~x) is called the constraint. We form the
Lagrangian

Of(~x) + λOg(~x) = 0

and then solve for both ~x and λ.
Now we have all the tools required to solve this problem. First, however, we will transform the objective

function a bit to make it easier to work with, using the convenient fact that the logarithm is monotonic
increasing, and thus does not affect the solution.

max
θ

K∏
k=1

P (X = k)c(k) = max
θ

log

(
K∏
k=1

θ
c(k)
k

)

= max
θ

K∑
k=1

log(θ
c(k)
k )

= max
θ

K∑
k=1

c(k) log(θk)

We get the gradient of this objective function by, for each θk, taking the partial derivative with respect
to θk:

∂

∂θk

 K∑
j=1

c(j) log(θj)

 =
c(k)

θk

(To get this derivative, observe that all of the terms in the sum are constant with respect to θk except for the
one term containing θk; taking the derivative of that term gives the result, and the other terms’ derivatives
are 0.)

Thus, we get that

Of =
∂

∂θ

 K∑
j=1

c(j)log(θj)

 =

(
c(1)

θ1
, . . . ,

c(K)

θK

)
In a similar vein,

Og =
∂

∂θ

 K∑
j=1

θj

 = (1, . . . , 1)
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Now we substitute these results into the Lagrangian Of + λOg = 0. Solving this equation, we discover that
for each k, c(k)

θk
= −λ, or θk = − c(k)

λ . To solve for λ, we substitute this back into our constraint, and discover
that

∑K
k=1 θk = − 1

λ

∑K
k=1 c(k), and thus −λ =

∑K
k=1 c(k). This is thus our normalization constant.

In retrospect, this formula seems completely obvious. The probability of outcome k is the fraction of
times outcome k occurred in our data. The math accords perfectly with our intuitions; why would we ever
want to do anything else? The problem is that this formula overfits our data, like the curve separating the
male datapoints from the female datapoints at the beginning of class. For instance, suppose we never see
outcome k in our data. This formula would have us set θk = 0. But we probably don’t want to assume that
outcome k will never, ever happen. In the next lecture, we will look at how to avoid this issue.

5 Entropy

Entropy is:

H(X) =
∑
x

P (x) log
1

P (x)

=

∫
P (x) log

1

P (x)
dx

We can think of this as a measure of information content. An example of this idea of information content
is seen in Huffman coding. High frequency letters have short encodings while rarer letters have longer
encodings. This forms a binary tree where the letters are at the leaves and edges to the left are 0 bits and
edges to the right are 1 bits. If the probablities for the letters are all equal then this tree is balanced.

In the case of entropy we notice that log 1
P (x) is a non-integer, so it is like an expanded Huffman coding.

5.1 Bounds on Entropy for a Discrete Random Variable

If the variable is descrete H(X) is maximized when the distribution is uniform since P (x) = 1
K , we see:

H(X) =

K∑
i=1

1

K
logK = logK

If K is 2n then H(X) = log 2n = n. Part of Homework 2 will be to prove that entropy on a discrete
random variable is maximized by a uniform distribution (maxθH(X) where

∑
n θn = 1 using the Lagrange

equation).
To minimize H(X) we want P (xi) = 1 for some i (with all other P (xj) being zero1) giving H(X) =∑

1≤j≤K,j 6=i 0 log 1
0 + 1 log 1 = 0. We see then that:

0 ≤ H(X) ≤ logK

If we consider some distribution we can see that if we cut up the “shape” of the distribution and add in
gaps that the gaps that are added do not contribute to P (x) log 1

P (x) .

1What about 0 · log 1
0

? It is standard to define this as equal to zero (justified by the limit being zero).
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5.2 Further Entropy Equations

H(X,Y ) =
∑

P (x, y) log
1

P (x, y)

H(X|Y ) =
∑
x,y

P (x|y)P (y) log
1

P (x|y)

= EXY

[
log

1

P (x|y)

]
=
∑
x,y

P (x, y) log
1

P (x|y)

6 Mutual Information

Mutual information attempts to measure how correlated two variables are with each other:

I(X;Y ) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)

Consider communicating the values of two variables. The mutual information of these two variables
is the difference beween the entropy of communicating these varibales individually and the entropy if
we can send them together. For example if X and Y are the same then H(X) + H(Y ) = 2H(X) while
H(X,Y ) = H(X) (since we know Y if we are given X). So I(X;Y ) = 2H(X)−H(X) = H(X).

6.1 Covariance

A number version of mutual information is covariance:

Covar[X,Y ] =
∑
x,y

P (x, y)(x− X̄)(y − Ȳ )

Covar[X,X] = Var[X]

Covariance indicates the high level trend, so if both X and Y are generally increasing, or both generally
decreasing, then the covariance will be positive. If one is generally increasing, but the other is generally de-
creasing, then the covariance will be negative. Two variables can have a high amount of mutual information
but no general related trend and the covariance will not indicate much (probably be around zero).

6.2 KL divergence

Kullback–Leibler (KL) divergence compares two distributions over some variable:

D(P ‖ Q) =
∑
x

P (x) log
P (x)

Q(x)

= EP

[
log

1

Q(x)
− log

1

P (x)

]
= HP (Q)︸ ︷︷ ︸

Cross Entropy

−H(P )︸ ︷︷ ︸
Entropy

8



If we have the same distribution then the there is non divergence D(P ‖ P ) = 0. In general the KL
divergence is non-symetric D(P ‖ Q) 6= D(Q ‖ P ). If neither distribution is “special” the average 1

2 [D(P ‖
Q) +D(Q ‖ P )] is sometimes used and is symetric. The units of KL divergence are log probability.

The cross entropy has an information interpretation quantifying how many bits are wasted by using the
wrong code:

HP (Q) =
∑
x

P (x)︸ ︷︷ ︸
Sending P

code forQ︷ ︸︸ ︷
log

1

Q(x)

6.3 Lower Bound for KL divergence

We will show that KL divergence is always greater or equal to zero using Jensen’s inequality. First we need
a definition of convex. A function f is convex if for all x1, x2 and θ where 0 ≤ θ ≤ 1, f(θx1 + (1 − θ)x2) ≤
θf(x1) + (1− θ)f(x2). This is saying that any chord on the function is above the function itself on the same
interval.

Some examples of convex include a straight line and f(x) = x2. If the Hessian exists for a function then
∇2f � 0 (the Hessian is positive semidefinite) indicates that f is convex. This works for a line, but not
something like f(x) = |x|.

Jensen’s inequality states that if f is convex then E[f(X)] ≥ f(E[X]).

Proof.

D(P ‖ Q) = EP

[
log

P (x)

Q(x)

]
= EP

[
− log

Q(x)

P (x)

]
To apply Jensen’s inequality we will let − log be our function and Q(x)

P (x) be our x (note that this ratio is a
number so we can push the EP inside).

EP

[
− log

Q(x)

P (x)

]
≥ − log EP

[
Q(x)

P (x)

]
= − log

∑
x

P (x)
Q(x)

P (x)

= − log 1 = 0

Thinking of our information interpretation, we see that we always pay some cost for using the wrong
code. Also note that log P (x)

Q(x) is sometimes positive and sometimes negative (P and Q both sum to one), yet
D(P ‖ Q) ≥ 0.

6.4 L1 norm

The L1 norm is defined as:

‖P −Q‖1 =
∑
x

|P (x)−Q(x)|

It can be thought of as “how much earth has to be moved” to match the distributions.
Because P and Q sum to one we quickly see that 0 ≤ ‖P −Q‖1 ≤ 2. This property can be advantagous

when bounds are needed.

9



7 The Gaussian Distribution

p(x;µ, σ2) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)

p(x;µ,Σ) =
1

2πd/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

7.1 Maximum Likelihood Estimation

µ =
1

N

N∑
n=1

x(n)

Σij =
1

N

N∑
n=1

(x
(n)
i − µi)(x(n)

j − µj)

7.2 Maximum Entropy for fixed Variance

max
p(x)

−
∫
p(x) log p(x)dx

s.t.
∫
p(x)(x− µ)2dx = 1∫
p(x)dx = 1

Solving with langrange multipliers:

p(x) =
1

Z
exp

(
λ(x− µ)2

)
(1)

7.3 Marginalization

If

x =
[
xaxb

]
x ∼ N(X;µΣ)

µ =

[
µa
µb

]
Σ =

[
Σaa Σab
Σba Σbb

]
then the marginal for xa is itself gaussian:

xa ∼ N(xa;µa,Σaa)

7.4 Conditioning

With xa, xb as above, the conditional distribution P (Xa | xb) is gaussian:

µa|b = µa + ΣabΣ
−1
bb (xb − µb)

Σa|b = Σaa − ΣabΣ
−1
bb Σba

10



8 Linear Regression

Let our prediction ŷ = wTx.

min
w

∑
n

(ŷ − yn)2

min
w

∑
n

(wTx(n) − yn)2

min
w
‖wTX − y‖2

0 =
∂

∂w
‖wTX − y‖2

= 2XTXw − 2XT y

w = (XTX)−1XT y

with regularization

w = (XTX + λI)−1XT y

9 Smoothing

If we use MLE to train a classifier, all of our probabilities are based on counts, any unseen combination of a
single feature x and the class label y results in

P (x|y) =
c(x, y)

c(y)

= 0.

These zeros can ruin the entire classifier. For example, say there’s one bill where all the Republicans we
know about voted “no”. Now, say we are trying to classify an unknown politician who followed the Re-
publican line on every other bill, but voted “yes” on this bill. The classifier will say that there is zero
probability of this person being a Republican, since it has never seen the combination (Republican, voted
yes) for that bill. It gives that single feature way too much power. To get rid of that, we can use a technique
called smoothing, and modify the probabilities a little :

P (x = k|y) =
c(x = k, y) + α

c(y) +Kα

k ∈ {1, ...,K}

Basically we are taking a little bit of the probability mass from things with high probability and giving
it to things with otherwise zero probability. (Republicans might veto this technique, since it’s like redistri-
bution of wealth!) Note that these probabilities must still sum to 1. This seems great - we’ve gotten rid of
things with zero probability. But doesn’t this contradict what we proved earlier? That is, last week we said
that we can best infer the probability distribution by solving

argmax
θ

N∏
n=1

Pθ(xn)

s.t.
K∑
k=1

θk = 1

11



which results in the count-based distribution

θ∗k =
c(k)

N
.

How then can we mathematically justify our smoothed probabilities?

9.1 Prior Distributions

We can treat θ as a random variable itself with some probability distribution P (θ). Recall that θ is a vector
of probabilities for each type of event k, so

θ = [θ1, θ2, . . . θK ]
T

and
K∑
k=1

θk = 1

Suppose that we have a coin with two outcomes, heads or tails (K=2). We can picture the θ1 and θ2

which we could pick for the probability distribution of these two outcomes. A fair coin has θ1 = 1/2 and
θ2 = 1/2. An weighted coin might have θ1 = 2/3 and θ2 = 1/3. Since we are treating θ as a random variable,
its probability P (θ) is describing the probability that it takes on these values. P (θ) is called a prior, since
it’s what we believe about θ before we even have any observations. For example, we might tend to believe
that the coin will be pretty fair, so we could have P (θ) be a normal curve with the peak where θ1 = 1/2 and
θ2 = 1/2.

9.2 Dirichlet Prior

One useful prior distribution is the Dirichlet Prior :

P (θ) =
Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

θαk−1
k

=
1

Z

K∏
k=1

θαk−1
k

This is also written as P (θ;α), Pα(θ), or P (θ|α). α is a vector with the same size as θ, and it is known as a
“hyperparameter”. The choice of α determines the shape of θ’s distribution, which you can see by varying
it. If α is simply a vector of ones, we just get a uniform distribution; all θs are equally probable. In the case
of two variables, we can have α1=100, and α2=50 and we see a sharp peak around 2/3. The larger α1, the
more shaply peaked it gets around α1

α1+α2
.

At this point, we are tactfully ignoring that Γ in the Dirichlet distribution. What is that function, and
what does it do?

9.3 Gamma Function

Γ(x) =

∫ ∞
0

e−ttx−1dt

This function occurs often in difficult, nasty integrals. However, it has the nice property of being equivalent
to the factorial function:

Γ(n) = (n− 1)!

12



We can prove this using integration by parts:

Γ(x) =

∫ ∞
0

e−ttx−1dt

=
[
−tx−1e−t

]∞
0

+

∫ ∞
0

e−t(x− 1)tx−2dt

= 0 + (x− 1)

∫ ∞
0

e−ttx−2dt

= (x− 1)Γ(x− 1)

Further noting that Γ(1) = 1, we can conclude that Γ(n) = (n−1)!. This function is used in the normalization
constant of our Dirichlet prior in order to guarantee that:∫

∑
k θk=1

P (θ)dθ = 1.

9.4 Justifying the Dirichlet Prior

How can we use this prior to compute probabilities?

P (x = k|θ) = θk

P (x = k) =

∫
∑

k θk=1

P (x|θ)P (θ)dθ

=

∫
θk

Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

θαk−1
k dθ

=
Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

∫ K∏
k′=1

θ
αk′−1+I(k′=k)
k′ dθ

=
Γ(
∑K
k=1 αk)∏K

k=1 Γ(αk)

∏
k′ Γ(αk′ + I(k′ = k))

Γ(
∑
k′ αk′ + I(k′ = k))

=
Γ(
∑K
k=1 αk)

Γ(
∑
αk + 1)

Γ(αk + 1)

Γ(αk′)

Now we use Γ(x) = (x− 1)Γ(x− 1) :

=
αk∑
k′ αk′

Most of the time, all of the αk’s are set to the same number. So, we just showed that

P (x) = =
αk∑
k′ αk′

13



But what about

P (XN+1|XN
1 ) =

∫
P (XN+1, θ|XN

1 )dθ

=

∫
P (XN+1|θ,XN

1 )P (θ|XN
1 )dθ

=

∫
θk
P (XN

1 |θ)P (θ)

P (XN
1 )

dθ

=
1

Z

∫
θk
∏
n

θXn

1

Z ′

∏
k

θαk−1
k dθ

. . .

=
c(k) + αk
N +

∑
k αk

10 Comparison - Bayesian vs. MLE vs. MAP

10.1 Bayesian

The quantity we just computed is known as the Bayesian:

P (XN+1|XN
1 ) =

c(k) + αk
N +

∑
k αk

We can compare it to the MLE that we did before:

P (xN+1) follows θ∗

θ∗ = argmax
θ

Pθ(X
N
1 )

And a third alternative is the MAP, or Maximum A Posteriori:

P (xN+1) follows θ∗

θ∗ = argmax
θ

P (θ)P (XN
1 |θ)

This is simpler since it does not require an integral. Using the same Lagrange Multipliers technique as we
did before:

argmax
1

Z

∏
k

θαk−1
k

∏
k

θck(k)

s.t.
∑
k

θk = 1

Then we get the result:

θ∗k =
c(k) + αk − 1

N + (
∑
k′ α
′
k)−K

11 Perceptrons

A Perceptron is a linear classifier that determines a decision boundary through successive changes to the
weight vector wT of a linear classifier. A linear classifier computes a linear function of the input data point

14



x and then converts it a class label of either −1 or 1 with the sign function:

t = sign(wTx + b)

We define our classification function sign as

sign(x) =

 −1 : x < 0
0 : x = 0
1 : x > 0

We can remove b from the equation by adding it as an element of w and adding a 1 to x in the same spot.

w′ =


w1

...
wN
b

 x′ =


x1

...
xN
1


w′

T
x′ = wTx + b

The next question is, how do we pick w? We have x as the vector of data points, with xn as the nth data
point. We have tn as the classifier output (1 or -1) for the nth data point.

tn = sign(wTx)

yn is the true label for the nth data point.
Our general goal is to maximize the number of correctly classified points:

argmax
w

∑
n

I(yn = tn)

However, in general, maximizing the number of correctly classified points is NP-complete. The perceptron
algorithm as well as SVMs and logistic regression can be viewed as ways of approximately solving this
problem.

The Perceptron algorithm takes the simple approach of updating the weight vector whenever it misclas-
sifies a data point:

repeat
for n = 1...N do

if tn 6= yn then
w← w + ynxn

until ∀n tn = yn or maxiters
While this algorithm will completely separate linearly separable data, it may not be the best separation

(it may not accurately represent the separating axis of the data).

11.1 Proof of Convergence

As mentioned before, perceptron algorithm will converge eventually if the data is linearly separable, but
why? Let’s first formally write down the problem,

Definition: (xn, yn), n ∈ 1, 2, . . . , N is linearly separable, iff ∃(u, δ), ‖u‖ = 1, δ > 0, s.t. ∀n, ynuTx(n) ≥
δ. The vector u is called an oracle vector that separates everything correctly.

Theorem: If x(n) is bounded by R, i.e., ∀n, ‖x(n)‖ ≤ R, then the perceptron algorithm makes at most R
2

δ2

updates. (for a vector ‖v‖ denotes the Euclidean norm of v, i.e., ‖v‖ =
√∑

i v
2
i )

Proof: As we keep updating the weights w in the algorithm, a sequence of w(k) are generated.
Let w(1) = 0.
Each time we encountered a misclassification, we use it to update the weights w. Suppose we use data

point (x, y) to update w(k), which means Equation (2) holds,

w(k+1) = w(k) + yx (2)
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Figure 1: Linear Separability

Bear in mind that since we are using (x, y) to update w(k), w(k) misclassified (x, y), which means Equa-
tion (3) holds,

y(w(k))Tx < 0 (3)

Now we can use Equation (2), (3) and w(1) = 0 to prove that k ≤ R2

δ2 . Hence, the convergence holds.
From Equation (4), we can get a upper bound of ‖w(k+1)‖, and from Equation (5), we can get its lower
bound.

w(k+1) = w(k) + yx
⇒ uTw(k+1) = uTw(k) + yuTx Multiply oracle u to both sides
⇒ uTw(k+1) ≥ uTw(k) + δ Definition of (u, δ)
⇒ uTw(k+1) ≥ kδ Induction and w(1) = 0
⇒ ‖uTw(k+1)‖2 ≥ k2δ2 Both sides positive
⇒ ‖u‖2‖w(k+1)‖2 ≥ k2δ2 Cauchy Schwarz: ‖a‖ × ‖b‖ ≥

∣∣aTb∣∣
⇒ ‖w(k+1)‖2 ≥ k2δ2 ‖u‖ = 1

(4)

w(k+1) = w(k) + yx
⇒ ‖w(k+1)‖2 = ‖w(k) + yx‖2 Apply Euclidean norm to both sides
⇒ ‖w(k+1)‖2 = ‖w(k)‖2 + ‖y‖2‖x‖2 + 2yxTw(k) Expansion
⇒ ‖w(k+1)‖2 ≤ ‖w(k)‖2 + ‖y‖2‖x‖2 Equation (3)
⇒ ‖w(k+1)‖2 ≤ ‖w(k)‖2 +R2 ‖y‖ = 1, ‖x‖ ≤ R
⇒ ‖w(k+1)‖2 ≤ kR2 Induction and w(1) = 0

(5)

Combining results of Equation (4) and (5), we get k2δ2 ≤ ‖w(k+1)‖2 ≤ kR2. Thus, k2δ2 ≤ kR2 and
k ≤ R2

δ2 .
Since the number of updates is bounded by R2

δ2 , the perceptron algorithm will eventually converge to
somewhere no updates are needed. �

11.2 Perceptron in Stochastic Gradient Descent perspective

The perceptron algorithm can be analyzed in a more general framework, i.e., stochastic gradient descent
for a convex optimization problem.

16



The ultimate goal for perceptron algorithm is to find w, such that ∀(x(k), yk), ykw
Tx(k) ≥ 0. Therefore, a

natural penalty for misclassification is [−ykwTx(k)]+. For scalar number S, [S]+ is defined in Equation (6),
which is sometimes called a hinge function.

[S]+ =

{
S if S ≥ 0

0, if S < 0
(6)

Thus, the optimization problem can be written down as Equation (7).

argmin
w

f(w) ,
1

N

∑
k

fk(w) ,
1

N

∑
k

[
−ykwTx(k)

]
+

(7)

One way to optimize the convex function in Equation (7) is called Gradient Descent. Essentially, Gradient
Descent keeps updating the weights w, w ← w − α∇wf(w), in which α is called learning rate. The gradient
∇wf(w) can be carried out by∇wf(w) = 1

N

∑
k∇wfk(w), and ∇wfk(w) is computed by Equation (8).

∇wfk(w) =

{
−ykx(k) if ykwTx(k) < 0

0, if ykwTx(k) ≥ 0
(8)

Because the gradient ∇wf(w) is a summation of local gradients ∇wfk(w), we can also do Stochastic
Gradient Descent by using one data instance a time.

1. Randomly pick a data instance, (x(k), yk)

2. Compute local gradient on it,∇wfk(w) as Equation (8).

3. Update weights using the local gradient, w ← w−α∇wfk(w). This is exactly the update in perceptron
algorithm.

12 Multi Layer Perceptron

In a two layer neural network, the input, hidden, and output variables are represented by nodes, and the
weight parameters are represented by links between the nodes. The arrow of the links indicate the direction
of information flow through the network during forward propagation. The overall network function takes
the form:

z
(0)
i = xi input layer

a
(`)
i =

∑
j

w
(`)
ij z

(`−1)
j ` ∈ 1 . . . L

z
(`)
i = g(a

(`)
i ) ` ∈ 1 . . . L

ŷi = z
(L)
i output layer

where z(`)
i is the output of node i in layer `, w(`)

ij are the weights, xi are the input variables, ŷ is the network’s
output, and the g is an activation function. Non-linear functions are usually chosen for activation functions
such as tanh and sigmoid functions.

12.1 Training A Network: Error Backpropagation

Given a training set of input vector x and its target vector y for n = 1 . . . N , we want to minimize the error
function EW (y, ŷ) that quantifies the difference between the network’s predication ŷ and the true label y.
One common choice for E is squared error:

EW (y, ŷ) =
1

2
‖ŷ − y‖2 (9)
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If we treat the ouput values as probabilities, log-likelihood, a.k.a. cross-entropy, is an appropriate choice
of E:

EW (y, ŷ) = −
∑
i

ŷi log yi (10)

We define a table of partial results for dynamic programming:

δ
(`)
i =

∂E

∂a
(`)
i

(11)

which captures the contribution of node i at layer ` to the error.
Using the chain rule of calculus to derive weight updates at the top layer:

δ
(L)
i =

∂E

∂ŷi

∂ŷi

∂a
(L)
i

(12)

=
∂E

∂ŷi
g′(a

(L)
i ) (13)

∂E

∂w
(L)
ij

=
∂E

∂a
(L)
i

∂a
(L)
i

∂w
(L)
ij

(14)

= δ
(L)
i z

(L−1)
j (15)

Weight updates are derived recursively for each lower layer:

δ
(`)
i =

∂E

∂a
(`)
i

(16)

=
∑
k

∂E

∂a
(`+1)
k

∂a
(`+1)
k

∂a
(`)
i

(17)

=
∑
k

δ
(`+1)
k

∂a
(`+1)
k

∂z
(`)
i

∂z
(`)
i

∂a
(`)
i

(18)

=
∑
k

δ
(`+1)
k w

(`+1)
ki g′(a

(`)
i ) (19)

∂E

∂w
(`)
ij

=
∂E

∂a
(`)
i

∂a
(`)
i

∂w
(L)
ij

(20)

= δ
(`)
i z

(l−1)
j (21)

Putting eq. 13, 15, 19, and 21 into vector notation, we get the backprop algorithm.
procedure BACKPROGPAGATION

while not converged do
for data point x, y do

δ(L) ← ∂E
∂ŷ � g

′(a(L)) . From (13)
∂E

∂W (L) ← δ(L)z(L−1)T . From (15)
for `← L− 1 . . . 1 do

δ(`) ←W (`+1)T δ(`+1) � g′(a(`)) . From (19)
∂E

∂W (`) ← δ(`)z(l−1)T . From (21)

W ←W − η ∂E∂W . update all weights with SGD

13 Support Vector Machines

The Support Vector Machine (SVM) is one of the most widely used classification methods. The SVM is
different from other classifiers that we have covered so far. The SVM cares only about the data points near
the class boundary and finds a hyperplane that maximizes the margin between the classes.
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w

−b/|w|

M

H1

H2

Figure 2: The figure shows a linear SVM classifier for two linearly separable classes. The hyperplane wTx+b
is the solid line between H1 and H2, and the the margin is M .

13.1 Training Linear SVMs

Let the input be a set of N training vectors {x(n)}Nn=1 and corresponding class labels {yn}Nn=1, where x(n) ∈
RD and yn ∈ {−1, 1}. Initially we assume that the two classes are linearly separable. The hyperplane
separating the two classes can be represented as:

wTx + b = 0,

such that:

wTx(n) + b ≥ 1 for yn = +1,

wTx(n) + b ≤ −1 for yn = −1.

LetH1 andH2 be the two hyperplanes (Figure 2) separating the classes such that there is no other data point
between them. Our goal is to maximize the margin M between the two classes. The objective function:

max
w,b,M

M

s.t. yn(wTx(n) + b) ≥M,

wTw = 1.

The margin M is equal to 2
‖w‖ . We can rewrite the objective function as:

min
w

1

2
wTw

s.t. yn(wTx(n) + b) ≥ 1

Now, let’s consider the case when the two classes are not linearly separable. We introduce slack variables
{ξn}Nn=1 and allow few points to be on the wrong side of the hyperplane at some cost. The modified
objective function:

min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξn (22)

s.t. yn(wTx(n) + b) + ξn ≥ 1,

ξn ≥ 0, ∀n.

The parameter C can be tuned using development set. This is the primal optimization problem for SVM.
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13.2 SGD for SVM

At the solution of problem 22, each ξn is determined by one of the two constraints, so

ξn = max
{

0, 1− yn(wTx(n) + b)
}

Folding this equation into the objective function, we have an unconstrained minimization problem:

min
w,b

1

2
wTw + C

N∑
n=1

max
{

0, 1− yn(wTx(n) + b)
}

(23)

Moving wTw into the sum over data points, we have:

min
w,b

N∑
n=1

1

2N
wTw + C max

{
0, 1− yn(wTx(n) + b)

}
(24)

Let fn denote the term of the above sum for data point n. The gradient is:

∂fn
∂w

=

{
1
Nw − Cynx(n) if 1− yn(wTx(n) + b) > 0
1
Nw otherwise

(25)

∂fn
∂b

=

{
−Cyn if 1− yn(wTx(n) + b) > 0

0 otherwise
(26)

13.3 Dual Form

The Lagrangian for the primal problem:

L (w, b, ξ, α, µ) =
1

2
wTw + C

N∑
n=1

ξn −
∑
n

αn

[
yn(wTx(n) + b)

]
−
∑
n

αnξn +
∑
n

αn −
∑
n

µnξn,

where αn and µn, 1 ≤ n ≤ N are Lagrange multipliers.

Differentiating the Lagrangian with respect to the variables:

∂

∂w
L (w, b, ξ, α, µ) = w −

∑
n

αnynx
(n) = 0

∂

∂b
L (w, b, ξ, α, µ) = −

∑
n

αnyn = 0

∂

∂ξn
L (w, b, ξ, α, µ) = C − αn − µn = 0

Solving these equations, we get:
w =

∑
n

αnynx
(n) (27)

∑
n

αnyn = 0

αn = C − µn (28)

20



We now plug-in these values to get the dual function and cancelling out some terms:

g(α, µ) =
1

2

∑
n

∑
m

αnαmynymx(n)Tx(m) −
∑
n

∑
n

αnαmynymx(n)Tx(m) +
∑
n

αn

=
∑
n

αn −
1

2

∑
n

∑
m

αnαmynymx(n)Tx(m) (29)

Using the equation (28) and (29) and the KKT conditions, we obtain the dual optimization problem:

max
α

∑
n

αn −
1

2

∑
n

∑
m

αnαmynymx(n)Tx(m)

s.t. 0 ≤ αn ≤ C.

The dual optimization problem is concave and easy to solve. The dual variables (αn) lie within a box with
side C. We usually vary two values αi and αj at a time and numerically optimize the dual function. Finally,
we plug in the values of the α∗n’s to the equations (27) to obtain the primal solution w∗.

13.4 Convex Optimization Review

Suppose we are given an optimization problem:

min
x

f0(x)

s.t. fi(x) ≤ 0, for i ∈ 1, 2, . . . ,K,

where f0 and fi (i ∈ {1, 2, . . . ,K}) are convex functions. We call this optimization problem the ‘primal’
problem.

The Lagrangian is:

L(x, λ) = f0(x) +

K∑
i=1

λifi(x)

The Lagrange dual function:
g(λ) = min

x
L(x, λ)

The dual function g(λ) is concave and hence easy to solve. We can obtain the minima of a convex primal
optimization problem by maximizing the dual function g(λ). The dual optimization problem is:

max
λ

g(λ)

s.t. λi ≥ 0, for i ∈ 1, 2, . . . ,K.

13.4.1 Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker (KKT) conditions are the conditions for optimality in primal and dual functions.
If f0 and fi’s are convex, differentiable, and the feasible set has some interior points (satisfies Slater condi-
tion), the x∗ and λ∗i ’s are the optimal solutions of the primal and dual problems if and only if they satisfy
the following conditions:
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fi(x
∗) ≤ 0

λ∗i ≥ 0, ∀i ∈ 1, . . . ,K

∂

∂x
L(x∗, λ∗1, . . . , λ

∗
K) = 0

λ∗i fi(x
∗) = 0

13.4.2 Constrained Optimization

We now proceed to give some intuition about why the relationship between the primal and dual holds, as
well as the why KKT conditions hold at the solution. Consider a constrained optimization problem:

min
x

f(x)

s.t. g(x) = 0

At the solution, the gradient of the objective function f must be perpendicular to the constraint surface
(feasible set) defined by g(x) = 0, so there exists a scalar Lagrange multiplier λ such that

∂f

∂x
+ λ

∂g

∂x
= 0

at the solution.

13.4.3 Inequalities

Consider an optimization problem with constraints specified as inequalities:

min
x

f(x) (30)

s.t. g(x) ≤ 0

If, at the solution, g(x) = 0, then as before there exists a λ such that

∂f

∂x
+ λ

∂g

∂x
= 0 (31)

and furthermore λ > 0, otherwise we would be able to decrease f(x) by moving in the direction −∂f∂x
without leaving the feasible set defined by g(x) ≤ 0.

If, on the other hand, at the solution g(x) < 0, then we must be at a maximum of f(x), so ∂f
∂x = 0 and

eq. 31 holds with λ = 0. In either case, the following system of equations (known as the KKT conditions)
holds:

λg(x) = 0

λ ≥ 0

g(x) ≤ 0

∂f

∂x
+ λ

∂g

∂x
= 0

13.4.4 Convex Optimization

Suppose now that f(x) is convex, g(x) is also convex, and both are continuously differentiable. Define

L(x, λ) = f(x) + λg(x)
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and Equation 31 is equivalent to
∂L

∂x
= 0

For any fixed λ ≥ 0, L is convex in x, and has a unique minimum. For any fixed x, L is linear in λ.
Define the dual function

h(λ) = min
x
L(x, λ)

The minimum of a set of linear functions is concave, and has a maximum corresponding to the linear
function with derivative of 0. Thus h(λ) also has a unique maximum over λ ≥ 0. Either the maximum of h
occurs at λ = 0, in which case

h(0) = min
x
L(x, 0) = min

x
f(x)

and we are at the global minimum of f , or the maximum of h occurs at

∂L

∂λ
= g(x) = 0

and we are on the boundary of the feasible set. Because λ > 0, we cannot decrease f by moving into the
interior of the feasible set, and therefore this is the solution to the original problem (30). In either case, the
solution to dual problem

max
λ

h(λ)

s.t. λ ≥ 0

corresponds to the solution of the original primal problem. Generalizing to primal problmes with more
than one constraint, the dual problem has one dual variable λi for each constraint in the primal problem,
and has simple non-negativity constraints on each dual variable. The dual problem is often easier to solve
numerically due to its simple constraints. Thus one approach to solving convex optimization problems us
to find the dual problem by using calculus to solve ∂L

∂x = 0, and then solving the dual problem numerically.
Substituting the definition of the dual function into the dual problem yields the primal-dual problem:

max
λ

min
x

L(x, λ)

s.t. λ ≥ 0

Another approach to solving convex optimization problems is to maintain both primal and dual variables,
and to solve the primal-dual problem numerically.

We have already seen that the KKT conditions must hold at the solution to the primal-dual problem. If
the objective function and constraint functions are convex and differentiable, and if the feasible set has an
interior (Slater’s condition), than any solution to the KKT conditions is also a solution to the primal-dual
problem.

13.4.5 An Example

Minimize x2 subject to x ≥ 2.

L(x, λ) = f(x) + λg(x)

= x2 + λ(2− x)

The Lagrangian function L has a saddle shape:
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To find h, set

∂L

∂x
= 0

2x− λ = 0

and solve for x: x = λ/2. Substituting x = λ/2 into L gives h(λ) = − 1
4λ

2 − 2λ. Setting ∂h
∂λ = 0 yields

λ = 4, which we see is the maximum of the concave shape in the figure. Substituting back into the original
problem yields x = 2, a solution on the boundary of the constraint surface.

14 Kernel Functions

14.1 Review Support Vector Machines

Goal: To solve equation:

min
w

(
1

2
||w||2 + C

∑
n

ξn

)
s.t. yn(wTxn + b) + ξn ≥ 1

ξn ≥ 0

where
xn = [x1, x2, ..., xK ]

T
, n ∈ 1, ..., N

This is a K-dimensional problem, which means the more features the data has, the more complicated to
solve this problem.
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In the meantime, this equation is equal to

max
α

(
−1

2

∑
n

∑
m

αnαmy
nymxnTxm +

∑
n

αn

)
s.t. αn ≥ 0

αn ≤ C

This is a N-dimensional problem, which means the more data points we include in the training set, the
more time it takes to find the optimized classifier.

To train the classifier is actually to solve this problem inside the box of alpha.
According to KKT,

λifi (x) = 0

λi ≥ 0

fi (x) ≤ 0

As shown in the figure below,

w =
∑
n

αny
nxn

Points on the right side but not on the margin contribute nothing because alpha equals to 0. (The green
point)

For points on the wrong side (the red point), alpha equals to C, and

ξn > 0

so they along with points on the margin contribute to the vector, but no point is allowed to contribute more
than C.

SVM can train classifier better than naive bayes in the most of time, but since its still binary classification
it is not able to deal with situation like this one below:

14.2 Kernel Function

Now when we look back, the classification formula is

Sign
(
wTx

)
= Sign

(∑
n

αny
nxn

)T
x

 = Sign

(∑
n

αny
n
(
xnTx

))
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We can introduce Kernel Function K now, the simplest one is:

xnTx = K (xn, x)

Now the problem is transformed into:

max
α

(
−1

2

∑
n

∑
m

αnαmy
nymK (xn, xm) +

∑
n

αn

)

where
K (x, y) = φ (x)

T
φ (y)

for some φ.
The most commonly seen Kernel Functions are:

K (x, y) = xT y

K (x, y) =
(
xT y

)m
K (x, y) = e−c||x−y||

2

Generally, Kernel function is a measure of how x and y are similar, then they are the same, it has the
peak output.

14.3 Proof that φ exists

For a two dimensional
x = [x1, x2]

T
y = [y1, y2]

T

K (x, y) = (x1y1 + x2y2)
m

Let m = 2, then
K (x, y) = (x1y1)

2
+ (x2y2)

2
+ 2 (x1y1x2y2) = φ (x)

T
φ (y)

Thus, we can conclude that

φ (x) =
[√

2x1x2, x
2
1, x

2
2

]T
Basically, φ transforms x from a linear space to a multi nominal space like shown below:

so that the points can be classified.
For

K (x, y) = e−||x−y||
2
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because we have

ex = 1 + x+
x2

2
+ ...

it transforms feature into a infinite dimensional space. Generally Kernel Functions lead to more dimension
of w which is K-dimensional so solve dual is more practical.

14.4 Regression

When we are predicting output we actually have a space like this: The line is the prediction line, the points

around it are the data set we have. We predict y with formula:

ŷ = wTx

w =
(
XTX

)−1
XT ~y

its known as linear regression. The goal is to

min
w

∑
n

1

2
||ŷn − yn||2

which leads us to Support Vector Regression:

min
w

1

2
||w||2 + C

∑
n

(
ξn + ξ̂n

)
s.t. yn − wTx− ξn ≤ ε

− (yn − wTx)− ξ̂n ≤ ε
ξn ≥ 0

ξ̂n ≥ 0
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15 Graphical Models

A directed graphical model, also known as a Bayes net or a belief net, is a joint distribution over several
variables specificied in terms of a conditional distribution for each variable:

P (X1, X2, . . . , XN ) =
∏
i

P (Xi|Parents(Xi))

We draw a Bayes net as a graph with a node for each variable, and edges to each node from its parents. This
graph expresses the independence relations implicit in the choice of parents for each node. The parent-child
edges must form a acyclic graph.

An undirected graphical model is also a distribution specified in terms of a set of functions of sepcific
variables:

P (X1, X2, . . . , XN ) =
1

Z

∏
m

fm(Xm))

where is each Xm is a subset of {X1, X2, . . . , XN}. The are no normalization constraints on the individual
factors fm, and the normaliztion constant Z ensures that the entire joint distribution sums to one:

Z =
∑

X1,...,XN

∏
m

fm(Xm)

Suppose that we wish to find the mariginal probability of a variable Xi in a directed graphical model:

P (Xi) =
∑

X1,...,Xi−1,Xi+1,...,XN

∏
i

P (Xi|Parents(Xi))

For binary variables, there are 2N−1 terms in this sum. Our goal in this section is to compute this probability
more efficiently by using the structure of network, thus taking advantage of the independence assumptions
of the network. The techniques apply to both directed and undirected graphical models. They also ap-
ply to the problem of computing conditional probabilities where some variables are known, and we must
marginalize over the others.

15.1 Example
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To compute P (X7|X2), we have

P (x7|x2) =
1

Z

∑
X3

∑
X4

∑
X5

∑
X6

P (X3|x2)P (X4|X3)P (X5|X4)P (X6|X5)P (x7|X6)

Suppose every variable Xi is binary, then the summation has 24 = 16 terms. On the other hand, we can use
the same trick in dynamic programming by recording every probabilities we have computed for reuse. For
example, in above example, if we define

f5(x5) =
∑
X6

P (X6|X5 = x5)P (x7|X6) (32)

f4(x4) =
∑
X5

P (X5|X4 = x4)f5(X5) (33)

f3(x3) =
∑
X4

P (X4|X3 = x3)f4(X4) (34)

f2(x2) =
∑
X3

P (X3|X2 = x2)f3(X3) (35)

Then the probability above can be computed as

P (X7 = x7|X2 = x2) =
1

Z

∑
X3

∑
X4

∑
X5

∑
X6

P (X3|X2 = x2)P (X4|X3)P (X5|X4)P (X6|X5)P (X7 = x7|X6)

(36)

=
1

Z

∑
X3

∑
X4

∑
X5

P (X3|x2)P (X4|X3)P (X5|X4)f5(X5) (37)

=
1

Z

∑
X3

∑
X4

P (X3|x2)P (X4|X3)f4(X4) (38)

=
1

Z

∑
X3

P (X3|x2)f3(X3) (39)

=
1

Z
f2(x2) (40)

There are 4 sums and each sum needs to compute 2x2 probabilities, so a total of 16 steps.

15.2 Factor Graph

Factor graph is an undirected bipartite graph. There are two types of vertex in a factor graph, factor vertices
and variable vertices. Factor vertices correspond to the function fm in the above example, and each distinct
variable vertex corresponds to a distinct variable. If factor function fm is a function of Xi, its factor vertex
is connected to Xi. So the factor graph for above example is,
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For more examples,

Note that in the figures above, factor graphs illustrate that the shadowed variable nodes block the in-
formation flow from one variable node to another except the last one. In the last example, the two parent
nodes are independent, although this cannot be seen from the graph structure. However, the blockage
can be read from the table of the factor node in the center. Also note that the last two graphs have same
undirected shape, but their factor graphs are different.

15.3 Message Passing (Belief Propagation)

We assume that the factor graph is a tree here. For each variable vertex n and its neighboring factor vertex
fm, the information propagated from n to fm is,

qn→m(Xn) =
∏

m′∈M(n)\{m}

rm′→n(Xn)

where M(n) is the set of factors touching Xn. This table contains the information propagated from vari-
able n to its neighboring factor vertex fm. For each factor vertex fm and its neighboring variable n, the

30



information propagated from fm to n is,

rm→n(Xn) =
∑
−−→
Xm\Xn

fm(
−−→
Xm)

∏
n′∈N(m)\{n}

qn′→m(Xn′)

where N(m) is the set of variables touching fm.
∑
−−→
Xm\Xn

is the sum is over all variables connected to fm
except Xn. This table contains the information propagated from factor fm to its neighbor variable n. Note
that if variable vertex n is a leaf, qn→m = 1, and if factor vertex m is a leaf, rm→n = fm(Xn).

The procedure of message passing or belief propagation is first to propagate the information from leaf
vertices to the center (i.e., from leaves to internal nodes) by filling in the tables for each message. Once all
the messages variable xn have been computed, the marginal probability of xn is computed by combining
the incoming messages:

P (Xn) =
1

Z

∏
m∈M(n)

rm→n(Xn)

To compute marginal probabilities for all variables, the information is propagated from center back to
leaves.

For continuous variables the equation:

rm→n =
∑

~Xm\Xn

f( ~Xm)
∏

n∈N(m)\n

qn→m

changes to

rm→n =

∫
f( ~Xm)

∏
n∈N(m)\n

qn→m d( ~Xm\Xn)

15.4 Running Time

Suppose in a factor graph, there are N variable vertices and M factor vertices. For every variable vertex n,
|M(n)| < k and for every factor vertex fm, |N(m)| < l, the running time is,

O((N +M)(k + l)2l−1)
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16 Junction Tree

From last class, we know that

qn→m(xn) =
∏

m′∈M(n)\m

rm′→n(xn)

rm→n(xn) =
∑
−→xm\xn

fm(−→xm)
∏

n′∈N(m)\{n}

qn′→m(xn′)

qn→m(xn) means the information propagated from variable node n to factor node fm; rm→n(xn) is the
information propagated from factor node fm to variable node n. And our goal is to compute the marginal
probability for each variable xn:

P (xn) =
1

Z

∏
m∈M(n)

rm→n(xn).

The joint distribution of two variables can be found by, for each joint assignment to both variables,
performing message passing to marginalize out all other variables, and then renormalizing the result:

P (xi, xj) =
1

Z{i,j}

 ∏
m∈M(i)

rm→i(xi)

 ∏
m∈M(j)

rm→j(xj)


In the original problem, the marginal probability of variable xn is obtained by summing the joint distri-

bution over all the variables except xn:

P (xn) =
1

Z

∑
x1

· · ·
∑
xn−1

∑
xn+1

· · ·
∑
xN

∏
m

fm(−→xm).

And by pushing summations inside the products, we obtain the efficient algorithm above.

16.1 Max-Sum

In practice, sometimes we wish to find the set of variables that maximizes the joint distribution P (x,N ) =
1
Z

∏
m fm(−→xm). Removing the constant factor, it can be expressed as

max
x1,...,xN

∏
m

fm(−→xm)

= max
x1

...max
xN

∏
m

fm(−→xm)

Figure 3 shows an example, in which the shadowed variables xj , xk, and xl block the outside informa-
tion flow. So to compute P (xi|xj , xk, xl), we can forget everything outside them, and just find assignments
for inside variables:

max
inside var

∏
m

fm(−→xm).

Like the sum-product algorithm, we can also make use of the distributive law for multiplication and
push maxs inside the products to obtain an efficient algorithm. We can put max whenever we see

∑
in the

sum-product algorithm to get the max-sum algorithm, which now actually is max-product (Viterbi) algorithm.
For example,
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Figure 3: An example of max-product

rm→n(xn) = max−→xm\xn

fm(−→xm)
∏

n′∈N(m)\{n}

qn′→m(xn′)

Since products of many small probabilities may lead to numerical underflow, we take the logarithm
of the joint distribution, replacing the products in the max-product algorithm with sums, so we obtain the
max-sum algorithm.

max
∏

fm −→ max log
∏

fm −→ max
∑

log fm

16.2 Tree Decomposition

If we consider a decision problem instead of a numerical version, the original max-product algorithm will
be:

findx1, ..., xNs.t.
∧
m

fm(−→xm).

We need to find some assignments to make it 1, which can be seen as a reduction from the 3-SAT problem
(constraint satisfaction). So the problem is NP-complete in general.

To solve the problem, we force the graph to look like a tree, which is tree decomposition. Figure 4 shows
an example.

Given a Factor Graph, we first need to make a new graph (Dependency Graph) by replacing each factor
with a clique, shown in Figure 5. Then we apply the tree decomposition.

Tree decomposition can be explained as: given graph G = (V,E), we want to find ({Xi}, T ), Xi ⊆ V ,
T = tree over{Xi}. It should satisfy 3 conditions:

1.
⋃
iXi = V , which means the new graph should cover all the vertex;

2. For (u, v) ∈ E, ∃Xi such that u, v ∈ Xi;
3. If j is on the path from i to k in T , then (Xi ∩Xk) ⊆ Xj (running intersection property).
Using this method, we can get the new graph in Figure 5 with X1 = {A,B}, X2 = {B,C,D}, and

X3 = {D,E}. The complexity of original problem is O((N + M)(k + l)2l−1), with l = maxm |N(m)|. By
tree decomposition, we can obtain l = maxi |Xi|. Figure 6 shows the procedure to do tree decomposition on a
directed graphical model.

A new concept is the treewidth of a graph:

treewidth(G) = min
({Xi},T )

max
i
|Xi| − 1
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Figure 4: An example of tree decomposition

Figure 5: Dependency graph for tree decomposition (vertex for each variables)

Figure 6: The procedure of tree decomposition on a directed graphical model (we can directly get Dependency
Graph by moralization)

34



Figure 7: An example of Vertex Elimination on a single cycle

For example, treewidth(tree) = 1, treewidth(cycle) = 2, and the worst case, treewidth(Kn) = n− 1 (Kn

is a complete graph with n vertices). If the treewidth of the original graph is high, the tree decomposition
becomes impractical.

Actually, finding the best tree decomposition is NP-complete. One practical way is Vertex Elimination:
1. choose vertex v (heuristicly, choose v with fewest neighbors);
2. create Xi for v and its neighbors;
3. remove v;
4. connect v’s neighbors;
5. repeat the first four steps until no new vertex.
Vertex Elimination cannot ensure to find the optimum solution. Figure 7 shows an example of this

method on a single cycle.
Another way to do tree decomposition is Triangulation:
1. find cycle without chord (shortcut);
2. add chord;
3. repeat the first two steps until triangulated (no cycles without chords).
The cliques in the new graph are Xi in the tree decomposition.

16.3 Inference on the Tree Decomposition

The tree decomposition can be used to create a new tree-structured factor graph, to which the message pass-
ing algorithm can be applied to compute probabilities. For example, given a non-tree-structured graphical
model such as the one below:

A

CB

E

D

F

We can compute the tree decomposition shown below. In addition to the bags Xi of the tree decomposition
shown in circles, we also show the separators in rectangles. The separator associated with an edge in a tree
decomposition is intersection of the two bags connected by the edge.

ACABCBCBCE ACD CDFCD

We now create a factor graph with a factor for each bag in the tree decomposition. The value of the factor
functions are derived from the factors of the original factor graph: each original factor is assigned to a bag
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that contains all the vairables required.

AC

f2(A,B,C)

E BC

f1(B,C,E) f3(A,C,D) f4(C,D, F )

CD F

f1(B,C,E) = P (E|B,C)

f2(A,B,C) = P (A)P (B|A)P (C|A)

f3(A,C,D) = P (D|A)

f4(C,D, F ) = P (F |C,D)

This guarantees that the product of all factors in the new factor graph is the same as the product of all factors
in the old factor graph. Variables in the new factor graph consist of separators from the tree decomposition,
and single variables for any original variable that appear in only one bag, such as E and F above.

We now generalize the message passing equations to handle the “supervariables” of the new factor
graph:

qn→m(−→xn) =
∏

m′∈M(n)\m

rm′→n(−→xn)

rm→n(−→xn) =
∑
−→xm\−→xn

fm(−→xm)
∏

n′∈N(m)\{n}

qn′→m(−→xn′)

Here −→xn represents the set of variables from the original factor graph that are present at node n of the new
graph. Messages are tables indexed by combinations of values of these variables. Note that, in the second
equation, some varables within each −→xn′ may also be contained in −→xn. The values of these variables in the
incoming q message are bound by the values of −→xn on the lefthand side of the equation. This ensures that
each original variable has a consistent value at all factors in which it appears in the new factor graph.

17 Expectation Maximization

In last lecture, we introduced Tree Decomposition. Till now, we have covered a lot as regards how to do
inference in a graphical model. In this lecture, we will move back to the learning part. We will consider
how to set parameters for the variables.

17.1 Parameter Setting: An Example

In the discrete case, we set the parameters just by counting how often each variable occurs. However, we
may not know the value of some variables. Thus, in the following, we will discuss learning with hidden
(latent) variables. The simplest model is shown below. This model has been used in the Aspect Model
for probabilistic Latent Semantic Analysis (pLSA). The variable’s value is called an aspect. pLSA has been
widely used in information retrieval. In this example, let x1 and x2 respectively denote the document ID
and word ID. Then, there is a sequence of pair (x1, x2), e.g., (1, “the”), (1, “green”), ..., (1000, “the”). In this
context, we may have various tasks, e.g., to find the words which co-occur, to find the words on the same
topic, or to find the documents containing the same words.
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Now, we will introduce the term cluster. The reasons why we need the cluster representation are as
followed: (1) There are a large amount (e.g., 10,000) of documents, each of which is formed of a large
amount (e.g., 10,000) of words. Without a cluster representation, we have to handle a huge query table with
too many (say, 10, 0002) entries. That makes any query difficult. (2) If we still set the parameters just by
counting how often each variable occurs, then there is a risk of over-fitting the individuals (i.e., the pair
of (document, word)). Because of them, we need to do something smart: clustering. Recall the graphical
model displayed above, the hidden (latent) variable z is just the cluster ID.

Note that x1⊥x2‖z. Therefore, the joint distribution p(x1, x2) =
∑
z p(z)p(x1|z)p(x2|z). As shown in

the figure below, now we will not directly compute each entry to obtain the 10, 000 × 10, 000 query table
P (x1, x2). Instead, we maintain low-rank matrices P (z), P (x1|z) and P (x2|z).

Now, we have a set of observed variables X = {(x1
1, x

1
2), (x2

1, x
2
2), ...}, a set of hidden variables Z =

{z1, z2, ...} and a set of parameters θ = {θz, θx1|z, θx2|z}. Note that xi1 are i.i.d. variables, and the same for
xi2. To choose θ, we maximize the likelihoods (MLE): maxθ P (X; θ).

θ = argmax
θ

∏
n

Pθ(x
n
1 , x

n
2 ) = argmax

θ

∏
n

∑
z

p(z)p(xn1 |z)p(xn2 |z) = argmax
θ

∑
n

log
∑
z

p(z)p(xn1 |z)p(xn2 |z)

(41)
If there is no hidden variable z, we will just count, instead of summing over z. However now, we need

to sum over z and find the maximum of the above objective function, which is not a closed-form expression.
Thus, it is not feasible to directly set the derivative to zero. To solve this tough optimization problem, we
will introduce the Expectation-Maximization (EM) algorithm.

17.2 Expectation-Maximization Algorithm

The EM algorithm is an elegant and powerful method for finding maximum likelihood solutions for models
with hidden (latent) variables. It breaks down the potentially tough problem of MLE into two stages. The
basic idea is shown below.

E-step:
Guess z

M-step:
MLE to fit θ to X,Z
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Following the above example, we present the EM algorithm in detail.

REPEAT
E-step:
for n = 1 . . . N

for z = 1 . . .K
p(z, n) = θz(z) · θx1|z(x

n
1 |z) · θx2|z(x

n
2 |z)

sum+= p(z, n)
for z

p(z, n)← p(z,n)
sum(

An alternative:
ec(z) += p(z, n)
ec(z, xn1 ) += p(z, n)
ec(z, xn2 ) += p(z, n)

)
M-step:
for z

ec(z) =
∑N
n=1 p(z, n)

θz ← ec(z)
N

for z, x1

ec(z, x1) =
∑N
n=1 I(xn1 = x1)p(z, n)

θx1|z = ec(z,x1)
ec(z)

for z, x2

ec(z, x2) =
∑N
n=1 I(xn2 = x2)p(z, n)

θx2|z = ec(z,x2)
ec(z)

UNTIL convergence

where sum is for normalization and ec(·) denotes the expected count, which is not a real count but an
average on what we think z is. Namely, this count is probabilistic. The intuition is to assign some credit to
each possible value. Also note that I(·) is an indicator function (return 1/0 if the condition is true/fasle). In
the following, we will derive how to approximate the maximum of the likelihood by maximizing the joint
probability’s log likelihood iteratively through E-M steps. For the example present in Sec.2, now let us go
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further using the same formulation with Eqn. (41).

θ = argmax
θ

Q(θ; θold)

= argmax
θ

Ep(z|x,θold) log p(X,Z)

= argmax
θ

Ep(z|x,θold)

[
log
∏
n

p(xn1 , x
n
2 , z

n)
]

= argmax
θ

E
[

log
∏
n

p(zn) · p(xn1 |zn) · p(xn2 |zn)
]

= argmax
θ

E
[∑
n

log p(zn) +
∑
n

log p(xn1 |zn) +
∑
n

log p(xn2 |zn)
]

(
= argmax

θ
E
[∑

n

log θzn +
∑
n

log θxn
1 |zn +

∑
n

log θxn
2 |zn

] )
= argmax

θ
E
[∑

k

∑
n

I(zn = k) log p(z = k) +
∑
k

∑
n

I(xn1 = x1|zn = k) log p(x1|z = k)

= argmax
θ

E
[∑

k

c(z = k) log p(z = k) +
∑
k

c(x1, z = k) log p(x1|z = k) +
∑
k

c(x2, z = k) log p(x2|z = k)
]

(
= argmax

θ

∑
k

E
[
c(z = k)

]
log θz=k +

∑
k

E
[
c(x1, z = k)

]
log θx1|z=k +

∑
k

E
[
c(x2, z = k)

]
log θx2|z=k

= argmax
θ

∑
k

ec(z) log θz=k +
∑
k

ec(x1, z) log θx1|z=k +
∑
k

ec(x2, z) log θx2|z=k

)
Therefore, θ = 1

sum0
ec(z), θx1|z = 1

sum1
ec(x1, z), and θx2|z = 1

sum2
ec(x2, z), but make sure that normal-

ization is done (sum to 1). Notably, c(·) denotes the count and ec(·) denotes the expected count. Also note
that E

[
c(z = k)

]
= ec(z) which we have mentioned in the EM algorithm flow, and similar for ec(x1, z) and

ec(x2, z).

17.3 EM Algorithm in General

Now, we will give a general derivation for the EM algorithm. The denotation will be the same with the
above. Similarly, we have θ = argmaxθ Q(θ; θold) = argmaxθ Ep(z|x,θold) log p(X,Z). Let us focus on the
objective function Q.

Q(θ; θold) = Ep(z|x,θold) log p(X,Z)

= Ep(z|x,θold) log
[
p(Z|X) · p(X)

]
= Ep(z|x,θold)

[
log p(Z|X) + log p(X)

]
= E

[
log

p(Z|X)

pθold(Z|X)
· pθold(Z|X)

]
+ log p(X)

make it look like K-L divergence

= E
[
− log

pθold(Z|X)

p(Z|X)

]
− E

[
− log pθold(Z|X)

]
+ log p(X)

= −D
(
Z|X, θold

∥∥∥Z|X, θ)−H(Z|X, θold)+ L(θ)

where D, H , L are respectively the K-L divergence, the entropy and the likelihood. Note that our objective
is to maximize the likelihood log p(X). It does not have Z inside, so it can be put out of E(·). Now, we write
down L(θ) with simplified notations:

L(θ) = Q(θ; θold) +H(θold) +D(θold‖θ) (42)
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whereQ,H andD are all dynamic functions. The approximation can be illustrated in the space of parameter
θ, as shown schematically in the figure below. Here the red curve depicts L(θ) (incomplete data) which we
wish to maximize. We start with some initial parameter value θold, and in the first E step we evaluate the
distribution of Q(θ; θold) + H(θold), as shown by the blue curve. Since the K-L divergence D(θold‖θ) is
always positive, the blue curve gives a lower bound to the red curve L(θ). And D(θold‖θ) just gives the
gap between the two curves. Note that the bound makes a tangent contact with L(θ) at θold, so that both
curves have the same gradient and D(θold‖θold) = 0. Thus, L(θold) = Q(θold; θold) + H(θold). Besides, the
bound is a convex function having a unique maximum at θnew = argmaxθ

[
Q(θ; θold)

]
. In the M step, the

bound is maximized giving the value θnew, which also gives a larger value of L(θ) than θold: L(θnew) =
Q(θnew; θold) + H(θold) + D(θold‖θnew). In practice, during the beginning iterations, this point is usually
still far away from the maximum of L(θ). However, if we run one more iteration, the result will get better.
The subsequent E step then constructs a bound that is tangential at θnew as shown by the green curve.
Iteratively, the maximum will be accessed in the end, in a manner kind of similar with gradient ascent. In
short, there are two properties for the EM algorithm: (1) the performance gets better step by step. (2) it will
converge. At last, it should also be emphasized that EM is not guaranteed to find the global maximum,
for there will generally be multiple local maxima. Being sensitive to the initialization, EM may not find the
largest of these maxima.

In this lecture, we quickly go through the details of the EM algorithm, which maximizes L through
maximizing Q at each iteration step. Then, the remaining problems are how to compute Q, and exactly
how to compute p(Z|X, θold).
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17.4 Gradient Ascent ( ∂L
∂θ

)

Gradient Ascent ∂L∂θ means the gradient of likelihood function w.r.t. parameters.
Using the gradient ascent, our new parameter θnew is given by :

θnew = θold + η
∂L

∂θ

EM (expectation maximization) generally finds a local optimum of θ more quickly, because in this
method we optimize the q-step before making a jump. It is similar to saying that we make a big jump
first and then take smaller steps accordingly. But for Gradient Ascent method, the step size varies with the
likelihood gradient, and so it requires more steps when the gradient is not that steep.

We are required to find EP (Z|X,θ)[Z|X]

Our θ =


P (Z)

P (X1|Z)

P (X2|Z)

which is a long list of all the possible probabilities, after unfolding each of them.
We should make sure that the parameters (θ = [θ1, θ2], for only 2 parameters) always stays within the

straight line shown below. It should never go out of the line.

P (Z = k) = θk =
eλk∑
k′ e

λ
k′

In this case, the gradient ascent is used to find the new value of λ

λnew = λold + η
∂L

∂λ

17.5 Newton’s Method

θnew = θold + (∇2
θL)−1(∇θL)

In Newton’ Method, we approximate the curve with a quadratic function, and we jump to the maximum
of the approximation in each step.

Differences between Newton’s Method and EM :

1. Newton’s Method takes a lot of time, because we need to calculate the Hessian Matrix, which is the
2nd derivative.

2. Since there is no KL divergence in Newton’s Method, there is always a chance that we take a big jump,
and arrive at a point far away from the global optimum and in fact worse than where we started.
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17.6 Variational Method

In this method, at first we trace the Likelihood function by a new parameter, then fix and optimize that pa-
rameter, and then once again start the iteration, until we get the optimum value of the Likelihood function.

17.7 Mixture of Gaussians

P (X) =
∑
k

P (Z = k)N(X|µk,Σk)

=
∑
k

λkN(X|µk,Σk),

where µ and Σ are the mean vector and co-variance matrix respectively.

N(X|µ,Σ) =
e−0.5(X−µ)T Σ−1(X−µ)

(2π)D/2|Σ|0.5
(43)

Here X and µ are vectors, Σ is a 2-D matrix, and D is the dimensionality of data X. The lefthand side of
equation 43 refers to :

N




X1

X2

...
XN


∣∣∣∣∣∣∣∣∣µ,Σ


For 1-D data,

N(X|µ, σ) =
e−0.5(X−µ)2/σ2

(2π)0.5σ

Equation (1) is similar to writing as f(X) = XTAX ; wherein we are stretching the vector space.
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The MLE estimates of the parameters of a Gaussian are as follows:

µ∗ =

∑
nXn

N

σ∗ =

√∑
n(Xn − µ∗)2

N

Σ∗ =

∑
n(Xn − µ∗)(Xn − µ∗)T

N
, where Σ is the covariance matrix

Σij =

∑
n(Xi

n − µi)(Xj
n − µj)

N
= covariance(Xi,Xj)

Θ ( parameters of the model ) = λ, µk,Σ , where λ and µk are vectors
E-step

for n = 1, 2, . . . , N

P (Z|Xn) =
P (Z)P (Xn|Z)

P (Xn)

=
λk exp[− 1

2 (Xn − µk)TΣ−1(Xn − µk)]∑
k′ λk′ exp[− 1

2 (Xn − µk′)TΣ−1(Xn − µk′)]

M-step
for k = 1, 2, . . . ,K (total number of hidden variables)

λk =

∑N
n=1 P (Z = k|Xn)

N

µk =

∑
n P (Z = k|Xn)Xn∑
n P (Z = k|Xn)

Σk =

∑
n P (Z = k|Xn)(Xn − µk)(Xn − µk)T∑

n P (Z = k|Xn)

18 Sampling

We have already studied how to calculate the probability of a variable or variables using the message
passing method. However, there are some times when the structure of the graph is too complicated to be
calculated. The relation between the diseases and symptoms is a good example, where the variables are all
mixed together and brings the graph a high tree width. Another case is that of continuous variable, where
during the message passing,

rm→n =

∫
f(~xm)

∏
n′

qn′→m(xn′)d(~xm\xn).

If this integration can not be calculated, what can we do to evaluate the probability of variables? This is
what sampling is used for.

18.1 Importance Sampling

Suppose we can compute P (x) but not sample from it. Define an auxiliary ditribution Q(x) that is easy to
sample from, and which, ideally, approximates P (x). We wish to estimate EP [f(x)]:

x(n) ∼ Q(x) n ∈ 1 . . . N
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f̂ =
1

N

∑
n

P (x(n))

Q(x(n))
f(x(n))

In this case, f̂ is an unbiased estimator of EP [f(x)]:

EQ[f̂ ] =
1

N

∑
n

EQ

[
P (x)

Q(x)
f(x)

]
=
∑
x

P (x)f(x) = EP [f(x)]

More often, we cannot compute P (x), but can compute P ∗(x) = ZP (x). We can estimate EP [f(x)] as
follows:

x(n) ∼ Q(x) n ∈ 1 . . . N

f̂ =
1∑

n
P (x(n))
Q(x(n))

∑
n

P (x(n))

Q(x(n))
f(x(n))

In this case, f̂ is a biased, but consistent, estimator of EP [f(x)]. Consistent means it will converge to the
true value as the number of samples increases:

lim
N→∞

f̂ = EP [f(x)]

18.2 How to Sample a Continuous Variable: Basics

Now let us forget the above for a moment, say if we want to sample for a continuous variable, how can
we ensure that the points we pick up satisfy the distribution of that variable? This question is easy for
variables with uniform distribution, since we can generate random numbers directly using a computer.
For some complicated distributions, we could use the inverse of cumulative distribution function (CDF)
to map the uniform distribution onto the required distribution to generate samples, where the CDF for a
distribution with probability distribution function (PDF) of P is

CDF(x) =

∫ x

−∞
P (t)dt.

For example, if we want to sample from a variable with standard normal distribution, the points we
pick up are calculated from

X = erf−1(x),

where x is drawn from a uniform distribution, and

erf(x) =

∫ x

0

N (t, 0, 1)dt,

We could play the same trick for many other distributions. However, there are some distributions which
do not have a closed-form integral to calculate their CDF, which makes the above method fail. Under such
conditions, we could turn to a framework called Markov chain Monte Carlo (MCMC).

18.3 The Metropolis-Hastings Algorithm

Before discussing this method in more detail, let us review some basic properties of Markov chains. A first-
order Markov chain is a series of random variables such that each variable depends only on its previous
state, that is,

xt ∼ P (xt|xt−1).

Our goal is to find a Markov chain which has a distribution similar to a given distribution which we
want to sample from, so that by running the Markov chain, we get results as if we were sampling from
the original distribution. In other words, we want to have the Markov chain that eventually be able to 1)
explore over the entire space of the original distribution, 2) reflect the original PDF.
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The general algorithm for generating the samples is called the Metropolis-Hastings algorithm. Such an
algorithm draws a candidate

x′ ∼ Q(x′;xt),

and then accepts it with probability

min

{
1,
P (x′)Q(xt;x′)

P (xt)Q(x′;xt)

}
.

The key here is the function Q, called proposed distribution which is used to reduce the complexity of the
original distribution. Therefore, we have to select a Q that is easy to sample from, for instance, a Gaussian
function. Note that there is a trade-off on choosing the variance of the Gaussian, which determines the step
size of the Markov chain. If it is too small, it will take a long time, or even make it impossible for the states
of the variable to go over the entire space. However, if the variance is too large, the probability of accepting
the new candidate will become small, and thus it is possible that the variable will stay on the same state for
ever. All these extremes will make the chain fail to simulate the original PDF.

If we sample from P directly, that is Q(x′;xt) = P (x′), we have

P (x′)Q(xt;x′)

P (xt)Q(x′;xt)
= 1,

which means that the candidate we draw will always be accepted. This tells us that Q should approximate
P .

By the way, how do we calculate P (x)? There are two cases.

• Although we cannot get the integration of P (x), P (x) itself is easy to compute.

• P (x) = f(x)/Z, where Z =
∫
f(x)dx is what we do not know. But since we know f(x) = ZP (x), we

could just substitute f(x) instead of P (x) in calculating the probability of acceptance of a candidate.

18.4 Proof of the method

In this section, our goal is to prove that the Markov chain generated by the Metropolis-Hastings algorithm
has a unique stationary distribution. We will first introduce some basics about the definition of the sta-
tionary distribution, and the method to prove this “stationary”. Then we will apply those knowledge to
accomplish our goal.

1. Stationary distribution

A distribution with respect to a Markov chain is said to be stationary if the distribution remains the
same before and after taking one step in the chain, which could be denoted as

Πt = T ×Πt−1 = Πt−1,

or
Πi =

∑
j

TijΠj , ∀i,

where Π is a vector which contains the stationary distribution of the state of the variable in each
step with its element Πi = P (x = i), and T is the transition probability matrix where its element
Tij = P (xt = i|xt−1 = j) denotes the probability that the variable transits from state j to i. For

example, the two Markov chains in 8a and 8b all have a stationary distribution Π =

[
0.5
0.5

]
.

The stationary distribution of a Markov chain could be calculated by solving the equation
TΠ = Π∑

i

Πi = 1 .
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Figure 8: Example Markov Chains

Note that there might be more than one stationary distribution for a Markov chain. A rather simple
example would be a chain with a identity transition matrix shown in 8c.

If a Markov chain has a stationary distribution and the stationary distribution is unique, it is ensured
that it will converge eventually to that distribution no matter what the original state the chain is.

2. Detailed Balance: Property to ensure the stationary distribution

Once we know a Markov chain is uniquely stationary, then we can use it to sample from a given
distribution. Now, we will see a sufficient (but not necessary) condition for ensuring a Π is stationary,
which is a property of the transition matrix called Detailed Balance. The definition of such a property
is

∀ij, TijΠj = TjiΠi,

which means Pi→j = Pj→i, and is also called reversibility due to the symmetry of the structure.

Starting from such definition, we have

∀i,
∑
j

TijΠj =
∑
j

TjiΠi = Πi

∑
j

Tji.

Note that
∑
j Tji = 1, we come up with

∀i,
∑
j

TijΠj = Πi · 1 = Πi,

which is exactly the second definition of stationary distribution we have just discussed. Therefore, if a
distribution makes the transition matrix of a Markov chain satisfy detailed balance, that distribution is
the stationary distribution of that chain. Note that although a periodic Markov chain like that shown
in 8d satisfies detailed balance, we do not call it stationary. This because it will not truly converge
and thus is not guaranteed to approximate the original PDF. What is more, it is often the case that we
add a probability like shown in 8e to avoid such a periodic circumstance.

Note that the Detailed Balance does not ensure the uniqueness of the stationary distribution of a
Markov chain. However, such uniqueness is necessary, or the Markov chain would not go to the PDF
we want. What we could do is that, when we construct the chain at the very beginning, we make
the chain such that 1) any state is reachable for any other and 2) the chain is aperiodic. Under that
condition, we could ensure the uniqueness of the stationary distribution.
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3. Final proof

Now, let us be back to the Metropolis-Hastings algorithm and prove that the transition matrix of its
Markov chain has the detailed balance property. If we can prove that, it is obvious that such a Markov
chain has a unique stationary distribution.

According to the Metropolis-Hastings algorithm, the transition probability of the Markov chain of the
algorithm is

T (x′;x) = Q(x′;x) ·min

{
1,
P (x′)Q(x;x′)

P (x)Q(x′;x)

}
If x′ = x, then it is automatically detailed balancing due to the symmetry of the definition of detailed
balance. To be specific, the condition of detailed balance, which is

∀ij, TijΠj = TjiΠi,

will always be valid if i = j, which is just the case of x′ = x.

For the circumstances that x′ 6= x, by using the distributive property of multiplication, the transition
probability is derived as,

T (x′;x) = min

{
Q(x′;x),

P (x′)Q(x;x′)

P (x)

}
.

Multiply both sides by P (x), it turns out that

T (x′;x)P (x) = min {Q(x′;x)P (x), P (x′)Q(x;x′)}︸ ︷︷ ︸
symmetric for x & x′

= T (x;x′)P (x′)

Therefore, we proved the detailed balance of the transition matrix, and thus the Markov chain of the
Metropolis-Hastings algorithm does have a stationary distribution, which means that we could use
such a Markov chain to simulate the original PDF.

18.5 Gibbs Sampling

Now, back to the very first problem of this class, we want to get the result of

P (xk) =
∑
~x\xk

1

Z

∏
m

f(~xm)

without knowing Z. We could use the Gibbs Sampling, shown in Algorithm 1, where x¬k means all the

Algorithm 1 Gibbs Sampling

procedure GIBBS SAMPLING
repeat

for k = 1 . . .K do
xk ∼ P (xk|x¬k) = 1

Z′

∏
m∈M(k) f(~xm)

until convergence

variables x except xk. Note that the Gibbs Sampling is actually a particular instance of the Metropolis-
Hastings algorithm where the new candidate is always accepted. This is proved as follows.
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Substitute 

P (x) = P (x¬k)P (xk|x¬k)

P (x′) = P (x′¬k)P (x′k|x′¬k)

Q(x′;x) = P (x′k|x¬k)

Q(x;x′) = P (xk|x′¬k)

x′¬k = x¬k

into the probability of the accepting the new candidate, we have

P (x′)Q(x;x′)

P (x)Q(x′;x)
=
P (x′¬k)P (x′k|x′¬k)P (xk|x′¬k)

P (x¬k)P (xk|x¬k)P (x′k|x¬k)

= 1.

Therefore, the Gibbs Sampling algorithm will always accept the candidate.

18.6 Gibbs sampling with Continuous Variables.

What about the continuous case particularly where sampling is hard? Here we can have a second sampling
step:

repeat
f o r k ← 1 . . .K

~xk ∼ P (~xk|~x¬k) =


1

Z

∏
m∈M(k)

fm(~xm)

Metropolis–Hastings

18.7 EM with Gibbs Sampling.

E–step Sample each variable.

M–step Use hard (fixed value of the sample) assignments from sampling in:

λk =

∑
n I(zn = k)

N
=
Nk
N

(44)

In this I is counting how many points are assigned k and we denote this sum as Nk.

µk =

∑
n I(zn = k)~xn∑
n I(zn = k)

=

∑
n I(zn = k)~xn

Nk
(45)

The computation of Σ is similar.

18.7.1 Some problems.

What we have above is an approximation to what EM is doing. If we put the computations in expectation
it is the same as EM. One problem with EM in general is that if a probability of a cluster hits zero it never
comes back. In sampling we can get unlucky and get all zeros and never get that cluster back.
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18.7.2 Some advantages.

With sampling we can apply EM to complicated models. For example, a factor graph with cycles or highly
connected components. Sampling can be improved by sampling L times in the E–step.

In practice a short cut is taken and we combine the E and the M steps and take advantage of samples
immediately:

f o r n← 1 . . . N
sample zn

λk ← λk + 1
N I(zn = k)− 1

N I(znold = k)
or

λk ← Nk

N

µ̂← µ̂+ I(zn = k)~xn − I(znold = k)~xn

µk ← µ̂
λkN

We are keeping a running count and updating it as we sample. New observations move data points
from their current cluster to a new cluster so we subtract the old observation and add the new one. This
technique is widely used and easy to implement.

If we run this long enough it should correspond to the real distribution of hidden variablesP (z1 . . . zN |~x1 . . . ~xN )
— but what does that mean here? Although we have defined P (zn|~xn;λ, µ,Σ), the parameters λ, µ, and Σ
are changing as sampling progresses. If we run long enough we know that, because the problem is sym-
metric, P (zn = k) = 1

K .
To make sense of this we will make λ, Σ, and µ variables in our model with some distribution P (λ).

These variables have no parents so we can pick this distribution. We have seen this before and choose to
use the Dirichlet distribution so we let P (λ) = Dir(α). Any point is just as likely to be µ so we let P (µ) = 1
and similarly P (Σ) = 1.

We can take P (λ) into account when we sample:

zn ∼ λkN (~x;µkΣk)

Z

When we have seen data the probability of the next is:

P (zN+1|z1 . . . zN ) =
c(k) + α

N +Kα

Applying this we have:

zn ∼
Nk+α
N+KαN (~x;µkΣk)

Z

λk =
Nk + α

N +Kα

Now λk can never go all the way to zero. Now if we run long enough we will converge to the real
distribution. We have a legitimate Gibbs sampler (states with just relabeling have equal probability). We
are sampling with

λk =
1

Z

∫
P (z1 . . . zN |λ)P (λ)dλ

The λ is integrated out, giving what is called a collapsed Gibbs sampler.
A remaining question is: when should we stop? If we plot P (x) as we iterate we should see a general

trend upward with some small dips and then the curve levels off. But, it could be that in just a few steps a
better state could continue the upward trend.

The real reason for doing this Gibbs sampling is to handle a complicated model. One example of that
could be a factor graph of diseases and symptoms due to its high tree width. If we try to use EM directly
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we have exponential computation for the expected values of the hidden variables. With Gibbs we avoid
that problem.

19 PAC learning

See reading from Kearns & Vazirani.

20 Logistic Regression a.k.a. Maximum Entropy

P (y|x) =
1

Zx
e
∑

i λifi(x,y) (46)

Zx =
∑
y

e
∑

i λifi(x,y) (47)

For example, in NLP, we may use

f100(x, y) =

{
1 if x=word that ends with ‘tion’ and y=Noun ,
0 otherwise .

The above is more general binary classification where we are only deciding whether an example belongs
to a class or NOT. Here, we can have features contributing to multiple classes according to their weights.
For binary classification, the decision boundary is linear, as with perceptron or SVM. A major difference
from SVMs is that, during training, every example contributes to the objective function, whereas in SVMs
only the examples close to the decision boundary matter.

If we plot this function, we get a sigmoid-like graph. We can draw analogy between maximum entropy
and neural network, and consider features as the input nodes in the neural network.

If we take the log of equation (46), we get a linear equation

logP =
∑
i

λifi + c

What should λ be?

max
λ

log

(
N∏
n=1

P (yn|xn)

) 1
N

= max
λ

∑
n

1

N
log

(
1

Zx
e
∑

i λifi

)

= max
λ

1

N

∑
n

(∑
i

λifi − logZx

)

In the above equation, the first term is a simple function of λ is easy, but the second term is more
complex. To maximize w.r.t. λ, we turn it into a concave form and find the point where the derivative w.r.t.
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λ is zero (hill climbing)

L =
1

N

∑
n

∑
i

λifi − log
∑
y

e
∑

i λifi(xn,y) (48)

∂L

∂λj
=

1

N

∑
n

fj −
1

Zx

∂

∂λj

(∑
y

e
∑

i λifi

)
(49)

=
1

N

∑
n

[
fj −

1

Zx

∑
y

fje
∑

i λifi(y,xn)

]
(50)

=
1

N

∑
n

fj −
∑
y

fjP (y|xn) (51)

=
1

N

∑
n

fj(xn, yn)−
∑
y

fjP (y|xn) (52)

We can morph eq. 52 into expectation form by defining joint probability as follows:

P (y, x) = P (y|x) P̃ (x) (53)

P̃ (x) =
1

N

∑
n

I(xn = x) (54)

P̃ (y|x) =
c(xn = x, yn = y)

c(xn = x)
(55)

Rewriting eq. 52 in expectation form, we get:

∂L

∂λj
= EP̃ [fj ]− EP [fj ] (56)

where the first term (before the minus) is a constant, and the complexity of calculating the second term
depends on the number of classes in the problem. Now we have:

λ← λ+ η
∂L

∂λ
(57)

We will justify why we chose log linear form instead of something else. Assume we want to find the
maximum entropy subject to constraints on the feature expectations:

max
P (y|x)

H(y|x) (58)

min
P (y|x)

−H(y|x) (59)

s.t. EP̃ [fi] = EP [fi] ∀i (60)∑
y

P (y|x) = 1 ∀x (61)

To put this into words, we want to build a model such that for each feature, our model should match
the training data. We have

H(y|x) =
∑
x,y

P̃ (x)P (y|x) log
1

P (y|x)
(62)

51



Find the maximum entropy of the above equation as follows

L(P, λ, µ) =f0 +
∑
j

λjfj (63)

=
∑
x,y

P̃ (x)P (y|x) logP (y|x) (64)

+
∑
i

λi

(∑
x,y

P̃ (x)P̃ (y|x)fi − P̃ (x)P (y|x)fi

)
(65)

+
∑
x

P̃ (x)µx

(∑
y

P (y|x)− 1

)
(66)

∂L

∂P (y|x)
= P̃ (x) (logP (y|x) + 1)−

∑
i

λiP̃ (x)fi + P̃ (x)µx = 0 (67)

logP (y|x) = −1 +
∑
i

λifi − µx (68)

P (y|x) = e−1−µxe
∑

i λifi (69)

=
1

Zx
e
∑

i λifi (70)

The above result shows that maximum entropy has log-linear form. If we solve the dual of the problem

g(λ, µ) = EP

[∑
i

λifi − 1− µx

]
+ EP̃

[∑
i

λifi

]
− EP

[∑
i

λifi

]
+ EP [µx]−

∑
x

P̃ (x)µx (71)

= EP [−1− µx] + EP̃

[∑
i

λifi

]
+ EP [µx]−

∑
x

P̃ (x)µx (72)

= EP [−1] + EP̃

[∑
i

λifi

]
−
∑
x

P̃ (x)µx (73)

= −
∑
x,y

P̃ (x)e−1−µxe
∑

i λifi + EP̃

[∑
i

λifi

]
−
∑
x

P̃ (x)µx (74)

(75)

Solving analytically for µx that maximzes g:

0 =
∂g

∂µx
= P̃ (x)

(∑
y

e−1−µx+
∑

i λifi − 1

)
(76)

1 =
∑
y

e−1−µx+
∑

i λifi (77)

eµx =
∑
y

e−1+
∑

i λifi (78)

µx = log
∑
y

e
∑

i λifi − 1 (79)
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Substituting µx into g:

g(λ, µ) = −
∑
x,y

P̃ (x)
1∑

y e
∑

i λifi
e
∑

i λifi + EP̃

[∑
i

λifi

]
−
∑
x

P̃ (x)

(
log
∑
y

e
∑

i λifi − 1

)
(80)

= −1 + EP̃

[∑
i

λifi

]
−
∑
x

P̃ (x) log

(∑
y

e
∑

i λifi

)
+ 1 (81)

= EP̃

[∑
i

λifi

]
−
∑
x

P̃ (x) log

(∑
y

e
∑

i λifi

)
(82)

= EP̃

[∑
i

λifi − log

(∑
y

e
∑

i λifi

)]
(83)

= EP̃

[∑
i

λifi − logZx

]
(84)

= EP̃ [logP (y|x)] (85)
= L (86)

Thus solving the dual of the entropy maximization problem consists of maximizing the likelihood of the
training data with a log-linear functional form for P (y|x).

21 Hidden Markov Models

A Hidden Markov Model (HMM) is a Markov Chain (a series of states with probabilities of transitioning
from one state to another) where the states are hidden (latent) and each state has an emission as a random
variable. The model is described as follows:

• Ω : the set of states, with yi ∈ Ω denoting a particular state

• Σ : the set of possible emissions with xi ∈ Σ denoting a particular emission

• P ∈ RΩ×Ω
[0,1] : the matrix with each element giving the probability of a transition

• Q ∈ RΩ×Σ
[0,1] : the matrix with each element giving the probability of an emission

• Π : the matrix with each element giving the probability of starting in each state

The probability distribution of an HMM can be decomposed as follows:

P (x1, . . . xn, y1, . . . , yn) = Π(y1)

n−1∏
i=1

P (yi, yi+1)

n∏
i=1

Q(yi, xi)

An example HMM is given:
Ω = {1, 2}

Σ = {a, b, c}

P =

(
1
3

2
3

1
2

1
2

)
Q =

(
1 0 0
1
3

1
2

1
6

)
One possible sequence of observations would be:

1 2 2 1 1 2 1 1 2
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↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a b c a a a a a b

We can consider multiple problems relating to HMMs.

1. Decoding I: Given x1, . . . , xn, P,Q,Π, determine the sequence y1 . . . yn that maximizesP (Y1, . . . Yn|X1, . . . Xn).

2. Decoding II: Given x1, . . . , xn and t, determine the distribution of yK , that is, for all values a of yt,
P (yt = a|X1, . . . , Xn).

3. Evaluation: Given x1, . . . xn, determine P (X1, . . . Xn).

4. Learning: Given a sequence of observations, x(1)
1 , . . . x

(1)
n , . . . x

(k)
1 , . . . x

(k)
n , learn P,Q,Π that maximize

the likelihood of the observed data.

We define two functions, α and β.

αt(a) := P (X1 = x1, . . . , Xt = xt, Yt = a)

βt(a) := P (Xt+1 = xt+1, . . . , Xn = xn | Yt = a)

which are also recursively defined as follows:

αt+1(a) =
∑
c∈Ω

αt(c)P (c, a)Q(a, xt+1)

βt−1(a) =
∑
c∈Ω

Q(c, xt)β
t(c)P (a, c)

We return to the Decoding II problem. Given x1, . . . , xn and t, determine the distribution of YK , that is, for
all values a of Yt, P (Yt = a|X1, . . . , Xn). To do this, we rewrite the equation as follows:

P (yt = a|X1, . . . , Xn) =
P (X1, . . . , Xn, Yt = a)

P (X1, . . . , Xn)
.

However, we need to calculate P (X1, . . . , Xn). We can do this using either α or β.

P (X1, . . . , Xn) =
∑
a∈Ω

αn(a)

=
∑
a∈Ω

β1(a)Π(a)Q(a, x1)

The Decoding I problem can be solved with Dynamic Programming. (Given x1, . . . , xn, P,Q,Π, determine
the sequence y1 . . . yn that maximizes P (Y1, . . . Yn|X1, . . . Xn).) We can fill in a table with the following
values:

T [t, a] = max
y1...yt,yt=a

P (y1, . . . yt|X1, . . . Xt)

which means that each value is the probability of the most likely sequence at time t with the last emission
being a. This can be computed using earlier values with the following formula:

T [t+ 1, a] = max
c∈Ω

T [t, c]P (c, a)Q(a, xt+1)

To compute the most likely sequence, we simply solve

max
a∈Ω

T [n, a]
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The learning problem can be solved using EM. Given the number of internal states, and x1, . . . xn, we want
to figure out P , Q, and Π. In the E step, we want to compute an expectation over hidden variables:

L(θ, q) =
∑
y

q(Y |X) log
P (X,Y |θ)
q(Y |X)

For HMM’s, the number of possible hidden state sequences is exponential, so we use dynamic program-
ming to compute expected counts of individual transitions and emissions:

P (a, b) ∝
n−1∑
i=1

q(Yi = a, Yi−1 = b|X1 . . . Xn) (87)

Q(a,w) ∝
n∑
i=1

q(Yi = a|X1 . . . Xn)I(X = w) (88)

The new P is defined as:

P new(a, b) ∝
n−1∑
i=1

αi(a)P old(a, b)Qold(b, xi+1)βi+1(b)

The new Q is defined as:
Qnew(a,w) ∝

∑
i:xi=w

αi(a)βi+1(a)

22 LBFGS

To train maximum entropy (logistic regression) models, we maximized the probability of the training data
over possible feature weights λ:

max
λ

∏
n

P (Yn|Xn)

It is to maximize
L = log

∏
n

1

ZXn

e
∑

i λifi

Of course we can solve it by using gradient ascend, but we today will talk about using an approximation
of Newton’s method.

22.1 Preliminary

For quadratic objective function

f(x) =
1

2
x>Ax+ b>x+ c

Newton’s iteration is given by

xk+1 = xk + (∇2f(xk))−1∇f(xk)

However, the exact version of Newton’s method involves a few problems as follows:

• We need to compute Hessian∇2f , which is expensive.

• We also need to invert Hessian, which is also a costly operation.

• Furthermore, we need to store Hessian, which is expensive in terms of space.

So in order to compute Newton’s iteration in a fast but relatively accurate way, an approximation should
be developed. L-BFGS is one of them.
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22.2 The BFGS Algorithm

Let Bk denote our approximation of the Hessian∇2f(xk) and then we can write Newton’s iteration as

xk+1 = xk − αB−1
k ∇f(xk)

Because the Hessian can be seen as the second order derivative of f , we wish to choosse Bk such that:

Bk(xk+1 − xk) = ∇f(xk+1)−∇f(xk)

Let

sk = xk+1 − xk
yk = ∇f(xk+1)−∇f(xk)

then we have

Bksk = yk

This is to say that, our approximation is a solution of above equation. Consider

Bk =
yky
>
k

s>k yk

Because

Bksk =
yky
>
k sk

s>k yk
=
yk(y>k sk)

s>k yk
= yk

Further, let Hk be our approximation of (∇2f(xk))−1, the inverse of Hessian. We will have:

sk = Hkyk

Hk is a solution of above equation. One such Hk is given by

Hk =
sks
>
k

s>k yk

So, we want a direct formula of computing a symmetric Hk+1 from Hk. That is, we want to fill in the ?
term in following equation

Hk+1 = Hk +
sks
>
k

s>k yk
+?

such that sk = Hk+1yk

With careful proofs and calculation, we get

Hk+1 = (I − ρksky>k )Hk(I − ρkyks>k ) + ρksks
>
k (89)

where ρk = 1
s>k yk

.
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22.3 Proof of the method

The problem can be formalized as minimizing ‖Hk+1−Hk‖ such thatHk+1yk = sk andH>k+1 = Hk+1. Here
‖ · ‖ is defined as follows:

‖A‖2 = ‖W 1
2AW

1
2 ‖2f

where ‖A‖f is defined as the square sum of all entries,
∑
i,j a

2
ij and W is any matrix such that Wsk = yk.

It is easy to verify that Hk+1yk = sk and Hk+1 is symmetric, as follows:

Hk+1yk = (I − ρksky>k )Hk(I − ρkyks>k )yk + ρksks
>
k yk

= ...Hk(yk − ρks>k yk) + ρksks
>
k yk

= ...Hk(yk − yk) + sk

= sk

22.4 L-BFGS Algorithm

L-BFGS algorithm tries to approximate Hk+1∇f(xk+1) together. From 89, we can unroll the last m Hk’s.
Then we will compute Hk+1 directly from Hk−m.

Hk+1 =V >k ..V
>
k−mHk−mVk−m..Vk

+ ρk−mV
>
k ..V

>
k−msk−ms

>
k−mVk−m..Vk

+ ..

+ ρksks
>
k

In the equation above, Vk = I − ρksky>k . The algorithm is

Algorithm 2 L-BFGS

procedure LBFGS( Hk−m, si, yi)
q ← ∇fk
for i = k − 1..k −m do

αi ← ρis
>
i q

q ← q − αiyi
r ← Hk−mq
for i = k −m..k − 1 do

β ← ρiy
>
i r

r ← r + si(αi − β)
return r

In the algorithm, Vk = I − ρkyks>k . This algorithm needs to keep track of sk and yk in the last m steps
and each step requires 2n space(n for sk and n for yk). So a total of O(2mn) space is needed.

There are many user libraries that have already implemented this algorithm, so we can just use them
for our computing.

23 Gradient Descent

Gradient descent is guaranteed to converge in the limit under very general assumptions:

lim
t→∞

(
f(x(t))− f(x∗)

)
= 0

{ ∑∞
t=1 ηt = +∞

limt→∞ ηt = 0

We now analyze the speed of convergence with a fixed learning rate under specific assumptions about f(x).
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Theorem 1. Assume f(x) is differentiable and convex,∇f(x) is L-Lipschitzian, i.e. ‖∇f(x′)−∇f(x′′)‖ ≤ L‖x′−
x′′‖, then f(x(t))− f(x∗) = O( 1

t ) when η < 1
2L .

The assumption that f(x) is L-Lipschitzian gives a quadratic upper bound:

f(x) ≤ f(x′) + (x− x′)T∇f(x′) +
L

2
‖x− x′‖2 (90)

The assumption that f(x) is convex gives a linear lower bound:

f(x) ≥ f(x′) + (x− x′)T∇f(x′) (91)

The update rule for gradient decent is:

x(t+1) = x(t) − η∇f(x(t))

The learning rate is chosen to guarantee that we make progress at each step. When we are up against
the quadratic upper bound, f(x) = L

2 ‖x‖
2 and η = 1

2L , and f(x(t+1)) = f(x(t)). Any smaller step size will
guarantee that f(x(t+1)) < f(x(t)).

Proof.

‖x(t+1) − x∗‖2 = ‖x(t) − x∗ − η∇f(x(t))‖2

=
(
x(t) − x∗ − η∇f(x(t))

)T (
x(t) − x∗ − η∇f(x(t))

)
= ‖x(t) − x∗‖2 + η2‖∇f(x(t))‖2 + 2η∇f(x(t))T (x∗ − x(t))

From Equation 91, f(x) ≥ f(x′) + (x− x′)T∇f(x′):

‖x(t+1) − x∗‖2 ≤ ‖x(t) − x∗‖2 + η2‖∇f(x(t))‖2 + 2η(f(x∗)− f(x(t))) (92)

The quadratic upper bound of equation 90 implies that:

f(x∗) ≤ f(x′) ≤ f(x) +∇f(x)T (x′ − x) +
L

2
‖x′ − x‖2

f(x∗) ≤ f(x)− 1

2L
‖∇f(x)‖2 choosing x′ = x− 1

L
∇f(x)

‖∇f(x)‖2 ≤ 2L(f(x)− f(x∗))

Substituting into equation 92:

‖x(t+1) − x∗‖2 ≤ ‖x(t) − x∗‖2 + 2Lη2(f(x(t))− f(x∗)) + 2η(f(x∗)− f(x(t)))

= ‖x(t) − x∗‖2 − 2(η − η2L)(f(x(t))− f(x∗))

≤ ‖x(t) − x∗‖2 − η(f(x(t))− f(x∗))

when Lη ≤ 1
2 .

Therefore:

1

T

T∑
t=0

η(f(x(t))− f(x∗))) ≤ 1

T

T∑
t=0

(
‖x(t) − x∗‖2 − ‖x(t+1) − x∗‖2

)
=

1

T
‖x(0) − x∗‖2 − 1

T
‖x(T+1) − x∗‖2

≤ 1

T
‖x(0) − x∗‖2

f(x(t))− f(x∗) ≤ 1

ηt
‖x(0) − x∗‖2 = O

(
1

t

)
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Theorem 2. When f(x) is strongly convex, gradient descent has a faster convergence rate, i.e. f(x(t)) − f(x∗) =
O (C−t)

A function is strongly convex with parameter µ if:

f(x) ≥ f(x′)− (x− x′)T∇f(x) +
µ

2
‖x− x′‖2

23.1 Stochastic Gradient Descent

x(t+1) = x(t) − ηtgt
{
E[gt] = ∇f(x)
limt→∞ ηt = 0

Theorem 3. When ηt = 1√
t
, then E

(
‖x(t) − x∗‖2

)
= O

(
1√
t

)
.

24 Principal Component Analysis

Principal Component Analysis is type of dimensionality reduction, and represents each point x(n) ∈ Rd
with a lower-dimensional representation z(n) ∈ Rd, where m < d. The two spaces are related through a set
of basis vectors ui, which are orthonormal:

uTi uj = δij

x(n) =
∑
i

z
(n)
i

T
ui

z
(n)
i = uTi x

(n)

Our reconstructed points x̃(n) are obtained by fixing the components in d−m of the basis directions:

x̃(n) =

m∑
i=1

z
(n)
i ui +

d∑
i=m+1

biui

We wish to minimize the squared error Em between the reconstructed points and the original points:

Em =
1

2

N∑
n=1

‖x(n) − x̃(n)‖2 (93)

x(n) − x̃(n) =

d∑
m+1

(z
(n)
i − bi)ui (94)

Em =
1

2

N∑
n=1

d∑
i=m+1

(z
(n)
i − bi)2 (95)

Setting ∂Em

∂bi
= 0:

bi =
1

N

N∑
n=1

z
(n)
i = uTi x̄ (96)

Em =
1

2

N∑
n=1

d∑
i=m+1

(uTi (x(n) − x̄))2 (97)

=
N

2

s∑
i=m+1

uTi Σui (98)
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Thus, the error is a function of the basis vectors of the discarded dimensions and the covariance matrix
Σ of the data. This can be expressed as a constrained optimization problem:

min
U

d∑
i=m+1

uTi Σui

s.t. uTi uj = δij

Taking the Lagrangian:

L(U,M) =

d∑
i=m+1

uTi Σui −
1

2

∑
i

∑
j

µij(u
T
i uj − δij) (99)

=
1

2
Tr(UTΣU)− 1

2
Tr(M(UTU − I)) using matrix notation (100)

Using ∂
∂X Tr(AXBXTC) = BXTCA+BTXTATCT :

∂L

∂U
= 0 = (Σ + ΣT )U − U(M +MT ) (101)

ΣU = UM M and Σ symmetric (102)

Define Ψ and Λ to be an eigenvalue decomposition of M :

MΨ = ΨΛ (103)

Λ = ΨTMΨ multiply on left by ΨT (104)

= ΨTUTΣUΨ substitute from eq. 102 (105)

= ŨTΣŨ define Ũ = UΨ (106)

This result means that Ũ and Λ form an eigenvalue decompositon of Σ, and can be used to rewrite the error
Em:

Em =
1

2
Tr(UTΣU) (107)

=
1

2
Tr(ΨŨTΣŨΨT ) using def. of Ũ (108)

=
1

2
Tr(ŨTΣŨ) rotate matrices inside trace, ΨTΨ = I (109)

=
1

2
Tr(Λ) using eq. 106 (110)

Thus the error is a sum of eigenvalues of Σ, and can be minimized by choosing the smallest eigenvalues.

25 Reinforcement Learning

25.1 Markov Decision Processes

A Markov Decision Process is an extension of the standard (unhidden) Markov model. Each state has a
collection of actions that can be performed in that particular state. These actions serve to move the system
into a new state. More formally, the MDP’s state transitions can be described by the transition function
T (s, a, s′), where a is an action moving performable during the current state s, and s′ is some new state.
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As the name implies, all MDPs obey the Markov property, which holds that the probability of finding the
system in a given state is dependent only on the previous state. Thus, the system’s state at any given time
is determined solely by the transition function and the action taken during the previous timestep:

P (St = s′|St−1 = s, at = a) = T (s, a, s′)

Each MDP also has a reward functionR : S 7→ R. This reward function assigns some valueR(s) to being
in the state s ∈ S. One common way of trading off present reward against future reward is by introducing
a discount rate γ. The discount rate is between 0 and 1, and we can use it to construct a discounted sum of
future rewards:

∞∑
t=0

γtR(st)

Here, we assume that t = 0 is the current time. Since 0 < γ < 1, greater values of t (indicating rewards
farther in the future) are given smaller weight than rewards in the nearer future.

Given a Markov Decision Process we wish to find a policy – a mapping from states to actions. The policy
function Π : S 7→ A selects the appropriate action a ∈ A given the current state s ∈ S.

The consequences of actions (i.e., rewards) and the effects of policies are not always known immediately.
As such, we need some mechanisms to control and adjust policy when the rewards of the current state space
are uncertain. These mechanisms are collectively referred to as reinforcement learning.

25.2 Value Iteration

Let V Π(s) be the value function for the policy Π. This function V Π : S 7→ R maps the application of Π to
some state s ∈ S to some reward value. Assuming the system starts in state s0, we would expect the system
to have the value

V Π(s) = E

[ ∞∑
t=0

γtR(st) | s0 = s,Π

]
Since the probability of the system being in a given state s′ ∈ S is determined by the transition function

T (s, a, s′), we can rewrite the formula above for some arbitrary state s ∈ S as

V Π(s) = R(s) +
∑
s′

T (s, a, s′)γV Π(s′)

where a = Π(s) is the action selected by the policy for the given state s.
Our goal here is to determine the optimal policy Π*(s). Examining the formula above, we see that R(s)

is unaffected by choice of policy. This makes sense because at any given state s, local reward term R(s) is
determined simply by virtue of the fact that the system is in state s. Thus, if we wish to find the maximum
policy value function (and therefore find the optimum policy) we must find the action a that maximizes the
summation term above:

V Π∗(s) = R(s) + max
a

∑
s′

T (s, a, s′)γV Π∗(s′)

Note that this formulation assumes that the number of states is finite.
The formula above forms the basis of the value iteration algorithm. This operation starts with some initial

policy value function guess and iteratively refines V (s) until some acceptable convergence is reached:
Each pass of the value iteration maximizes V (s) and assigns to Π∗(s) the action a that maximizes V (s).

25.3 Q-Learning

The example of value iteration above presumes that the transition function T (s, a, s′) is known. If the
transition function is not known, then the function Q(s, a) can be obtained through a similar process of
iterative learning, the aptly-named Q-learning. The function Q(s, a) represents the potential value for V (s)
produced by the action a ∈ A.
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procedure VALUE ITERATION
Initialize V (s).
repeat

for all s ∈ S do
R(s)← R(s) + max

a

∑
s′ T (s, a, s′)γV (s′)

Π(s)← argmax
a

∑
s′ T (s, a, s′)γV (s′)

until converged

The correct values of Q(s, a) should satisfy the following system of equations:

Q(s, a) = R(s) + γ

[∑
s′

T (s, a, s′)max
a′

Q(s′, a′)

]

Q-learning using on online update to converge to the solution above by treating what happens at each
timestep as a stochastic estimate of the sum over s′:

Q(s, a)← (1− η)Q(s, a) + ηγ
[
R(s)max

a′
Q(s′, a′)

]
where η is a user-selected learning parameter.

This formula is applied online at each timestep t with s = st and s′ = st+1. The action is selected
by a user-defined function f(s), which returns the appropriate policy action Π(s) most of the time, but
occasionally selects a random action to blunt the effects of sampling bias.

procedure ONE-STEP Q-LEARNING
Initialize Π(s) to argmax

a
Q(s, a).

repeat
At timestep t
Select an action at = f(st).
Q(st, at)← (1− η)Q(st, at) + η

[
R(st) + γmax

a′
Q(st+1, a

′)
]

Π(st)← argmax
a

Q(st, a).

until Π converges

25.4 Temporal Difference Learning

One disadvantage of value iteration is that it can take a long time for updates to later states to propagate
back to earlier states. For instance, an MDP attempting to navigate a maze would see its reward function
jump once it reaches the final stage N , but it would take N iterations for the effects of that jump propagate
back to stage 1.

Temporal difference learning remedies this by modifying the value for each state according to how recently
it has been seen:

∆V (s) = η (R(st) + γV (st+1)− V (st))

t∑
k=1

(γλ)t−kI(sk = s)

where 0 < λ ≤ 1 controls the degree to which updates are pushed back in time. This computation can be
made more efficient by defining an eligibility trace:

es,t =

t∑
k=1

(γλ)t−kI(sk = s)
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such that the update is:

∆V (s) = η (R(st) + γV (st+1)− V (st)) es,t

The eligibility trace is easily updated online:

es,t = γλes,t−1 + I(st = s)

procedure TEMPORAL DIFFERENCE LEARNING
for time t do

Use Π(st) to obtain a new state st+1 and calculate V (st+1).
δt ← R(st) + γV (st+1)− V (st)
for s do

es ← γλes + I(st = s)
V (s) += ηδtes.

25.5 Function Approximation

For large state space, we estimate a function Vw(s) from features of the state s to the value of s, with
parameters w. Typically w are the weights of a neural network. If we define our objective function as
squared error,

E(st) =
1

2
(Vw(st)− V (st))

2

∂E(st)

∂w
=

∂E(st)

∂Vw(st)

∂Vw(st)

∂w
= −δt

∂Vw(st)

∂w

where δt is the difference of our noisy estimate of the value V (st) from the observation at the current
timestep and the current output of the network Vw(st):

δt = − ∂E(st)

∂Vw(st)
= (R(st) + γVw(st+1)− Vw(st))

This gives us an update rule for the network weights:

∆w = ηδt
∂Vw(s)

∂w

The gradient ∂Vw(s)
∂w is computed with backpropagation.

25.6 Function Approximation with Eligibility Trace

The eligibility trace of TD-learning can be applied to the weight vector of a neural network. We accumulate
updates across all states that have been visited:

et = γλet−1 +
∂Vw(s)

∂w
∆w = ηδtet

Here et is a vector with the dimensionality of the weight vector, which tracks responsibility of each weight
for the currect state. This derives from adding together TD updates for each state:

∆w = η δt

t∑
k=1

(γλ)t−k
∂Vw(sk)

∂w
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A The Greek alphabet

A α alpha
B β beta
Γ γ gamma
∆ δ delta
E ε epsilon
Z ζ zeta
H η eta
Θ θ theta
I ι iota
K κ kappa
Λ λ lambda
M µ mu
N ν nu
Ξ ξ xi
O o omicron
Π π pi
P ρ rho
Σ σ sigma
T τ tau
Υ υ upsilon
Φ φ phi
X χ chi
Ψ ψ psi
Ω ω omega
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