Chapter 14: Augmenting Data Structures

By augmenting already existing data structures one can build new data structures.

Augmenting a red-black tree

For each node x, add a new field $\text{size}(x)$, the number of non-nil nodes in the subtree rooted at x.

Now with the size information, we can fast compute the dynamic order statistics and the rank, the position in the linear order.
What is the size of the root of the above RB-tree?
Selection

To find the ith order statistics, run binary search.

Let a and b be the size of the left child and that of the right child, respectively. Then we do the following

- If $i = a + 1$, the current node holds the i-th o.s.
- If $i < a + 1$, search for the i-th o.s. in the left subtree.
- If $i > a + 1$, search for the $(i - a - 1)$-st o.s. in the right subtree.

What is the running time of this selection procedure?
The (i-a-1)-st search for a+b+1.
Computing the Rank of a Given Node x

$\text{Rank}(T,x)$

1. $m \leftarrow \text{size}[\text{left}[x]] + 1$
2. $y \leftarrow x$
3. while $y \neq \text{root}[T]$ do
4. \hspace{0.5em} if $\text{right}[\text{p}[y]] = x$
5. \hspace{1em} then $m \leftarrow m + \text{size}[\text{left}[\text{p}[y]]] + 1$
6. \hspace{1em} $y \leftarrow \text{p}[y]$
7. \hspace{0.5em} }
8. Return(m)
Here the rank of x is

$$1 + (c + 1) + (e + 1) = c + e + 3.$$

What is the running time of `rank`?
Maintaining the Size Information During RB-Tree Operations

1. Rotation

The size has to be changed for only one node:

- the left-child of the rotated node in the case of right rotation and
- the right-child of the rotated node in the case left rotation.
2. Insertion/Deletion

Climb up the tree from the actual point of insertion (respectively, deletion) all the way to the root. For each of the node that is encountered, and 1 to the size (respectively, subtract 1 from the size).
An Augmentation Strategy

Augmenting a data structure can be broken into the following four steps:

1. choosing an underlying data structure,
2. determining what kind of additional information should be maintained in the underlying data structure,
3. verify that the additional information can be maintained during the execution of each basic modifying operation of the underlying data structure, and
4. developing new operations.
The third step is easy for red-black trees.

Theorem A Let f be a field that augments a red-black tree T of n nodes, and suppose that the f-value of a node x can be computed solely from the information stored at x and at its children.

Then, maintaining the f-values of all nodes in T during insertion and deletion can be done in $O(\lg n)$ steps.
Proof Sketch Suppose that an operation has applied to an RB-tree T. Let T' the RB-tree after this operation.

There is a downward path π in T' such that every node that has been “touched” (its or its children’s information has been modified) is within distance three from the path.

Thus, there are only $O(\log n)$ nodes for which the f-field has to be modified.

So, store π and update the f-fields of all the nodes within distance 3 from the path in a bottom-up fashion.
An Illustrating Example: Interval trees

For an interval $i = [l, t]$, call l the **low end** and t the **high end** of i.

The **trichotomy** of intervals

For every pair of intervals i and j, exactly one of the following conditions holds:

1. i and j overlap
2. $\text{high}[i] < \text{low}[j]$, i.e., j is to the right of i
3. $\text{high}[j] < \text{low}[i]$, i.e., j is to the left of i
The Trichotomy

overlap

low[c] > high[b]

overlap
How can we maintain a dynamic set of closed intervals?

Step 1: Underlying Data Structure

Use the **RB tree**, where each node holds an interval. Use $int[\cdot]$ to refer to the interval. Use $\text{lowint}[\cdot]$ as the key.

Step 2: Additional Information

At each node store as additional information **the largest high end of the intervals** in the subtree rooted at the node. Use $\text{max}[\cdot]$ to refer to this information.
Step 3: Maintaining \max

For all nodes x, $\max[x]$ is equal to

$$\max\{\text{high}[\text{int}[x]], \max[\text{left}[x]], \max[\text{right}[x]]\}.$$

By the previous theorem, \max can be maintained in $O(\lg n)$ steps.
Step 4: Developing New Operation

The only new operation needed is **searching for an interval that overlaps an interval i.**

Let T be the tree and i be the input.

Then set x to the root and execute the following loop:

- If $\text{int}[x] \cap i \neq \emptyset$, output $\text{int}[x]$. The search is over. ;-)

- Otherwise, if x is a leaf, then output “no intersecting intervals found.” :-(

- Otherwise, if x has a unique child, then set x to the unique child.

- Otherwise, if the $\max[\text{left}[x]] \geq \text{low}[i]$, then set x to $\text{left}[x]$.

- Otherwise, set x to $\text{right}[x]$.
Theorem B The algorithm works correctly.

Proof Call a subtree U **good** if it contains an interval overlapping i and **bad** otherwise.

We have only to show that if

(*) if T is good then T_x is good

holds during the course of the algorithm.

For initialization, the property (*) holds at the beginning of the search.
For the induction step, suppose that we are at non-leaf x and (*) holds. Suppose that T is good. Then by (*) T_x is good. Suppose that the interval at x does not intersect with i. Let y be the node that is visited at the next round. We will show that T_y is good.

Since the interval at x does not intersect with i, either the left subtree of x is good or the right subtree of x is good.

This means that if there is only one child of x, then the unique child is good. Since y is this unique child (*) when x has only one child.

So, assume that x has two children.
(Case 1) \(\max[\text{left}[x]] \geq \text{low}[i] \):
Here \(y = \text{left}[x] \).

(Case 1a) \(\text{subtree}(\text{left}[x]) \) is good:
This implies \(T_y \) is good and \(T \) is good. So, (*) holds for \(y \).

(Case 1b) \(\text{subtree}(\text{left}[x]) \) is bad:
Since \(\max[\text{left}[x]] \geq \text{low}[i] \) there is an interval to the right of \(i \) in the left subtree of \(x \). This means that every interval in the right subtree is to the right of \(i \). Thus, the right subtree is bad. So, both subtrees are bad, which is impossible. So, (Case 1b) never occurs.

(Case 2) \(\max[\text{left}[x]] < \text{low}[i] \):
Here \(y = \text{right}[x] \). Since \(\max[\text{left}[x]] < \text{low}[i] \), there is no interval that intersects with \(i \) in the left subtree tree. So \(T_y \) is good.