
Chapter 19: Binomial Heaps

We will study another heap structure called,

the binomial heap.

The binomial heap allows for efficient union,

which can not be done efficiently in the binary

heap. The extra cost paid is the minimum

operation, which now requires O(logn).
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Comparison of Efficiency

Binary Binomial
Procedure (worst- (worst-

case) case)

Make-Heap Θ(1) Θ(1)

Insert Θ(lgn) O(lgn)

Minimum Θ(1) O(lgn)

Extract-Min Θ(lgn) Θ(lgn)

Union Θ(n) O(lgn)

Decrease-Key Θ(lgn) Θ(lgn)

Delete Θ(lgn) Θ(lgn)
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Definition

A binomial tree Bk is an ordered tree defined

recursively.

• B0 consists of a single node.

• For k ≥ 1, Bk is a pair of Bk−1 trees,

where the root of one Bk−1 becomes the

leftmost child of the other.
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Properties of Binomial Trees

Lemma A For all integers k ≥ 0, the

following properties hold:

1. Bk has 2k nodes.

2. Bk has height k.

3. For i = 0, . . . , k, Bk has exactly
(

k
i

)

nodes

at depth i.

4. The root of Bk has degree k and all other

nodes in Bk have degree smaller than k.

5. If k ≥ 1, then the children of the root of

Bk are Bk−1, Bk−2, · · · , B0 from left to

right.

Corollary B The maximum degree of an

n-node binomial tree is lgn.
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Properties of Binomial Trees

For i = 0, . . . , k, Bk has exactly
(

k
i

)

nodes at

depth i.

D(k, i) = D(k − 1, i) + D(k − 1, i − 1)

=
(k − 1

i

)

+
(k − 1

i − 1

)

=
(k

i

)
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The Binomial Heap

A binomial heap is a collection of binomial

trees that satisfies the following

binomial-heap properties:

1. No two binomial trees in the collection

have the same size.

2. Each node in each tree has a key.

3. Each binomial tree in the collection is

heap-ordered in the sense that each

non-root has a key strictly less than the

key of its parent.

By the first property we have the following:

For all n ≥ 1 and k ≥ 0, Bk appears in an

n-node binary heap if and only if the (k + 1)st

bit of the binary representation of n is a 1.

This means that the number of trees in a

binomial heap is O(logn).
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Implementation of a Binomial Heap

Keep at each node the following pieces of

information:

• a field key for its key,

• a field degree for the number of children,

• a pointer child , which points to the

leftmost-child,

• a pointer sibling, which points to the

right-sibling, and

• a pointer p, which points to the parent.

The roots of the trees are connected so that

the sizes of the connected trees are in

decreasing order. Also, for a heap H, head [H]

points to the head of the list.
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Operations on Binomial Heaps

1. creation of a new heap,

2. search for the minimum key,

3. uniting two binomial heaps,

4. insertion of a node,

5. removal of the root of a tree,

6. decreasing a key, and

7. removal of a node.
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1. Creation of a New Heap

To do this, we create an object H with

head [h] = nil.

2. Search for the Minimum Key

To do this we find the smallest key among

those stored at the roots connected to the

head of H.

What’s the cost of

minimum-search?
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What’s the cost of

minimum-search?

The cost is O(logn) because

there are O(logn) heaps, in

each tree the minimum is

located at the root, and the

roots are linked.
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3. Uniting Two Binomial Heaps

Suppose we wish to unite two binomial heaps,

H1 and H2, having size n1 and n2,

respectively. Call the new heap H0.

Recall that the list of the root degrees of a

binary heap is the sorted list of all positions in

which the binary representation of the heap

size has a bit 1 and the order and that the

positions appear in increasing order. We will

simulate addition of binary numbers.
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• Merge H1 and H2 into H0 so that the tree

sizes are in nondecreasing order (in the

case of a tie the tree from H1 precedes

the one from H2).

• Sweep-scan H0 with pointers three points,

a, b, and c, that are set on three

consecutive trees. Here a is the closest to

the start and c to the end. The scanning

process is terminated as soon as a

becomes nil.

• While scanning preserve:

1. degree[a] ≤ degree[b] ≤ degree[c],

2. no two trees that have been left

behind have an equal size, and

3. no more than three trees on the list

have an equal size.
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We will study three cases:

Case I: Either degree[a] < degree[b] or b = nil.

Case II: degree[a] = degree[b] = degree[c].

Case III: degree[a] = degree[b] and (either

degree[b] < degree[c] or c = nil).
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Case I: Either degree[a] < degree[b] or b = nil.

We will leave behind the tree at a and move

each of the three pointers to the next tree.

Case II: degree[a] = degree[b] = degree[c].

The same as Case I.

Case III: degree[a] = degree[b] and either

degree[b] < degree[c] or c = nil:

We link the trees at a and b into a new tree

and set a to this new tree. Then we move b

and c to the next one each.
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4. Insertion of a Node.

Suppose we wish to insert a node x into a

binomial heap H.

We create a single node heap H ′ consisting of

x and unite H and H ′.

5. Removing the Root of a Tree T

We eliminate T from H and create a heap H ′

consisting solely of the children of T . Then

we unite H and H ′.
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6. Decreasing a Key

We decrease the key and then keep

exchanging the keys upward until violation of

the heap property is resolved.

7. Deletion of a Key

We decrease the key to −∞ to move the key

to the root position. Then we use the root

removal.
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