Homework due Tues 11/9

- CLRS 16-2 (scheduling)

- CLRS 17-2 (binary search)
Matroids

A matroid is a pair \((S, I)\) such that

- \(S\) is a finite nonempty set and
- \(I\) is a nonempty family of subsets of \(S\) with the following properties:

1. **heredity** If \(A \in I\), then every subset of \(A\) is in \(I\).

2. **exchange property** If \(A, B \in I\) and \(|A| < |B|\), then there exists some \(x \in B \setminus A\) such that \(A \cup \{x\} \in I\).

An element \(x\) is called an **extension** of \(A \in I\) if \(A \cup \{x\} \in I\).

A **maximal** element of \(I\) is one with no extension.
Note that, assuming heredity, the exchange property is equivalent to:

- If $A, B \in \mathcal{I}$ and $\|A\| < \|B\|$, then there is some $C \subseteq B \setminus A$ such that $A \cup C \in \mathcal{I}$ and $\|C\| = \|B\| - \|A\|$.

By the exchange property,

- **all maximal elements in a matroid have the same size.**
Graphic Matroids

For an undirected graph $G = (V, E)$, the \textbf{graphic matroid} $M_G = (S_G, \mathcal{I}_G)$ of G is defined as follows:

- $S_G = E$.
- $A \subseteq E$ belongs to \mathcal{I}_G if and only if A is acyclic ((V, A) is a forest).
Properties of Graphic Matroids

Lemma A Let G be a connected undirected graph. Then the maximal elements of M_G are the spanning trees of G.

Proof Let $n = ||V||$. Let T be an arbitrary spanning tree of G and let A be the edge set of T. Since T is acyclic, A belongs to G. There cannot be elements in I having size n, since they induce subgraphs of G with cycles. So, A is maximal. On the other hand, if A is an element in I having size $n - 1$, then since A induces an acyclic graph, it induces a spanning tree.
Lemma B Let G be an undirected graph. Let C_1, \ldots, C_k the connected components of G. For each i, $1 \leq i \leq k$, Z_i be the set of all edges of the spanning trees of C_i. Then the maximal elements of M_G is

$$Z_1 \times \cdots \times Z_k,$$

that is, the cartesian product of Z_1, \ldots, Z_k.

Theorem C Let G be an undirected graph. Then M_G is a matroid.

Proof Let $G = (V, E)$ be an arbitrary undirected graph and let $n = \|V\|$.

Hereditity Let $A \subseteq E$ be such that (V, A) is acyclic. Then, for all $B \subseteq A$, (V, B) is acyclic. so, M_G is hereditary.
Exchange Property Let C_1, \ldots, C_k be the connected components of G. Let $A \in \mathcal{I}$. Then A can be expressed as the disjoint union of some A_1, \ldots, A_k such that for each i, $1 \leq i \leq k$, A_i induces an acyclic subgraph of C_i. Let $B \in \mathcal{I}$. Then B can be similarly decomposed into the disjoint union of some B_1, \ldots, B_k.

Assume $\|A\| < \|B\|$. Then there is some i, $1 \leq i \leq k$, such that $\|A_i\| < \|B_i\|$. Pick such an i.

Since B_i induces an acyclic subgraph of C_i, A_i induces a forest, but not a tree, of C_i. Let D_1, \ldots, D_m be the connected components of C_i that A_i induces, where $m \geq 2$. Let t_1, \ldots, t_m be the number of nodes in D_1, \ldots, D_m. For each j, $1 \leq j \leq m$, A_i induces a tree of D_j. So, the size of A_i is $(t_1 - 1) + \cdots (t_m - 1)$.

We claim that there exist some \(j, j' \),
\(1 \leq j < j' \leq m \), such that \(B_i \) has an edge connecting a node in \(D_j \) and \(D_{j'} \).

To prove the claim, assume otherwise. Then each edge of \(B_i \) belongs to one of the connected components \(D_1, \ldots, D_m \). Since \(B_i \) induces an acyclic graph, for all \(j \),
\(1 \leq j \leq m \), the number of edges of \(B_i \) within \(D_j \) is at most \(t_j - 1 \). So, the size of \(B_i \) is at most \((t_1 - 1) + \cdots (t_m - 1) \), and thus, does not exceed the size of \(A_i \). This is a contradiction. This proves the claim.
By the claim, there exist some j, j', $1 \leq j < j' \leq m$, such that B_i has an edge connecting a node in D_j and $D_{j'}$. Pick such j and j' and such an edge e. Add e to A to obtain A'. By the way e is selected, A' induces an acyclic graph. So, M_G has the exchange property.
Weighted Matroids

Let \(w \) be a function from \(S \) to \(\mathcal{N}^+ \), the set of all positive integers. For each \(A \subseteq S \), define \(w(A) \) as \(\sum_{x \in A} w(x) \). Call \(w \) a weight function of \(M \). An optimal subset of \(M \) with respect to \(w \) is the one having the largest weight.

By definition, optimal subsets are maximal.

Finding an optimal subset

\[
\text{Greedy}(M, w)
\]

1. sort the elements in \(S \) in the non-increasing order of their weights;
 let \(x_1, \ldots, x_m \) be the enumeration
2. \(A \leftarrow \emptyset \)
3. \(\text{for } i \leftarrow 1 \text{ to } m \text{ do} \)
4. \(\quad \text{if } A \cup \{x_i\} \in \mathcal{I} \)
5. \(\quad \quad \text{then } A \leftarrow A \cup \{x_i\} \)
6. \(\text{return } A \)
Why does this algorithm work?

Lemma D Let k be the smallest i such that $\{x_i\} \in \mathcal{I}$. Then there is an optimal subset containing x_k.

Proof

Let B be an optimal subset with $x_k \notin B$.

No element y of B has $w(y) > w(x_k)$

Begin with $A = \{x_k\}$, add from $B - A$ until $\|A\| = \|B\|$.

$A = B - y \cup x$ for some $y \in B$

\[
\begin{align*}
 w(A) &= w(B) - w(y) + w(x) \\
 &\geq w(B)
\end{align*}
\]
If an element is not an option initially, it cannot be an option later, because of heredity.
Application of the Matroid Theory: The task-scheduling problem

Objects with deadlines and penalty.

Input Integers \(n, d_1, \ldots, d_n, w_1, \ldots, w_n \).

Output Find a permutation \(p_1, \ldots, p_n \) of \(1, \ldots, n \) that minimizes

\[
\sum_{p_i > d_i} w_i.
\]

Intuitively, think of \(1, \ldots, n \) as \(n \) tasks to be fulfilled that require a unit-time each and of \(d_1, \ldots, d_n \) as the deadlines for their tasks. Starting from time 0, the \(n \) tasks are executed in an order. If a task is not accomplished on or before its deadline, the penalty associated with it is imposed. \(w_1, \ldots, w_n \) are the penalty values. The goal is to find scheduling of the tasks that minimizes the total penalty.
The matroid over the set of tasks

Let $S = \{1, \ldots, n\}$

Assume that the tasks are enumerated so that their deadlines are non-decreasing.

Let $A \subseteq S$. We say that A is good if there is a canonical ordering of the items in A such that for all $i \in A$, the order of i in the ordering is at most d_i.

Let \mathcal{I} be the set of all subsets of S that are good and let $M = (S, \mathcal{I})$.
Theorem E M is a matroid.

Proof To prove the heredity, let $A \in \mathcal{I}$. Let π be an ordering of A such that for all $i \in A$, $\pi(i) \leq d_i$. Let B be a proper subset of A. Let σ be the ordering defined for all $i \in B$ by:

$$\sigma(i) = 1 + \|\{j \in B \mid \pi(j) < \pi(i)\}\|$$

Then, for all i, $\sigma(i) \leq \pi(i)$, and thus, $\sigma(i) \leq p_i$. So, B is good.
Exchange Property

For each $t, 1 \leq t \leq n$, $A \subseteq S$, let $\mu(A, t)$ be the number of $i \in A$ such that $d_i \leq t$.

To prove the exchange property of M, let A and B be good ones such that $\|A\| < \|B\|$. Since A and B are good, for all $t, 1 \leq t \leq n$, both $\mu(A, t)$ and $\mu(B, t)$ are at most t. Let $t_0 = \max\{t \mid \mu(A, t) = t\}$ if there is at least one t such that $\mu(A, t) = t$ and 0 otherwise.

Claim F There is some $j \in B \setminus A$ such that $d_j \geq t_0 + 1$.

Proof Let $A_0 = \{i \in A \mid d_i \leq t_0\}$ and $A_1 = A - A_0$. Similarly, define B_0 and B_1.
Since $\mu(A, t_0) = t_0$, $\|A_0\| = t_0$. Since $\|B_0\| \leq t_0$, this implies that $\|A_0\| \leq \|B_0\|$. Since $\|A\| < \|B\|$, this implies that $\|A_1\| < \|B_1\|$. By definition, every element of B_1 has a deadline greater than t_0, so there is some $j \in B_1 \setminus A_1$ such that $d_j \geq t_0 + 1$.

\[\]
The proof continues ...

Let j be such that $j \in B_1 \setminus A_1$ and $d_j \geq t_0 + 1$.

Note that, for all $i \in A_0$ $\pi(i) \leq t_0$ and for all $i \in A_1$ $d_i \geq i + 1$. This means that for each element i in A_1 can be delayed by one unit-time. Since $d_j \geq t_0 + 1$, we can add j to A and still execute all of them by their deadlines.
Solution to the Maximization Problem

Let $R = w_1 + \cdots w_n$. For each good A, let $w(A) = \sum_{i \in A} w_i$ and let $Q(A) = R - w(A)$. Then the problem of minimizing the total penalty incurred is equivalent to the problem of maximizing Q, which can be solved by greedy.
Chapter 17: Amortized Analysis

Efficiency averaged over time.

We assume that a sequence of operations is executed on a data structure and calculate the cost per operation averaged over the sequence.

Some operations are cheap and some are expensive depending on the situation.
Our first example is Multipop, a new operation on a stack.

With this you are able to pop any number of elements from a stack.

However, it is implemented by repeated execution of Pop.

What are the other permissible operations?

Creation of an empty stack, Push, Pop, and Empty, which tests the emptiness.
Ostensibly **Multipop** is quite expensive because elimination of \(k \) objects requires \(O(k) \) steps.

However, for us to be able to eliminate \(k \) objects **Push** has to be executed at least \(k \) times prior to that...

Which means a bad thing does not happen so very often...
Our next example is a k-bit binary counter.

Suppose we will increment n times a k-bit counter that is initially set to 0...

The number of bit operations required is high if there is a long run of 1’s at the lower bits of the counter, but that does not happen very often.
Amortized Analysis

Suppose that n operations chosen from \texttt{Pop}, \texttt{Push}, and \texttt{Multipop} are executed on an initially empty stack. The total cost for \texttt{Multipop} is the linear function of the total number of \texttt{Push}, which is at most n. So, the amortized cost of \texttt{Multipop} is $O(1)$.

Suppose that a k-bit counter initially set to 0 is incremented n times. The total number of bit flips on the counter is

$$\sum_{i=0}^{\lceil \log n \rceil} \left\lfloor \frac{n}{2^i} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n.$$

So the amortized cost is $O(1)$.

This calculation method is called \texttt{aggregate} method.
The potential method

Policy: For each i, $1 \leq i \leq n$, let c_i be the actual cost of the i-th operation and D_i be the data structure when the i-th operation has been done.

Pick a potential function Φ that assigns a value to the data structure and define the amortized cost \hat{c}_i as $c_i + \Phi(D_i) - \Phi(D_{i-1})$. Let $T(n) = \sum_{i=1}^{n} \hat{c}_i$ be the total amortized cost. Then

$$T(n) = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0).$$
We’ll pick Φ so that

- for all i $\Phi(D_i) \geq \Phi(D_0)$ and
- $\sum_{i=1}^{n} \hat{c}_i$ is easy to compute.

Then $T(n)/n$ gives an upper-bound for the amortized cost. So, we will evaluate \hat{c}_i instead of c_i.
A. Stack: Define $\Phi(D_i)$ to be the stack size. Then $\Phi(D_0) = 0$, and so, for all $i \geq 1$, $\Phi(D_i) \geq \Phi(D_0)$.

The amortized cost \hat{c}_i is $1 + 1 = 2$ for Push and 0 for both Pop and Multipop.
B. Counter: Define $\Phi(D_i)$ to be the number of bits 1 in the counter after the i-th incrementation. Then $\Phi(D_0) = 0$ and for all $i \geq 0$ it holds that $\Phi(D_i) \geq 0$.

Define t_i to be the number of bits that are reset at the i-th operation. Then for all $i \geq 0$, $\Phi(D_{i+1}) = \Phi(D_i) - t_i + 1$. Then $c_i = t_i + 1$ and $\hat{c}_i \leq t_i + 1 + (1 - t_i) = 2$. So, the amortized cost is $O(1)$.
Dynamic Tables

A *dynamic table* is a table of variable size, where an *expansion* (or a *contraction*) is caused when the load factor has become larger (or smaller) than a fixed threshold.

Let the expansion threshold be 1 and the expansion rate be 2; i.e., **the table size is doubled when an item is to be inserted when the table is full.**

Let the contraction threshold be $\frac{1}{4}$ and the contraction rate be $\frac{1}{2}$; i.e., **the table size is halved when an item is to be eliminated when the table is exactly one-fourth full.**
Implementation of Expansion & Contraction

When these operations take place we create a new table and move all the elements from the old one to the new one.

Suppose that there are n calls of insertion and deletion are made, what is the average cost of each operation?
If the size is kept the same the cost is $O(1)$.

If the size is doubled from M to $2M$, the actual cost is $M + 1$. The time that it takes for the next table size change to occur is at least M steps for doubling and at least $M/2$ steps for halving. So the actual cost can be spread over the next $M/2$ “normal” steps. This gives an amortized cost of $O(1)$.

If the size is halved from M to $M/2$, the actual cost is $M/4$. The time that it takes for the next table size change to occur is at least $M/4$ steps for doubling and at least $M/8$ steps for halving. So the actual cost can be spread over the next $M/8$ steps to yield an amortized cost of $O(1)$.
Amortized Cost Analysis Using the Potential Method

For each \(i, 1 \leq i \leq n \), define \(c_i \) to be the number of insertions and deletions that are executed at the \(i \)-th operation, and define

\[
\Phi_i \overset{\text{def}}{=} \begin{cases}
2num_i - size_i & \text{if } \alpha_i \geq \frac{1}{2}, \\
\frac{size_i}{2} - num_i & \text{if } \alpha_i < \frac{1}{2},
\end{cases}
\]

Here \(size_i \) is the table size, \(num_i \) is the number of elements in the table, and \(\alpha_i \) is the ratio \(\frac{num_i}{size_i} \) after the \(i \)-th operation. Note that

- at time 0, the table is empty, so \(\Phi_0 = 0 \),
- for all \(i \), \(\Phi_i \geq 0 \), and thus, \(\Phi_n \geq \Phi_0 \), and
- \(\Phi_n \leq 2n - n = n \), so the contribution of the potential function to the amortized cost is at most 1.
The Amortized Cost \hat{c}_i for Insertion

Here $m = num_{i-1}$ and $s = size_{i-1}$

(a) $\alpha_{i-1} = 1$: Here $m = s$.

<table>
<thead>
<tr>
<th>c_i</th>
<th>Φ_i</th>
<th>Φ_{i-1}</th>
<th>\hat{c}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m + 1$</td>
<td>$2(m + 1) - 2s$</td>
<td>$2m - s$</td>
<td>3</td>
</tr>
</tbody>
</table>

(b) $\frac{1}{2} \leq \alpha_{i-1} < 1$:

<table>
<thead>
<tr>
<th>c_i</th>
<th>Φ_i</th>
<th>Φ_{i-1}</th>
<th>\hat{c}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2(m + 1) - s$</td>
<td>$2m - s$</td>
<td>3</td>
</tr>
</tbody>
</table>

(c) $\alpha_i = \frac{1}{2}$: Here $m + 1 = \frac{s}{2}$.

<table>
<thead>
<tr>
<th>c_i</th>
<th>Φ_i</th>
<th>Φ_{i-1}</th>
<th>\hat{c}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2(m + 1) - s$</td>
<td>$s/2 - m$</td>
<td>0</td>
</tr>
</tbody>
</table>

(d) $\alpha_i < \frac{1}{2}$:

<table>
<thead>
<tr>
<th>c_i</th>
<th>Φ_i</th>
<th>Φ_{i-1}</th>
<th>\hat{c}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$s/2 - m - 1$</td>
<td>$s/2 - m$</td>
<td>0</td>
</tr>
</tbody>
</table>

So the amortized cost of insertion is $O(1)$.

33
The Amortized Cost \tilde{c}_i for Deletion

(a) $\alpha_i \geq \frac{1}{2}$:

<table>
<thead>
<tr>
<th>c_i</th>
<th>Φ_i</th>
<th>Φ_{i-1}</th>
<th>\tilde{c}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2(m-1) - s$</td>
<td>$2m - s$</td>
<td>-1</td>
</tr>
</tbody>
</table>

(b) $\alpha_{i-1} = \frac{1}{2}$: Here $2m = s$.

<table>
<thead>
<tr>
<th>c_i</th>
<th>Φ_i</th>
<th>Φ_{i-1}</th>
<th>\tilde{c}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{s}{2} - (m - 1)$</td>
<td>$2m - s$</td>
<td>2</td>
</tr>
</tbody>
</table>

(c) $\frac{1}{4} < \alpha_{i-1} \leq \frac{1}{2}$:

<table>
<thead>
<tr>
<th>c_i</th>
<th>Φ_i</th>
<th>Φ_{i-1}</th>
<th>\tilde{c}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$s/2 - (m - 1)$</td>
<td>$s/2 - m$</td>
<td>2</td>
</tr>
</tbody>
</table>

(d) $\alpha_{i-1} = \frac{1}{4}$: $m = \frac{s}{4}$ and $\alpha_i < \frac{1}{2}$.

<table>
<thead>
<tr>
<th>c_i</th>
<th>Φ_i</th>
<th>Φ_{i-1}</th>
<th>\tilde{c}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>$s/4 - (m - 1)$</td>
<td>$s/2 - m$</td>
<td>1</td>
</tr>
</tbody>
</table>

So the amortized cost of deletion is $O(1)$.

34