
Homework 5 Due Tuesday Oct 26

• CLRS 14-2.2 (rb tree black height)

• CLRS 14-2.3 (rb tree depth)

• CLRS 14-1 (point of maximum overlap)

• CLRS 15.1-4 (assembly line space

requirement)

1



Chapter 15: Dynamic programming

Dynamic programming is a method for

designing efficient algorithms for recursively

solvable problems with the following

properties:

1. Optimal Substructure: An optimal

solution to an instance contains an

optimal solution to its sub-instances.

2. Overlapping Subproblems: The

number of subproblems is small so during

the recursion same instances are referred

to over and over again.

2



Four steps in solving a problem using the

dynamic programming technique

1. Characterize the structure of an optimal

solution

2. Recursively define the value of an optimal

solution

3. Compute the value of an optimal solution

in a bottom-up fashion

4. Construct an optimal solution from

computed information

3



The Problems to be Studied

1. Assembly-line Scheduling · · · the problem

of finding the best choices for stations in

two assembly lines

2. Matrix-chain Multiplication · · · the

problem of finding the ordering of

matrix-multiplication that minimizes the

total number of scalar multiplications.

3. Longest Common Subsequence · · · the

problem of finding the longest sequence

that appears commonly in a pair of

strings.

4. Optimal Binary Tree · · · Finding the

arrangement of nodes that minimizes the

average search time

4



I. Assembly-line Scheduling

Assume you own a factory for car assembling.

The car you will be producing has n parts and

the parts need to be put on the chassis in a

fixed order. There are two different assembly

lines. Each line consists of n stations, where

for each i, 1 ≤ i ≤ n, the ith station is for

putting the ith part. The time required for a

station varies. When a chassis leaves a

station for the next part it is possible to move

the chassis to the other line, but that takes

extra time depending on which station the

chassis is at the moment. Also, each line has

a certain entry time and an exit time. What

are the choice of the stations so as to

minimize the production time?

5



Line 1

Line 2

enter finish

3 8 6 3 4 2

3522105

2 1 2

3 4 1

1 2

1 33

4 4

6

6



How about testing all possible

paths?

7



How about testing all possible

paths?
There are 2n possible paths.

For large n exhaustive search

is not going to work.

There is an O(n)-time

solution to this problem.

The trick is to find the fastest

path to each station.

8



Mathematical Formulation

For each i ∈ {1,2} and for each j, 1 ≤ j ≤ n,

let Si,j denote the jth station in line i.

For each i ∈ {1,2}, define the following

quantities:

• ei is the entry time into line i.

• xi is the exit time from line i.

• For each j, 1 ≤ j ≤ n− 1, ti,j is the time

that it takes for moving from Si,j to

S3−i,j+1.

• For each j, 1 ≤ j ≤ n, ai,j is the time

required for station Si,j.

9



Step 1: Characterizing structure of the

optimal solution

To compute the fastest assembly time, we

only need to know the fastest time to S1,n

and the fastest time to S2,n, including the

assembly time for the nth part.

Then we choose between the two exiting

points by taking into consideration the extra

time required, x1 and x2.

To compute the fastest time to S1,n we only

need to know the fastest time to S1,n−1 and

to S2,n−1. Then there are only two choices...

10



Step 2: A recursive definition of the

values to be computed

For each i ∈ {1,2} and for each j, 1 ≤ j ≤ n,

let fi[j] be the fastest possible time to get to

station Si,j, including the assemble time at

Si,j.

Let f∗ be the fastest time for the entire

assembly. Then

f∗ = min(f1[n] + x1, f2[n] + x2).

For all j, 2 ≤ j ≤ n, we have f1[j] =

min(f1[j − 1] + a1,j, f2[j − 1] + t2,j−1 + a2,j)

and f2[j] =

min(f1[j − 1] + t1,j−1 + a1,j, f2[j − 1] + a2,j).

11



Step 3: Computing the fastest time

First, set f1[1] = e1 + a1,1 and

f2[1] = e2 + a1,2.

Then, for j ← 2 to n, compute f1[j] as

min(f1[j − 1] + a1,j, f2[j − 1] + t2,j−1 + a1,j)

and f2[j] as

min(f1[j − 1] + t1,j−1 + a2,j, f2[j − 1] + a2,j).

Finally, compute f∗ as

min(f1[n] + x1, f2[n] + x2).

12



Step 4: Computing the fastest path

For each i ∈ {1,2}, and for each j, 2 ≤ j ≤ n,

compute as li[j] as the choice made for fi[j]

(whether the first or the second term gives

the minimum). Also, compute the choice for

f∗ as l∗.

Then we have only to trace back the choices

to find the fastest path.

13



Fastest-Way(a, t, e, x, n)

1: f1[1]← e1 + a1,1

2: f2[1]← e2 + a1,2

3: for j ← 2 to n do {

4: if f1[j − 1] + a1,j ≤ f2[j − 1] + t2,j−1 + a1,j

5: then { f1[j]← f1[j − 1] + a1,j

6: l1[j]← 1 }

7: else { f1[j]← f2[j − 1] + t2,j−1 + a1,j

8: l1[j]← 2 }

9: if f2[j − 1] + a2,j ≤ f1[j − 1] + t1,j−1 + a2,j

10: then { f2[j]← f2[j − 1] + a2,j

11: l2[j]← 2 }

12: else { f2[j]← f1[j − 1] + t1,j−1 + a2,j

13: l2[j]← 1 }

14: if f1[n] + x1 ≤ f2[n] + x2 then {

15: f∗ ← f1[n] + x1

16: l∗ ← 1 }

17: else { f∗ ← f2[n] + x2

18: l∗ ← 2 }

14



Example

j 1 2 3 4 5 6

f1[j] 7 15 21 22 25 27

l1[j] 1 1 2 2 1

f2[j] 8 18 18 20 25 28

l2[j] 2 1 2 2 2

f∗ = 31 and l∗ = 1

Line 1

Line 2

enter finish

3 8 6 3 4 2

3522105

2 1 2

3 4 1

1 2

1 33

4 4

6

15



II. Matrix-Chain Multiplication

Suppose that we need to compute the

product M = A1 · · ·An of matrices A1, . . . , An.

In the standard matrix multiplication, to

compute the product of two matrices of

dimension p× q and q × r, pqr scalar

multiplications are needed.

The multiplication over matrices is an

associative operation. So, there are many

different ways to compute the product. Use

parentheses to describe the order. If the sizes

of the matrix are not uniform, the cost of

computing the product may be dependent on

the order in which the matrices are multiplied.

The matrix-chain multiplication problem is

the problem of, given a sequence of matrices,

finding the order of multiplications that

minimizes the total cost.

16



Example Suppose we need to compute

ABC, where A is 10× 100, B is 100× 10, and

C is 10× 100

How many operations for

A(BC)?

17



A10
100

CB100

10

10
100

10,000
10

10 10
10010,000

20,000 total

18



Parenthesization of Matrix Chain

A chain of matrices is fully parenthesized if

it is either a single matrix or the product of

two fully parenthesized matrix products.

How many different fully

parenthesizations are there for

ABCD?

19



There are five:

(A(B(CD))), (A((BC)D)),

((A(BC))D), ((AB)(CD)),

and (((AB)C)D).

Then how many are there for

n matrices?

20



The Number of Full Parenthesizations

For each n ≥ 1, let P (n) be the number of

distinct full parenthesizations of a chain of n

matrices. Then

P (n) =

{

1 if n = 1,
∑n−1

k=1 P (k)P (n− k) if n ≥ 2.

Solving this, we obtain P (n) = C(n− 1),

where

C(n) =
1

n + 1

(2n

n

)

21



Redefining the Problem

Using the concept of full parenthesization the

problem can be redefined as follows:

Given a list p = (p0, p1, . . . , pn) of

positive integers, compute the

optimal-cost full-parenthesization of

any chain (A1, A2, . . . , An), such that

for all i, 1 ≤ i ≤ n, the dimension of

the ith matrix is dimension pi−1 × pi,

where the cost is measured by the

total number of scalar multiplications

when the standard matrix

multiplication is used.

22



Inefficiency of Brute-force Search

One cannot use brute-force search to solve

this problem, because

C(n) =
1

n + 1

(2n

n

)

= Ω(4n/n3/2).

However, there is a solution with O(n3)

running time.

23



Step 1: Characterization of the structure

The outermost pair of parentheses splits the

matrix sequence into two. Suppose that the

split is between A1, . . . , Ak and Ak+1, . . . , An.

Then to evaluate the product via this split,

we compute B(k) = A1 · · ·Ak and

C(k) = Ak+1 · · ·An, then B(k)C(k).

24



Suppose the optimal cost of computing B(k)

and C(k) is known for all k,1 ≤ k ≤ n− 1.

Then we can compute the optimal cost for

the entire product by finding a k that

minimizes

“the optimal cost for computing B(k)” +

“the optimal cost for computing C(k)” +

p0pkpn.

This suggests a bottom-up approach for

computing the optimal costs.

25



Step 2: A recursive solution

For each i, 1 ≤ i ≤ n, and each j,

1 ≤ i ≤ j ≤ n, let m[i, j] be the optimal cost

for computing Ai · · ·Aj.

Then for all i, 1 ≤ i ≤ n, m[i, i] = 0 and for all

i and j, 1 ≤ i < j ≤ n, m[i, j] is the minimum

of

m[i, k] + m[k + 1, j] + pi−1pkpj,

where i ≤ k ≤ j − 1

26



Step 3: Computing the optimal cost

1. For i = 1, . . . , n, set m[i, i] = 0.

2. For `← 2 to n, and for all i and j such

that j − i + 1 = `, compute m[i, j].

27



Algorithm

1: for i← 1 to n do m[i, i]← 0

2: for `← 2 to n do

3: for i← 1 to n− ` + 1 do {

4: j ← i + `− 1

5: m[i, j]← +∞

6: for k ← i to j − 1 do {

7: y ← m[i, k] + m[k + 1, j] + pi−1pkpj

8: if y < m[i, j]

9: then {

10: m[i, j]← y

11: s[i, j]← k

12: }

13: }

What is the running time of

this algorithm?

28



What is the running time of

this algorithm?

There are Θ(n3)

combinations of i, j, and k so

the running time is O(n3).

29



Step 4: Computing the optimal

parenthesization

For each i, 1 ≤ i ≤ n− 1, and for each j,

i + 1 ≤ j ≤ n, let s[i, j] be the smallest t,

i ≤ t ≤ j − 1, such that

m[i, k] + m[k + 1, j] + pi−1pkpj

is minimized at k = t.

When determining an m value memorize the

choice as s[i, j].

30



2

5 C

3

4 A 3

5

B
2

2 D

0

0

0

0

60

30

20

1 2 43j

1

2

3

4

i

31



Memoization

The same O(n3) efficiency can be achieved

by keeping the recursive algorithm but

remembering all the m-values that have been

already computed.

Such a strategy is called memoization.

Matrix-Chain′

1: for i← 1 to n do m[i, i]← 0

2: for i← 1 to n− 1 do

3: for j ← i + 1 to n do

4: m[i, j]← +∞

5: Matrix-Chain-Memoized(1, n)

32



Matrix-Chain-Memoized(c, d)

1: if m[c, d] 6=∞ return m[c, d]

2: z ← ∞

3: for i← c to d− 1 do {

4: u← Matrix-Chain-Memoized(c, i)

5: v ← Matrix-Chain-Memoized(i + 1, d)

4: w ← u + v + pc−1pipd

6: if w < z then {

7: z ← w

8: s[i, j]← i

9: }

10: }

11: m[c, d]← z

33



Once all the entries have been computed, the

optimal parenthesization can be recovered

from the s-table

Print-Chain(i, j)

1: � print the parenthesization for Ai · · ·Aj

2: Print(”(”)

3: Print-Chain(i, s[i, j])

4: Print-Chain(s[i, j] + 1, j)

5: Print(”)”)

34



III. Longest Common Subsequence

Let Z = 〈z1, z2, . . . , zk〉 and

X = 〈x1, x2, . . . , xm〉 be strings over an

alphabet. We say that Z is a subsequence of

X if Z can be generated by striking out some

(or none) elements from X.

For example, 〈b, c, d, b〉 is a subsequence of

〈a, b, c, a, d, c, a, b〉.

The longest common subsequence

problem (LCS) is the problem of finding,

given two sequences X = 〈x1, x2, . . . , xm〉 and

Y = 〈y1, y2, . . . , yn〉, a maximum-length

common subsequence of X and Y .

35



Step 1: Characteristics of the problem

Brute-force search for LCS requires

exponentially many steps since there are
∑m

i=1

(

n
i

)

candidate subsequences.

The optimal-substructure of LCS

For a sequence Z = 〈z1, z2, . . . , zk〉 and i,

1 ≤ i ≤ k, let Zi denote the prefix of Z having

length i, namely, Zi = 〈z1, z2, . . . , zi〉.

Theorem A Let X = 〈x1, x2, . . . , xm〉 and

Y = 〈y1, y2, . . . , yn〉.

1. If xm = yn, then an LCS of Xm−1 and

Yn−1 can be constructed by appending xm

(= yn) to an LCS of X and Y .

2. If xm 6= yn, then an LCS of X and Y is

either an LCS of Xm−1 and Y or an LCS

of X and Yn−1.
36



Proof (1) Suppose xm and yn are the same

symbol, say σ. Take an LCS Z of X and Y .

Generation of Z should need either xm or

yn. O.w., appending σ to Z would make a

longer common sequence. If necessary,

modify the production of Z from X (from Y )

so that its last element is xm (yn). Then Z is

a common subsequence W of Xm−1 and Yn−1

followed by a σ. By the maximality of Z, W

should be an LCS.

(2) If xm 6= yn, then for any LCS Z of X and

Y , generation of Z cannot use both xm and

yn. So, Z is either an LCS of X and Yn−1 or

an LCS of Xm−1 and Y .

37



Step 2: A recursive definition

If xm = yn, then append xm to an LCS of

Xm−1 and Yn−1. Otherwise, compare an LCS

of X and Yn−1 and an LCS of Xm−1 and Y

and pick the longer.

Let c[i, j] be the length of an LCS of Xi and

Yj. We get the recurrence:

c[i, j] =



























































0
if i = 0 or j = 0,

c[i− 1, j − 1] + 1
if i, j > 0 and xi = yj,

max(c[i, j − 1], c[i− 1, j])
if i, j > 0 and xi 6= yj.

Let b[i, j] be the choice made for (Xi, Yj).

With the b-table we can reconstruct an LCS.

38



0

7

6

5

B D C A B Ay j

xi

A

B

C

B

D

A

B

4

3

2

1

i
j 6543210

2

2

2

2

3

0

0

0

0

0

0

0

0 1

1

1

1

1

0

0 0 0 0 0 0

00 1 1 1

2

22

2111

11

2

2

2

1 2

2

2

2 3

3 3

4

4

4

3

33

Here numeric entries are c-values and arrows

are b-values.

39



The LCS problem possesses the other

characteristic of dynamic programming:

• overlapping subproblems:

For all i, j, i′, and j′, such that

i′ ≤ i ≤ j ≤ j′, the value of c[i, j] will be

referenced to in the evaluation of c[i′, j′].

40



4. Optimal Binary Trees

Suppose that we want to arrange a sorted

array of n elements, k1, . . . , kn, in an n-node

binary search tree. Each ki is associated with

a value pi, the frequency that ki is searched

for. Elements not in the list may be searched

for. Let d0, . . . , dn be the n + 1 regions that

are “in-between” the n keys. These are

represented by nil’s when the n keys are

arranged in a tree.

To these “dummy” keys frequencies q0, . . . , qn

are assigned. The sum of all the 2n + 1

frequencies is 1.

41



Suppose that the cost of search is the

number of nodes visited. Our goal is to find a

binary tree that minimizes the average search

cost defined as follows:

Let T be an n-node binary tree that holds the

2n + 1 keys, k1, . . . , kn and d0, . . . , dn. Then

the average search time on T is

n
∑

i=1

pi(depthT (ki)+1)+
n

∑

i=0

qi(depthT (di)+1).

This is equal to

1 +
n

∑

i=1

pidepthT (ki)
n

∑

i=0

qidepthT (di).

42



How good is examining all

possible binary search trees of

n nodes?

That should be really bad...

That’s right. The number of

n-node binary trees is C(n).

43



Characterization

If kr is chosen as the root, then we arrange

d0, k1, d1, . . . , dr−2, kr−1, dr−1 as the left

subtree of kr and arrange

dr, kr+1, dr+1, . . . , dn−1, kn, dn as the right

subtree of kr. So, for each of the two groups,

we need to find the “best” arrangement.

44



The Table

For each i, 0 ≤ i ≤ n, and for each j,

i ≤ j ≤ n, let S[i, j] be the optimal average

search cost for arranging the nodes

di, ki+1, di+1, . . . , dj−1, kj, dj in a binary tree,

where the cost for searching the rest of the

nodes is considered to be 0.

Then for all i, 0 ≤ i ≤ n, S[i, i] = qi.

45



Recursion

For all i and j, 0 ≤ i < j ≤ n, S[i, j] is the

minimum of

S[i, t] + S[t + 1, j] + pt + L + R,

where t ranges between i and j − 1, L and R

are respectively the sum of the frequencies to

the left and to the right of pt, i.e.,

L =
t−1
∑

m=i

pm +
t−1
∑

m=i−1

qm

and

R =
j

∑

m=t+1

pm +
j

∑

m=t

qm.

So,

L + R + pt =
j

∑

m=i

pm +
j

∑

m=i−1

qm.

46



The Dynamic Programming Algorithm

For each `, 1 ≤ ` ≤ n + 1, for each i,

0 ≤ i ≤ n− ` + 1, compute S[i, i + `] as the

minimum of

S[i, t] + S[t + 1, j] +





j
∑

m=i

pm +
j

∑

m=i−1

qm



 .

Record in C[i, i + `] the t that gives the

minimum.

47


