Homework 9 Due Tuesday Dec 6

- CLRS 19.2-4 (correctness of heap union)
- CLRS 22.3-4 (depth-first search)
- CLRS 22-1 (breadth-first search)
Chapter 22: Elementary Graph Algorithms

- Graph representation
- Search strategies
- Shortest path
- Topological sort
- Strongly connected components
Representations

1. **Adjacency-List Representation** A list of adjacent nodes per node. Encoding size \(= \Theta(E + V)\). Suitable for **sparse graphs**.

2. **Adjacency-Matrix Representation** The \(|V| \times |V|\) matrix that represents connection between nodes. Encoding size \(= \Theta(V^2)\). Suitable for **dense graphs**.
Adjacency-List Representation

1 : [2, 6]
2 : [3, 5]
3 : []
4 : [1, 3]
5 : [4, 6]
6 : [2]

Adjacency-Matrix Representation

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]
Traversal of Nodes

The problem of visiting all the nodes of a given graph G starting from a specific node s.

1. **Breadth-First Search** Mark all the unmarked adjacent nodes. Then recursively visit each of the adjacent nodes.

2. **Depth-First Search** If there are unmarked adjacent nodes visit one of them.

Connectivity in Undirected Graphs Nodes u and v are connected if there is a path between them. A graph G is connected if every pair of nodes is connected.

So, when search is finished check whether any node is yet to be visited. If so, start the search from any such one.
Breadth-First Search

Depth-First Search
Computing the Minimum Distance from \(s \) with BFS

\[\delta(v) \overset{\text{def}}{=} \text{the minimum distance of } v \text{ from } s \]

\begin{itemize}
 \item \(\delta(v) = 0 \) if and only if \(v = s \).
 \item For all \(i \geq 1 \), \(\delta(v) = i \) if and only if
 \(\delta(v) \not\in \{0, 1, \ldots, i - 1\} \) and there is a node
 \(u \) such that \(\delta(u) = i - 1 \) and \((u, v) \in E \).
\end{itemize}

Use a queue \(Q \). Initially, we set \(Q = \{s\} \),
\(d(s) = 0 \), and for all \(v \neq s \), set \(d[v] = +\infty \).
Then while \(Q \neq \emptyset \), do the following:

\begin{itemize}
 \item Pop the top element \(u \) from \(Q \).
 \item For each \(v \) such that \((u, v) \in E \), if
 \(d(v) \neq +\infty \) do nothing; otherwise, set
 \(d[v] = d[u] + 1 \) and push \(v \) into \(Q \).
\end{itemize}
Correctness Proof

Theorem A For each vertex \(v \), \(d[v] = \delta(v) \) at the end.

Proof Suppose that \(G \) is connected. Then every node is put in the queue at least once. Also,

- At any point of the algorithm if \(Q = [v_1, \ldots, v_m] \) then
 \[d[v_1] \leq \cdots \leq d[v_m] \leq d[v_1] + 1. \]
- For all \(v \), once \(d[v] \) is set to a finite value \(d[v] \) is unchanged to another finite value unless \(d[v] \) becomes \(+\infty \) again.

These imply that the value assigned to \(d[v] \) after initialization never exceeds \(n - 1 \), which implies that a node is never put in the queue twice. So, every node is put in the queue exactly once.
Now we use induction on the value of $d[v]$ to show the correctness: for all $t \geq 0$ and for all v, $d[v] = t$ if and only if $\delta(v) = t$.

The base case is when $t = 0$. The proof is trivial for this case.

Why?
There is only one node whose \(d\)-value is 0.

The unique node is \(s\).

The value of \(d[s]\) is set to 0.
For the induction step, let $t > 0$ and suppose that the claim holds for all values of t less than the current one. Let v be such that $d[v] = t$. By our induction hypothesis $\delta(v) \geq t$. There is a node u such that $d[u] = t - 1$ and the algorithm sets $d[v]$ to t by identifying (u, v). By our induction hypothesis $\delta(u) = d[u]$. So, $\delta(v) \leq t$. Thus, $\delta(v) = t$. \qed
Constructing a Tree from BFS

Suppose that for all nodes \(v \) we record its “predecessor,” i.e. the node from which \(v \) is touched, as \(\pi[v] \). Then the edge set \(\{(\pi[v], v) \mid v \in V - \{s\}\} \) defines a tree. We call it the BFS tree of \(G \).

The complexity of BFS

- A node is placed in a queue just once
- An edge is examined twice
<table>
<thead>
<tr>
<th>node</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>w, x</td>
<td>s</td>
</tr>
<tr>
<td>v</td>
<td>w</td>
</tr>
<tr>
<td>t, y</td>
<td>x</td>
</tr>
<tr>
<td>u</td>
<td>t</td>
</tr>
</tbody>
</table>

![Graph Diagram](image-url)
DFS

Use recursive calls to a subroutine `Visit`. Use a global clock, initially set to 0. The clock is incremented by one when `Visit` is called and when a call to `Visit` is finished.

The main-loop:

- For all u, set $d[u] = \infty$, $\pi[u] = \text{nil}$, and $clock = 0$.
- For each u, if $d[u] = \infty$ then call `Visit(u)`.

Visit(u):

1. Add 1 to $clock$ and set $d[u] = clock$.
2. For each $v \in Adj[u]$, if $d[v] = \infty$ then set $\pi[v] = u$ and call `Visit(v)`.
3. Add 1 to $clock$ and set $f[u] = clock$.
Running Time Analysis

- A call of Visit with respect to a node is exactly once.
- Each edge is examined exactly twice.

So, what’s the running time?

Use the π field to construct a tree, called the DFS tree.

<table>
<thead>
<tr>
<th>node</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>u</td>
</tr>
<tr>
<td>v, x</td>
<td>u</td>
</tr>
<tr>
<td>w</td>
<td>z</td>
</tr>
<tr>
<td>y</td>
<td>v</td>
</tr>
<tr>
<td>z</td>
<td>y</td>
</tr>
</tbody>
</table>

![DFS Tree Diagram]
The Parenthesis Structure of DFS

For each u, let $I[u] = (d[u], f[u])$. Then, for all u and v, exactly one of the following three holds for $I[u]$ and $I[v]$,

- $I[u] \cap I[v] = \emptyset$. This is the case when u and v are not on the same path from s.
- $I[u] \subseteq I[v]$. This is the case when u is a descendant of v on a path from s.
- $I[v] \subseteq I[u]$. This is the case when v is a descendant of u on a path from s.

This is called the parenthesis structure of DFS.
Classification of edges

1. **The Tree Edges**: The edges on the tree.

2. **The Back Edges**: The non-tree edges connecting descendants to ancestors (including self-loops).

3. **The Forward Edges**: The non-tree edges connecting ancestors to descendants.

4. **The Cross Edges**: The rest.

In DFS, when $e = (u, v)$ is first explored:

- $d[v] = \infty \Rightarrow e$ is a tree edge,
- $d[v] < f[v] = \infty \Rightarrow e$ is a back edge, and
- $f[v] < \infty \Rightarrow e$ is a forward or cross edge.

Theorem B Every edge is either a tree edge or a back edge for an undirected graph.
Topological sort

Let G be a DAG (directed acyclic graph). **Topological sorting** of the nodes of G is a linear ordering of the nodes such that for all u and v if there is an arc from u to v (i.e., $(u, v) \in E'$) then u precedes v in the ordering.
What is a topological sort of these nodes?
An Algorithm for Topological Sort

Call $\text{DFS}(G)$ to compute f-values. While doing this, each time a node, say v, is done, insert v as the top element of the list.

The running time is $O(E + V)$.
Strongly Connected Components

Let G be a directed graph. For all nodes u and v, write $u \sim v$ if there is a directed path from u to v in G.

Two vertices u and v of a directed graph G are strongly connected if $u \sim v$ and $v \sim u$. A strongly connected component of G is a maximal set S of vertices in G in which every two nodes are strongly connected.
Algorithms for Computing Strongly Connected Components

A trivial algorithm would be to compute for each u the set, W_u, defined by $\{v \mid u \sim v\}$, and then to check for all u and v whether it holds that $u \in W_v$ and $v \in W_u$.

How efficiently can this algorithm be implemented?
An $O(E + V)$-Step Method

Define G^T to be the graph G in which the direction of each edge is reversed. We do the following:

1. Call $\text{DFS}(G)$ to compute $f[u]$ for all u.
2. Compute $H = G^T$ where the nodes are enumerated in order of decreasing f.
3. Call $\text{DFS}(H)$, in which whenever the paths have been exhausted, find the next node that is not visited yet in the above ordering.
4. Output the vertices of each DFS-tree of H as a separate strongly connected component.
The f-values:

The DFS-trees of H:
Correctness of Strongly Connected Components

Let C, C' be SCCs in $G = (V, E)$. If there is an edge $(u, v) \in E$, where $u \in C$ and $v \in C'$, $f(C) > f(C')$

Induction on number of components.

Hypothesis: first k tree produced in second DFS are SCCs.

When visiting next vertex u, $f[u] = F(C) > F(C')$ for any SCC C' not yet visited. Any edge leaving C in G_T is to a SCC already visited. All vertices in C will be descendents of u in DFS.