
Homework due Tues 11/9

• CLRS 16-2 (scheduling)

• CLRS 17-2 (binary search)

1



Matroids

A matroid is a pair (S, I) such that

• S is a finite nonempty set and

• I is a nonempty family of subsets of S

with the following properties:

1. heredity If A ∈ I, then every subset of

A is in I.

2. exchange property If A, B ∈ I and

‖A‖ < ‖B‖, then there exists some

x ∈ B \ A such that A ∪ {x} ∈ I.

An element x is called an extension of A ∈ I

if A ∪ {x} ∈ I.

A maximal element of I is one with no

extension.

2



Note that, assuming heredity, the exchange

property is equivalent to:

• If A, B ∈ I and ‖A‖ < ‖B‖, then there is

some C ⊆ B \A such that A ∪ C ∈ I and

‖C‖ = ‖B‖ − ‖A‖.

By the exchange property,

• all maximal elements in a matroid

have the same size.

3



Graphic Matroids

For an undirected graph G = (V, E), the

graphic matroid MG = (SG, IG) of G is

defined as follows:

• SG = E.

• A ⊆ E belongs to IG if and only if A is

acyclic ((V, A) is a forest).

4



Properties of Graphic Matroids

Lemma A Let G be a connected undirected

graph. Then the maximal elements of MG are

the spanning trees of G.

Proof Let n = ‖V ‖. Let T be an arbitrary

spanning tree of G and let A be the edge set

of T . Since T is acyclic, A belongs to G.

There cannot be elements in I having size n,

since they induce subgraphs of G with cycles.

So, A is maximal. On the other hand, if A is

an element in I having size n− 1, then since

A induces an acyclic graph, it induces a

spanning tree.

5



Lemma B Let G be an undirected graph.

Let C1, · · · , Ck the connected components of

G. For each i, 1 ≤ i ≤ k, Zi be the set of all

edges of the spanning trees of Ci. Then the

maximal elements of MG is

Z1 × · · · × Zk,

that is, the cartesian product of Z1, · · · , Zk.

6



Theorem C Let G be an undirected graph.

Then MG is a matroid.

Proof Let G = (V, E) be an arbitrary

undirected graph and let n = ‖V ‖.

Heredity Let A ⊂ E be such that (V, A) is

acyclic. Then, for all B ⊆ A, (V, B) is acyclic.

so, MG is hereditary.

7



Exchange Property Let C1, . . . , Ck be the

connected components of G. Let A ∈ I.

Then A can be expressed as the disjoint

union of some A1, . . . , Ak such that for each i,

1 ≤ i ≤ k, Ai induces an acyclic subgraph of

Ci. Let B ∈ I. Then B can be similarly

decomposed into the disjoint union of some

B1, . . . , Bk.

Assume ‖A‖ < ‖B‖. Then there is some i,

1 ≤ i ≤ k, such that ‖Ai‖ < ‖Bi‖. Pick such an

i.

Since Bi induces an acyclic subgraph of Ci, Ai

induces a forest, but not a tree, of Ci. Let

D1, . . . , Dm be the connected components of

Ci that Ai induces, where m ≥ 2. Let

t1, . . . , tm be the number of nodes in

D1, . . . , Dm. For each j, 1 ≤ j ≤ m, Ai induces

a tree of Dj. So, the size of Ai is

(t1 − 1) + · · · (tm − 1).

8



We claim that there exist some j, j ′,

1 ≤ j < j′ ≤ m, such that Bi has an edge

connecting a node in Dj and Dj′.

To prove the claim, assume otherwise. Then

each edge of Bi belongs to one of the

connected components D1, . . . , Dm. Since

Bi induces an acyclic graph, for all j,

1 ≤ j ≤ m, the number of edges of Bi

within Dj is at most tj − 1. So, the size of Bi

is at most (t1 − 1) + · · · (tm − 1), and thus,

does not exceed the size of Ai. This is a

contradiction. This proves the claim.

9



By the claim, there exist some j, j ′,

1 ≤ j < j′ ≤ m, such that Bi has an edge

connecting a node in Dj and Dj′. Pick such j

and j′ and such an edge e. Add e to A to

obtain A′. By the way e is selected, A′

induces an acyclic graph. So, MG has the

exchange property.

10



Weighted Matroids

Let w be a function from S to N+, the set of

all positive integers. For each A ⊆ S, define

w(A) as
∑

x∈A w(x). Call w a weight function

of M . An optimal subset of M with respect

to w is the one having the largest weight.

By definition, optimal subsets are maximal.

Finding an optimal subset

Greedy(M, w)

1 sort the elements in S in the non-increasing

order of their weights;

let x1, . . . , xm be the enumeration

2 A← ∅

3 for i← 1 to m do

4 if A ∪ {xi} ∈ I

5 then A← A ∪ {xi}

6 return A

11



Why does this algorithm work?

Lemma D Let k be the smallest i such that

{xi} ∈ I. Then there is an optimal subset

containing xk.

Proof

Let B be an optimal subset with xk /∈ B.

No element y of B has w(y) > w(xk)

Begin with A = {xk}, add from B −A until

‖A‖ = ‖B‖.

A = B − y ∪ x for some y ∈ B

w(A) = w(B)− w(y) + w(x) (1)

≥ w(B)

12



If an element is not an option initially, it

cannot be an option later, because of

heredity.

13



Application of the Matroid Theory:

The task-scheduling problem

Objects with deadlines and penalty.

Input Integers n, d1, . . . , dn, w1, . . . , wn.

Output Find a permutation p1, . . . , pn of

1, . . . , n that minimizes

∑

pi>di

wi.

Intuitively, think of 1, . . . , n as n tasks to be

fulfilled that require a unit-time each and of

d1, . . . , dn as the deadlines for their tasks.

Starting from time 0, the n tasks are executed

in an order. If a task is not accomplished on

or before its deadline, the penalty associated

with it is imposed. w1, . . . , wn are the penalty

values. The goal is to find scheduling of the

tasks that minimizes the total penalty.

14



The matroid over the set of tasks

Let S = {1, . . . , n}

Assume that the tasks are enumerated so

that their deadlines are non-decreasing.

Let A ⊆ S. We say that A is good if there is

a canonical ordering of the items in A such

that for all i ∈ A, the order of i in the

ordering is at most di.

Let I be the set of all subsets of S that are

good and let M = (S, I).

15



Theorem E M is a matroid.

Proof To prove the heredity, let A ∈ I. Let π

be an ordering of A such that for all i ∈ A,

π(i) ≤ di. Let B be a proper subset of A. Let

σ be the ordering defined for all i ∈ B by:

σ(i) = 1 + ‖{j ∈ B | π(j) < π(i)}‖

Then, for all i, σ(i) ≤ π(i), and thus,

σ(i) ≤ pi. So, B is good.

16



Exchange Property

For each t, 1 ≤ t ≤ n, A ⊆ S, let µ(A, t) be the

number of i ∈ A such that di ≤ t.

To prove the exchange property of M , let A

and B be good ones such that ‖A‖ < ‖B‖.
Since A and B are good, for all t, 1 ≤ t ≤ n,

both µ(A, t) and µ(B, t) are at most t. Let

t0 = max{t | µ(A, t) = t} if there is at least

one t such that µ(A, t) = t and 0 otherwise.

Claim F There is some j ∈ B \A such that

dj ≥ t0 + 1.

Proof Let A0 = {i ∈ A | di ≤ t0} and

A1 = A−A0. Similarly, define B0 and B1.

Since µ(A, t0) = t0, ‖A0‖ = t0. Since

‖B0‖ ≤ t0, this implies that ‖A0‖ ≤ ‖B0‖.
Sicne ‖A‖ < ‖B‖, this implies that

‖A1‖ < ‖B1‖. By definition, every element of

B1 has a deadline greater than t0, so there is

some j ∈ B1 \A1 such that dj ≥ t0 + 1.

17



The proof continues . . .

Let j be such that j ∈ B1 \A1 and dj ≥ t0 +1.

Note that, for all i ∈ A0 π(i) ≤ t0 and for all

i ∈ A1 di ≥ i + 1. This means that for each

element i in A1 can be delayed by one

unit-time. Since dj ≥ t0 + 1, we can add j to

A and still execute all of them by their

deadlines.

18



Solution to the Maximization Problem

Let R = w1 + · · ·wn. For each good A, let

w(A) =
∑

i∈A wi and let Q(A) = R− w(A).

Then the problem of minimizing the total

penalty incurred is equivalent to the problem

of maximizing Q, which can be solved by

greedy.

19



Chapter 17: Amortized Analysis

Efficiency averaged over time.

We assume that a sequence of operations is

executed on a data structure and calculate

the cost per operation averaged over the

sequence.

Some operations are cheap and some are

expensive depending on the situation.

20



Our first example is Multipop,

a new operation on a stack.

With this you are able to pop

any number of elements from

a stack.

However, it is implemented by

repeated execution of Pop.

What are the other

permissible operations?

Creation of an empty stack,

Push, Pop, and Empty, which

tests the emptiness.

21



Ostensibly Multipop is quite

expensive because elimination

of k objects requires O(k)

steps.

However, for us to be able to

eliminate k objects Push has

to be executed at least k

times prior to that...

Which means a bad thing

does not happen so very

often...

22



Our next example is a k-bit

binary counter.

Suppose we will increment n

times a k-bit counter that is

initially set to 0...

The number of bit operations

required is high if there is a

long run of 1’s at the lower

bits of the counter, but that

does not happen very often.

23



Amortized Analysis

Suppose that n operations chosen from Pop,

Push, and Multipop are executed on an

initially empty stack. The total cost for

Multipop is the linear function of the total

number of Push, which is at most n. So, the

amortized cost of Multipop is O(1).

Suppose that a k-bit counter initially set to 0

is incremented n times. The total number of

bit flips on the counter is

blgnc∑

i=0

⌊
n

2i

⌋
< n

∞∑

i=0

1

2i
= 2n.

So the amortized cost is O(1).

This calculation method is called aggregate

method.

24



The potential method

Policy: For each i, 1 ≤ i ≤ n, let ci be the

actual cost of the i-th operation and Di be

the data structure when the i-th operation

has been done.

Pick a potential function Φ that assigns a

value to the data structure and define the

amortized cost ĉi as ci + Φ(Di)−Φ(Di−1).

Let T (n) =
∑n

i=1 ĉi be the total amortized

cost. Then

T (n) =
n∑

i=1

(ci + Φ(Di)−Φ(Di−1))

=
n∑

i=1

ci + Φ(Dn)−Φ(D0).

25



We’ll pick Φ so that

• for all i Φ(Di) ≥ Φ(D0) and

•
∑n

i=1 ĉi is easy to compute.

Then T (n)/n gives an upper-bound for the

amortized cost. So, we will evaluate ĉi

instead of ci.

26



A. Stack: Define Φ(Di) to be the stack

size. Then Φ(D0) = 0, and so, for all i ≥ 1,

Φ(Di) ≥ Φ(D0).

The amortized cost ĉi is 1 + 1 = 2 for Push

and 0 for both Pop and Multipop.

27



B. Counter: Define Φ(Di) to be the

number of bits 1 in the counter after the i-th

incrementation. Then Φ(D0) = 0 and for all

i ≥ 0 it holds that Φ(Di) ≥ 0.

Define ti to be the number of bits that are

reset at the i-th operation. Then for all i ≥ 0,

Φ(Di+1) = Φ(Di)− ti + 1. Then ci = ti + 1

and ĉi ≤ ti + 1 + (1− ti) = 2. So, the

amortized cost is O(1).

28



Dynamic Tables

A dynamic table is a table of variable size,

where an expansion (or a contraction) is

caused when the load factor has become

larger (or smaller) than a fixed threshold.

Let the expansion threshold be 1 and the

expansion rate be 2; i.e., the table size is

doubled when an item is to be inserted

when the table is full.

Let the contraction threshold be 1
4 and the

contraction rate be 1
2; i.e., the table size is

halved when an item is to be eliminated

when the table is exactly one-fourth full.

29



Implementation of Expansion &

Contraction

When these operations take place we create

a new table and move all the elements from

the old one to the new one.

Suppose that there are n calls of insertion

and deletion are made, what is the average

cost of each operation?

30



If the size is kept the same the cost is O(1).

If the size is doubled from M to 2M , the

actual cost is M + 1. The time that it takes

for the next table size change to occur is at

least M steps for doubling and at least

M/2 steps for halving. So the actual cost

can be spread over the next M/2 “normal”

steps. This gives an amortized cost of O(1).

If the size is halved from M to M/2, the

actual cost is M/4. The time that it takes for

the next table size change to occur is at

least M
4 steps for doubling and at least M

8

steps for halving. So the actual cost can be

spread over the next M/8 steps to yield an

amortized cost of O(1).

31



Amortized Cost Analysis Using the

Potential Method

For each i, 1 ≤ i ≤ n, define ci to be the

number of insertions and deletions that are

executed at the i-th operation, and define

Φi
def
=





2numi − sizei if αi ≥
1
2,

sizei
2 − numi if αi < 1

2,

Here sizei is the table size, numi is the

number of elements in the table, and αi is the

ratio numi
sizei

after the i-th operation. Note that

• at time 0, the table is empty, so Φ0 = 0,

• for all i, Φi ≥ 0, and thus, Φn ≥ Φ0, and

• Φn ≤ 2n− n = n, so the contribution of

the potential function to the amortized

cost is at most 1.

32



The Amortized Cost ĉi for Insertion Here

m = numi−1 and s = sizei−1

(a) αi−1 = 1: Here m = s.

ci Φi Φi−1 ĉi
m + 1 2(m + 1)− 2s 2m− s 3

(b) 1
2 ≤ αi−1 < 1:

ci Φi Φi−1 ĉi
1 2(m + 1)− s 2m− s 3

(c) αi = 1
2: Here m + 1 = s

2.

ci Φi Φi−1 ĉi
1 2(m + 1)− s s/2−m 0

(d) αi < 1
2:

ci Φi Φi−1 ĉi
1 s/2−m− 1 s/2−m 0

So the amortized cost of insertion is O(1).

33



The Amortized Cost ĉi for Deletion

(a) αi ≥
1
2:

ci Φi Φi−1 ĉi
1 2(m− 1)− s 2m− s −1

(b) αi−1 = 1
2: Here 2m = s.

ci Φi Φi−1 ĉi
1 s

2 − (m− 1) 2m− s 2

(c) 1
4 < αi−1 ≤

1
2:

ci Φi Φi−1 ĉi
1 s/2− (m− 1) s/2−m 2

(d) αi−1 = 1
4: m = s

4 and αi < 1
2.

ci Φi Φi−1 ĉi
m s/4− (m− 1) s/2−m 1

So the amortized cost of deletion is O(1).

34


