Search in Continuous Space

CS 242

February 6, 2024

We will assume that vectors are column vectors:

$$
\mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n}
\end{array}\right]
$$

The transpose of this vector, \mathbf{v}^{T}, is a row vector:

$$
\mathbf{v}^{T}=\left[\begin{array}{lllll}
v_{1} & v_{2} & v_{3} & \cdots & v_{n}
\end{array}\right]
$$

The inner product, also known as the dot product, reduces two vectors of equal length to a scalar:

$$
\mathbf{x} \cdot \mathbf{y}=\mathbf{x}^{T} \mathbf{y}=\sum_{i} x_{i} y_{i}
$$

In contrast, the outer product takes two vectors and produces an $n \times n$ matrix:

$$
\mathbf{x} \times \mathbf{y}^{T}=\mathbf{x} \mathbf{y}^{T}=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \cdots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & & \\
\vdots & & \ddots & \\
x_{n} y_{1} & & & x_{n} y_{n}
\end{array}\right]
$$

A multivariable function takes a number of variables (or a vector) as parameters and returns a single value. In domain terms, a multivariable function $f(\mathbf{x})$ maps from an n-dimensional vector space down to a scalar domain. The gradient is the basic vector derivative operation. Given a scalar function $f(\mathbf{x})$,

$$
\nabla f(\mathbf{x})=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right]
$$

yields a vector representing the direction and the rate of change of the function f within \mathbb{R}^{n}-space.

Example 1: Let $f(\mathbf{x})=\mathbf{1}^{T} \mathbf{x}=\sum_{i} x_{i}$. Then the gradient of f is

$$
\nabla f(\mathbf{x})=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]=\mathbf{1}
$$

Example 2: Let $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{x}=\sum_{i} x_{i}^{2}$. Then the gradient of f is

$$
\nabla f(\mathbf{x})=\left[\begin{array}{c}
2 x_{1} \\
2 x_{2} \\
\vdots \\
2 x_{n}
\end{array}\right]=2 \mathbf{x}
$$

If $\nabla f\left(\mathbf{x}^{\prime}\right)=0$ at a point \mathbf{x}^{\prime} than $f\left(\mathbf{x}^{\prime}\right)$ is either a minimum, maximum, or a saddle point of f.

Example 3: Let $f(\mathbf{x})=x_{1} x_{2} . \nabla f([0,0])=0$. This is a saddle, curved up in the direction $[1,1]$ and curved down in the direction $[1,-1]$.

1 Gradient Descent

$$
\begin{aligned}
& \text { For } t=1 \ldots \\
& \qquad \mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)}-\eta \nabla f\left(\mathbf{x}^{(t)}\right.
\end{aligned}
$$

will converge to a local minimum if η is small enough, that is, less than some constant dependent on the function f. Gradient descent will converge if η decreases over time as $\eta_{t}=\frac{1}{t}$.

2 Convex Functions

A function f is convex if for all x_{1}, x_{2} and θ where $0 \leq \theta \leq 1$,

$$
f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)
$$

The sum of convex functions is convex. The difference of convex functions is not necessarily convex. The max of convex functions is convex. If $f(\mathbf{x})$ is convex and $\nabla f\left(\mathbf{x}^{\prime}\right)=0$, then $f\left(\mathbf{x}^{\prime}\right)$ is the global maximum of f.

A function f is concave if its negative is convex.
The sum of concave functions is concave. The difference of concave functions is not necessarily concave. The min of concave functions is concave.

A convex optimization problem has the form

$$
\begin{array}{rl}
\min _{\mathbf{x}} & f(\mathbf{x}) \\
\text { s.t. } & g_{1}(\mathbf{x}) \\
g_{2}(\mathbf{x}) & \leq 0 \\
\cdots \\
g_{m}(\mathbf{x}) & \leq 0
\end{array}
$$

where f and each g_{i} are convex functions.

3 Newton's Method

The Hessian $\nabla^{2} f$ is a matrix of a scalar-valued function $f(\mathbf{x})$'s second-order derivatives:

$$
\nabla^{2} f=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\left(\partial x_{1}\right)^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\
\vdots & \ddots & \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & & \frac{\partial^{2} f}{\left(\partial x_{n}\right)^{2}}
\end{array}\right]=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]_{i j}
$$

Newton's method (also known as Newton-Raphson)

$$
\begin{align*}
& \text { For } t=1 \ldots \tag{1}\\
& \qquad \mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)}-\left(\nabla^{2} f\left(\mathbf{x}^{(t)}\right)\right)^{-1} \nabla f\left(\mathbf{x}^{(t)}\right) \tag{2}
\end{align*}
$$

can be thought of as finding a quadratic approximation of the function f (by assuming a constant second derivative) and jumping directly to the minimum, maximum, or saddle point of that function.

