
Chapter 21: Data Structures for Disjoint

Sets

Here we are thinking of a situation in which

we need to maintain a family of sets of

elements, where each set has a unique

representative, in which we need perform the

following fundamental operations on the sets:

1. Make-Set Given an element x, create a

new set consisting solely of x.

2. Find-Set Given an element x, find the

representative of the set to which x

belongs.

3. Union Given two representatives x and

y, join the sets represented by x and y.

There is no rule about which element will

be the representative of the union.

1



The Key Issue

We do not need to be able to have efficient

enumeration of all the representatives. Given

that the three operations that need to be

performed, it is easy to keep track of the

changes in the number of sets that are

maintained.

Since we have the concept of representatives,

in each set we need to have a link between

the representative and each of its members.

We assume that we maintain a list of

elements, each of which is equipped with a

pointer whose value is determined by a

certain rule, and that the pointers are used to

look for representatives.

Think of an implementation.

How efficiently the three

operations can be done with

your implementation?

2



The Disjoint Forest Implementation

Each set is a a tree with pointers to the

parents. The root is the representative. The

parent pointer of the root points to itself.

What is the cost of

Make-Set?

3



The Union-by-rank Heuristic

The heuristic is used for both union and find.

Here each node x keeps a value rank [x]. When

a single-node tree is created by Make-Set, the

value of rank is set to 0 for the single node.

For Union, make the one with the smaller

root rank will become a child of the root of

the other. A tie can be broken arbitrarily, but

the rank of the root is incremented by one.

4



u

x y

z w

7

8 (7)
7

joined

8

u

xwv

y z r

0

000

1 1

2

5



The root rank is the tree height and is a

lower bound on the lg of the tree size.

Theorem A For a sequence of m operations

n out of which are Make-Set, the cost with

the union-by rank heuristic is O(m lgn).

Proof Since there are only n elements, the

root rank is at most lgn, so, the height is at

most lgn. The cost of Make-Set and that of

Union are both O(1) and the cost of Find is

a “big-O” of the maximum height, the total

cost is O(m lgn).

The bound is tight.

6



The path-compression heuristic

When a node x is visited during Find-Set,

redirect p[x] to the root without modifying

ranks.

The root rank is an upper bound on the tree

height.

Is the root rank still an upper

bound on the lg of the tree

size?

7



8



With the path-compression heuristic, n

Make-Set operations plus f FindSet

operations cost

Θ(f log1+f n) if f ≥ n and

Θ(n + f lgn) if f < n.

With the two heuristics, m basic operations n

of which being Make-Set cost O(m lg∗ n),

where lg∗ n is smallest number k that the k

stacks of 2 is greater than or equal to n.

9


