
Chapter 24: Single-Source Shortest Paths

The shortest path · · · the path with the

smallest edge-weight sum
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What is the length of the

path 〈a, b, d, c, f〉?
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The Shortest Path Problem (SPP)

δ(u, v)
def
= the shortest path length

Compute δ(u, v) for:

1. Single-Source: a fixed u and all v;

2. Single-Destination: a fixed v and all u;

3. Single-Pair: fixed u and v;

4. All-Pair: all u and v.

Negative weight edges can create negative

weight cycles, which make the shortest paths

undefined
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Theorem A

Optimal Substructure Theorem

If p = 〈v1, v2, · · · , vk〉 is a shortest path from v1

to vk, then for all i, j,1 ≤ i ≤ j ≤ k,

pij = 〈vi, . . . , vj〉 is a shortest path from vi to

vj.

1. δ(u, v) = min{δ(u, a) + w(a, v) | (a, v) ∈ E}.

2. δ(u, v) ≤ δ(u, a) + w(a, v) for any a.

Idea Use a variable d[u, v] to compute δ(u, v)

Relaxation with respect to points a, b, c:

d[a, c]← min{d[a, c], d[a, b] + w(b, c)}.
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A general strategy

1. Set d[u, v] =∞ for all u and v.

2. Repeat the following until no update

(*) Pick a, b, c and, relax d[a, c] with (b, c):

d[a, c]← min{d[a, c], d[a, b] + w(b, c)}.

3. Output d[u, v] as δ(u, v).
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Strategy for SSSP

Fix u to the source node s. Omit the first

component from d since it’s fixed to s.

1. Set d[v] =∞ for all v.

2. Repeat the following until no possibility of

update:

(*) Pick b and c and then relax d[c] with

(b, c):

d[c]← min{d[c], d[b] + w(b, c)}.

3. Output d[v] as δ(s, v).
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Dijkstra’s Algorithm

Here all weights are nonnegative.

S
def
= the set of nodes that are “finished,” i.e.,

δ(s, v) = d[v]

Q
def
= V − S, a priority queue keyed with d

1. Set d[s] to 0, d[v] to ∞ for all v 6= s, S to

∅, and Q to V .

2. While Q 6= ∅, “extract-min” u ∈ Q, then

(a) Add u to S.

(b) For each v with (u, v) ∈ E,

d[v]← min{d[v], d[u] + w(u, v)}.

? Each time d[v] is updated, set π[v] to u,

which is the predecessor of v.
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How many times is each edge

examined?

How many calls to

Extract-Min?

How about Decrease-Key?
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Each edge is examined once.

Extract-Min is called at most V times.

Decrease-Key is called at most E times.

With Fibonacci heaps, the total running time

is O(E + V lgV ).
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The Bellman-Ford Algorithm

Here negative weights are allowed. The

algorithm detects whether there are negative

weight cycles.

Repeat V − 1 times:

1. For each edge (u, v), relax with respect

to (u, v)

2. If for some (u, v), d[v] > d[u] + w(u, v),

then output “negative weight cycles”

How many times is each edge

examined?

What is the running time?
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µ(u) = the minimum number of edges in

shortest s-u paths; µ(u) ≤ V − 1 for all u.

Theorem B If G has no negative weight

cycles then for all v after the µ(v)-th round

d[v] becomes δ(s, v).

Proof By induction on µ(v).

(Base) µ(v) = 0: trivial because v = s.
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(Induction) Let m ≥ 0 and µ(v) = m + 1.

Suppose that the claim holds for all u such

that µ(u) ≤ m. Pick an (m + 1)-edge shortest

s-v path p, and let u be the node preceding v.

Then µ(u) = m and

δ(s, v) = δ(s, u) + w(u, v).

So after the m-th round d[v] = δ(s, v). Thus,

in the (m + 1)st round, d[u] becomes at

most δ(s, u) + w(u, v), and this is the smallest

possible value that d[u] can acquire.
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Theorem C If G has a negative weight

cycle then there exist some u and v such that

after the (V − 1)-st round d[v] > d[u] + w(u, v)

holds. Thus, if G has a negative weight cycle

then the algorithm outputs “negative weight

cycle.”
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Proof Suppose G has a negative weight cycle

〈v1, v2, . . . , vk, v1〉 whose length is L < 0. Then

L = w(v1, v2) + · · ·w(vk−1, vk) + w(vk, v1).

Assume, to the contrary, that

d[v] ≤ d[u] + w(u, v) holds for all u and v after

the (V − 1)-st round. By our assumption,

d[vi] ≤ d[vi−1] + w(vi−1, vi)

for all i,1 ≤ i ≤ k, where v0 = vk. Summing

these inequialities for all i, we have

k∑

i=1

d[vi] ≤
k∑

i=1

d[vi] + L.

This implies L ≥ 0, a contradiction.
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SSSP for a DAG

1. Obtain a topological sort of the nodes.

2. For each u 6= s, set d[u] =∞. Set

d[s] = 0.

3. For each node v in the sorted order, and

each u with (u, v) ∈ E, set

d[v] = min{d[v], d[u] + w(u, v)}.

What is the running time?
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