
Chapter 16: Greedy Algorithms

Greedy is a strategy that works well on

optimization problems with the following

characteristics:

1. Greedy-choice property: A global

optimum can be arrived at by selecting a

local optimum.

2. Optimal substructure: An optimal

solution to the problem contains an

optimal solution to subproblems.

The second property may make greedy

algorithms look like dynamic programming.

However, the two techniques are quite

different.

1

1. An Activity-Selection Problem

Let S = {1,2, . . . , n} be the set of activities

that compete for a resource. Each activity i

has its starting time si and finish time fi

with si ≤ fi, namely, if selected, i takes place

during time [si, fi). No two activities can

share the resource at any time point. We say

that activities i and j are compatible if their

time periods are disjoint.

The activity-selection problem is the

problem of selecting the largest set of

mutually compatible activities.

2

1
2

3
4

5
6

7
8

9time

compatible

3

Greedy Activity Selection Algorithm

In this algorithm the activities are first sorted

according to their finishing time, from the

earliest to the latest, where a tie can be

broken arbitrarily. Then the activities are

greedily selected by going down the list and

by picking whatever activity that is

compatible with the current selection.

What is the running time of

this method?

4

Well, it depends on which

sorting algorihtm you use.

The sorting part can be as

small as O(n logn) and the

other part is O(n), so the

total is O(n logn).

5

Theorem A Greedy-Activity-Selector

solves the activity-selection problem.

Proof The proof is by induction on n.

For the base case, let n = 1. The statement

trivially holds.

For the induction step, let n ≥ 2, and assume

that the claim holds for all values of n less

than the current one. We may assume that

the activities are already sorted according to

their finishing time.

Let p be the number of activities in each

optimal solution for [1, . . . , n − 1] and let q be

the number for [1, . . . , n].

Here p ≤ q holds.

Can you explain why?

6

It’s because every optimal

solution for [1, . . . , n − 1] is a

solution for [1, . . . , n].

How about the fact that

p ≥ q − 1?

7

How about the fact that

p ≥ q − 1?

Assume that p ≤ q − 2. Let W

be any optimal solution for

[1, . . . , n]. Let W ′ = W − {n} if

W contains n and W ′ = W

otherwise. Then W ′ does not

contain n and is a solution for

[1, . . . , n − 1]. This contradicts

the assumption that optimal

solutions for [1, . . . , n − 1] have

p activities.

8

Optimality Proof

We must first note that the greedy algorithm

always finds some set of mutually compatible

activities.

(Case 1) Suppose that p = q. Then each

optimal solution for [1, . . . , n − 1] is optimal

for [1, . . . , n]. By our induction hypothesis,

when n − 1 has been examined an optimal

solution for [1, . . . , n − 1] has been

constructed. So, there will be no addition

after this; otherwise, there would be a

solution of size > q. So, the algorithm will

output a solution of size p, which is optimal.

9

(Case 2) Suppose that p = q − 1. Then

every optimal solution for [1, . . . , n] contains

n. Let k be the largest i, 1 ≤ i ≤ n − 1, such

that fi ≤ sn. Since f1 ≤ · · · ≤ fn, for all i,

1 ≤ i ≤ k, i is compatible with n, and for all i,

k + 1 ≤ i ≤ n − 1, i is incompatible with n.

This means that each optimal solution for

[1, . . . , n] is the union of {n} and an optimal

solution for [1, . . . , k]. So, each optimal

solution for [1, . . . , k] has p activities. This

implies that no optimal solutions for [1, . . . , k]

are compatible with any of k + 1, . . . , n − 1.

10

Let W be the set of activities that the

algorithm has when it has finished examining

k. By our induction hypothesis, W is optimal

for [1, . . . , k]. So, it has p activities. The

algorithm will then add no activities between

k + 1 and n − 1 to W but will add n to W .

The algorithm will then output W ∪ {n}. This

output has q = p + 1 activities, and thus, is

optimal for [1, . . . , n].

11

2. Knapsack

The 0-1 knapsack problem is the problem

of finding, given an integer W ≥ 1, items

1, . . . , n, and their values, v1, . . . , vn, and their

weights, w1, . . . , wn, a selection, I ⊆ {1, . . . , n},

that maximizes
∑

i∈I vi under the constraint
∑

i∈I wi ≤ W .

An example: George is going to a desert

island. He is allowed to carry one bag with

him and the bag holds no more than 16

pounds, so he can’t bring all what he wants.

So, he weighted and values each item he

wants to bring. What should he be putting in

the bag?

12

item weight (lb.) value

A CD player with 8 20
Bernstein Mahler box

CLRS 2nd Ed. 10 25

Twister Game 2 8

SW Radio 4 12

Harmonica 1 5

Roller Blades 4 6

Inflatable Life-Size 1 8
R2D2 Doll

Tell me what I should bring?

13

? There is an O(nW) step algorithm based

on dynamic programming

A greedy approach might be to:

• Sort the items in the decreasing order of

values. Then scan the sorted list and grab

whatever can squeeze in.

This approach does not work.

Can you tell us why?

14

Sure.

This strategy does not work

because it does not take into

consideration that a

combination of less valued

items may weigh less and still

have a larger value.

item weight (lb.) value

CLRS 2nd Ed. 10 25

CD player with Mahler 8 20

SW Radio 4 10

Twister Game 2 8

R2D2 Doll 1 8

Harmonica 1 5

Roller Blades 4 2

With W = 10 you should pick

CLRS 2nd Ed. but there is a

better combination.

15

3. Huffman Coding

Storage space for files can be saved by

compressing them, i.e. by replacing each

symbol by a unique binary string.

Here the codewords can differ in length.

Then they need to be prefix-free in the sense

that no codeword is a prefix of another code.

Otherwise, decoding is impossible.

The character coding problem is the

problem of finding, given an alphabet

C = {a1, . . . , an} and its frequencies f1, . . . , fn,

a set of prefix-free binary code

W = [w1, . . . , wn] that minimizes the average

code length
n∑

i=1

fi · |wi|.

16

Depict a prefix-free binary code using a binary

tree, where each left branch corresponds to

the bit 0, each right branch corresponds to

the bit 1, and the leaves are uniquely labeled

by the symbols in C.

The codeword of a symbol a in C is the

concatenation of the edge labels that are

encountered on the path from the root to a.

Each node v is labeled by the frequency sum

of the symbols in subtree(v).

17

d:16b:13c:12 14

e:9f:5

3025

55a:45

100
0 1

0 1

1 0 1

0 1

0

18

The Huffman coding is a greedy method for

obtaining an optimal prefix-free binary code,

which uses the following idea: For each i,

1 ≤ i ≤ n, create a leaf node vi corresponding

to ai having frequency fi. Let

D = {v1, . . . , vn}. Repeat the following until

‖D‖ = 1.

• Select from D the two nodes with the

lowest frequencies. Call them x and y.

• Create a node z having x as the left child

and y as the right child.

• Set f [z] to f [x] + f [y].

• Remove x and y from D and add z to D.

? The replacement will force the codeword

of x (y) to be that of z followed by a 0 (a

1).

19

An example: a:1, b:3, c:2, d:4, e:5

1. a & c → x:
x:3

a c

0 1

2. x & b → y:

y:6

x b

0 1

3. d & e → z:
z:9

d e

0 1

4. y & z → w:
w:15

y z

0 1

The resulting tree

a c

b d e

0 1

0 0

0

1

1

1

The idea can be implemented using a
priority-queue that is keyed on f .

20

The Correctness of The Greedy Method

Lemma B If x and y have the lowest

frequencies in an alphabet C, then C has an

optimal prefix code in which x and y are

siblings.

Proof Let T be an optimal code and let h be

the height of T . There are two leaves at

depth h that are siblings. If they are not x

and y, exchange the nodes with x and y. This

will not increase the average code length.

21

Lemma C Create an alphabet D from C by

replacing x and y by a single letter z such

that f [z] = f [x] + f [y]. Then there exists a

one-to-one correspondence between

• the set of code trees for D in which z is a

leaf and

• the set of code trees for C in which x and

y are siblings.

22

Proof By contradiction:

B(T) is cost of tree for C, B(T ′) is cost of

tree for D.

B(T) = B(T ′) + f [x] + f [y]

B(T ′) = B(T) − f [x] − f [y]

Suppose B(T ′′) < B(T).

Create T ′′′ by merging x and y in T ′′.

B(T ′′′) = B(T ′′) − f [x] − f [y]

< B(T) − f [x] − f [y]

= B(T ′)

23

Suppose that x and y are letters with the

lowest frequencies in C. Obtain an optimal

code T for D and replace z by a depth-one

binary tree with x and y as the leaves. Then

we obtain an optimal code for C.

24

