The Art of Data Structures

Stacks

Alan Beadle
CSC 162: The Art of Data Structures
Agenda

• What is a Stack?
• The Stack Abstract Data Type
• Implementing a Stack in Python
• String reversal
• Balanced Parentheses/symbols
• Infix, Prefix and Postfix Expressions
Linear Data Structures
Linear Data Structures

What are they?

- Data collections where items are ordered depending on how they are added/removed.
- They stay in that order, relative to other elements before and after it.
Linear Data Structures

What are they?

• Two ends (left, right, top, bottom, front, rear, etc...)

• Adding and removing is the distinguishing characteristic

• May be limited on which end data is removed from or added to
Linear Data Structures

What are they?

- Simple, but powerful data structures will be covered
- Stacks, Queues, Deques, and Lists
- Very useful in computer science
- Appear in many algorithms, and solve important problems
Stacks
Stacks

Definition

- Also known as a "push-down stack"
- Ordered collection where items are added, or removed from the same end
- This means the last item added is the first one removed, also called a LIFO (last-in, first-out)
- The newest items are at the top/front and the oldest items are in the bottom/rear
Stacks

A Stack of Books
Stacks

A Stack of Primitive Python Objects
Stacks

The Reversal Property of Stacks
Implementation
Implementation

Stack Abstract Data Type

- The stack abstract data type is defined by:
 - The underlying data structure
 - The exposed actions that operate on it
 - Items are removed, and added from the end called the "top"
 - They are an ordered LIFO
Implementation

Stack Abstract Data Type

• When an ADT is given a physical implementation, we refer to that implementation as a *data structure*

• We will be using Python classes to implement this ADT, where the stack operations will be methods

• A Python list will be the underlying data structure, as it is a powerful, and simply primitive collection structure
Implementation

Stack Operations

• Stack() creates a new stack that is empty; it needs no parameters and returns an empty stack

• push(item) adds a new item to the top of the stack; it needs the item and returns nothing

• pop() removes the top item from the stack; it needs no parameters, returns the item and the stack is modified
Implementation

Stack Operations

- `peek()` returns the top item from the stack but does not remove it; it needs no parameters; the stack is not modified

- `is_empty()` tests to see whether the stack is empty; it needs no parameters and returns a boolean value

- `size()` returns the number of items on the stack. It needs no parameters and returns an integer
<table>
<thead>
<tr>
<th>Stack Operation</th>
<th>Stack Contents</th>
<th>Return Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>s.is_empty()</code></td>
<td><code>[]</code></td>
<td>True</td>
</tr>
<tr>
<td><code>s.push(4)</code></td>
<td><code>[4]</code></td>
<td></td>
</tr>
<tr>
<td><code>s.push('dog')</code></td>
<td><code>[4, 'dog']</code></td>
<td></td>
</tr>
<tr>
<td><code>s.peek()</code></td>
<td><code>[4, 'dog']</code></td>
<td>'dog'</td>
</tr>
<tr>
<td><code>s.push(True)</code></td>
<td><code>[4, 'dog', True]</code></td>
<td></td>
</tr>
<tr>
<td><code>s.size()</code></td>
<td><code>[4, 'dog', True]</code></td>
<td>3</td>
</tr>
<tr>
<td><code>s.is_empty()</code></td>
<td><code>[4, 'dog', True]</code></td>
<td>False</td>
</tr>
<tr>
<td><code>s.push(8.4)</code></td>
<td><code>[4, 'dog', True, 8.4]</code></td>
<td></td>
</tr>
<tr>
<td><code>s.pop()</code></td>
<td><code>[4, 'dog', True]</code></td>
<td>8.4</td>
</tr>
<tr>
<td><code>s.pop()</code></td>
<td><code>[4, 'dog']</code></td>
<td>True</td>
</tr>
<tr>
<td><code>s.size()</code></td>
<td><code>[4, 'dog']</code></td>
<td>2</td>
</tr>
</tbody>
</table>
Implementation

Stack Implementation in Python

class Stack:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def push(self, item):
 self.items.append(item)

 def pop(self):
 return self.items.pop()

 def peek(self):
 return self.items[-1]

 def size(self):
 return len(self.items)
The abstract nature of an ADT can allow us to change the underlying physical implementation without affecting the logical characteristics.

The performance, however, may differ wildly.

The following alternate implementation will have push() and pop() methods that run in O(n), for a stack of size n.
Implementation

Stack Implementation in Python

(Alternate, Slower)

class Stack:
 def __init__(self):
 self.items = []

 def is_empty(self):
 return self.items == []

 def push(self, item):
 self.items.insert(0, item)

 def pop(self):
 return self.items.pop(0)

 def peek(self):
 return self.items[0]

 def size(self):
 return len(self.items)
String reversal example

(In notebook)
Simple Balanced Parentheses
Simple Balanced Parentheses

Matching Parentheses

(5+6)*(7+8)/(4+3)

LISP code example:
(defun square(n)
 (* n n))

“LIST Processing” or “Lost In Senseless Parentheses”?

Most recent open matches first close

(()) (()) ())

First open may wait until last close
Simple Balanced Parentheses

Parentheses Checker

def par_checker(symbol_string):
 s = Stack()
 balanced = True
 index = 0

 while index < len(symbol_string) and balanced:
 symbol = symbol_string[index]
 if symbol == "(":
 s.push(symbol)
 else:
 # the case for a right/closing parens
 if s.is_empty():
 balanced = False
 else:
 s.pop()

 index += 1

 if balanced and s.is_empty():
 return True
 else:
 return False
Simple Balanced Parentheses

Parentheses Checker

- That could have been done more easily with just a counter
- If we extend to handle brackets and braces, too, we really need the stack...
Balanced Symbols
(A General Case)
Balanced Symbols
(A General Case)

def symbol_checker(symbol_string):
 s = Stack()
 balanced = True
 index = 0

 while index < len(symbol_string) and balanced:
 symbol = symbol_string[index]
 if symbol in '({<'
 s.push(symbol)
 else:
 if s.is_empty():
 balanced = False
 else:
 top = s.pop()
 print(s.items, top, symbol)
 if not matches(top, symbol):
 balanced = False
 index += 1

 return (balanced and s.is_empty())
def matches(_open, close):
 openers = "([[{<",
 closers = "]}))>"
 return openers.index(_open) == closers.index(close)

print(par_checker('{{{(][[]])}}()'))
print(par_checker('[[{}]]'))
Infix, Prefix, Postfix Exps.

• This stuff can be confusing at first, so let’s start with a demonstration of postfix notation

• FORTH is a whole programming language based on stacks and postfix notation!

• As a hobby, I re-implemented an extinct dialect of FORTH called DSSP

• Let’s see how DSSP does math using a stack...
Infix, Prefix, Postfix Exps.

Moving Operators Rightward for Postfix Notation

- We're used to infix: A + B
- We're also used to prefix, perhaps with parentheses:
 - add(A, B)
 - + A B
Infix, Prefix, Postfix Exps.

Moving Operators Leftward for Postfix Notation

- Postfix may seem a little strange: $A B +$

\[
\begin{align*}
(A + (B * C))
\end{align*}
\]
Infix, Prefix, Postfix Exps.

Converting a Complex Expression to Prefix and Postfix Notations

\[(A + B) \times C - (D - E) \times (F + G)\]

Prefix:

\[- * + A B C * - D E + F G\]

Postfix:

\[A B + C * D E - F G + *\]
Infix, Prefix, Postfix Exps.

Converting a Complex Expression to Prefix and Postfix Notations

- With infix, we need parentheses to determine order of operations.
- We sometimes leave them out if the order can be implied by rules for precedence:
 - $2 + 3 \times 4 == 2 + (3 \times 4) ==> 14$
 - $2 + 3 \times 4 == (2 + 3) \times 4 ==> 20$
Infix, Prefix, Postfix Exps.

Converting a Complex Expression to Prefix and Postfix Notations

- We sometimes leave them out if the order can be implied by rules for associativity:
 - $10 - 4 - 3 \equiv (10 - 4) - 3 \implies 3$
 - $10 - 4 - 3 \equiv 10 - (4 - 3) \implies 9$
Infix, Prefix, Postfix Exps.

Converting a Complex Expression to Prefix and Postfix Notations

- Prefix and postfix have no need for parentheses; the order is manifest.
- M&R point out that this is because we've effectively placed the operator in the position of the left or right paren, so it implies the grouping.
Infix, Prefix, Postfix Exps.

Converting a Complex Expression to Prefix and Postfix Notations

- \((A + (B \times C))\) ← infix
- \(+ A \times B C\) ← prefix
- \(A B C \times +\) ← postfix
Infix, Prefix, Postfix Exps.

Converting a Complex Expression to Prefix and Postfix Notations

- \(((A + B) \times C)\) ← infix
- \(* \, + \, A \, B \, C\) ← prefix
- \(A \, B \, + \, C \, \times\) ← postfix
Infix, Prefix, Postfix Exps.

Converting a Complex Expression to Prefix and Postfix Notations

• So what does this have to do with stacks?

• We can build on the balanced parens example to convert among the three representations and to evaluate expressions in any of the three notations

• Compilers and interpreters (like the Python interpreter) do a lot of this sort of thing
Infix, Prefix, Postfix Exps.

Converting a Complex Expression to Prefix and Postfix Notations

• We'll show how to convert infix to postfix using a stack

• One handles precedence, the other does not

• Both have left associativity

• Neither example handles right associativity (e.g., for exponentiation)
import string

def infix_to_postfix(infix_expr):
 operand_stack = Stack()
 postfix_list = []
token_list = infix_expr.split()

 for token in token_list:
 if token in string.ascii_uppercase:
 postfix_list.append(token)
 elif token == '(':
 operand_stack.push(token)
 elif token == ')':
 top_token = operand_stack.pop()
 while top_token != '(': # Operator
 postfix_list.append(top_token)
 top_token = operand_stack.pop()
 else: # Operator
 if not operand_stack.is_empty() and operand_stack.peek() != '(':
 postfix_list.append(operand_stack.pop())
 operand_stack.push(token)

 while not operand_stack.is_empty():
 postfix_list.append(operand_stack.pop())

 return ''.join(postfix_list)
Infix, Prefix, Postfix Exps.

Converting $A \times B + C \times D$ to Postfix Notation

1. The following algorithm handles precedence; still implicitly left associative

2. Create an empty stack called opstack for keeping operators

3. Create an empty list for output

4. Convert the input infix string to a list by using the string method split
4. Scan the token list from left to right
 • If the token is an operand, append it to the end of the output list
 • If the token is a left parenthesis, push it on the opstack
Infix, Prefix, Postfix Exps.

Converting $A \times B + C \times D$ to Postfix Notation

4. (cont.) Scan the token list from left to right

- If the token is a right parenthesis, pop the opstack until the corresponding left parenthesis is removed
- Append each operator to the end of the output list
4. (cont.) Scan the token list from left to right

- If the token is an operator, *, /, +, or -, push it on the opstack

- However, first remove any operators already on the opstack that have higher or equal precedence and append them to the output list
Infix, Prefix, Postfix Exps.

Converting $A * B + C * D$ to Postfix Notation

5. When the input expression has been completely processed, check the opstack

• Any operators still on the stack can be removed and appended to the end of the output list
Infix, Prefix, Postfix Exps.

Converting \(A \ast B + C \ast D \) to Postfix Notation

\[
A B \ast C D \ast +
\]
Infix, Prefix, Postfix Exps.

Infix to Postfix Notation (With Precedence)

def infix_to_postfix2(infix_expr):
 prec = {'*': 3, '/': 3, '+': 2, '-': 2, '(': 1}

 operand_stack = Stack()
 postfix_list = []
 token_list = infix_expr.split() # our infix_expr should have spaces in it!

 for token in token_list:
 if token in string.ascii_uppercase or token in string.digits:
 postfix_list.append(token)
 elif token == '(':
 operand_stack.push(token)
 elif token == ')':
 top_token = operand_stack.pop()
 while top_token != '(': # pop off parentheses
 top_token = operand_stack.pop()
 postfix_list.append(top_token)
 else:
 while (not operand_stack.is_empty() and
 prec[operand_stack.peek()] >= prec[token]):
 postfix_list.append(operand_stack.pop())
 operand_stack.push(token)

 while not operand_stack.is_empty():
 postfix_list.append(operand_stack.pop())

 return " ".join(postfix_list)
Infix, Prefix, Postfix Exps.

Stack Contents During Evaluation

Left to Right Evaluation

```
4
push

5
push

6
push

*  
pop twice
and do math

+

push

5

pop twice
and do math

30

4

34

4

5

6
```
Infix, Prefix, Postfix Exps.

A More Complex Example of Evaluation
Infix, Prefix, Postfix Exps.

Now let’s write some Python code to evaluate postfix expressions!

1. Create an empty stack called `operand_stack`

2. Convert the string to a list by using the string method `split`
Infix, Prefix, Postfix Exps.

A More Complex Example of Evaluation

3. Scan the token list from left to right

- If the token is an operand, convert it from a `str` to an `int`, then push onto the `operand_stack`

- If the token is an operator, `*`, `/`, `+`, or `-`, it will need two operands

- Pop the `operand_stack` twice

- The first pop is the second operand and the second pop is the first operand
4. Scan the token list from left to right (cont.)

- The first pop is the second operand and the second pop is the first operand
- Perform the arithmetic operation
- Push the result back on the operand_stack
def postfix_eval(postfix_expr):
 operand_stack = Stack() # operand stack
 token_list = postfix_expr.split()

 for token in token_list:
 if token in string.digits:
 operand_stack.push(int(token))
 else:
 operand2 = operand_stack.pop()
 operand1 = operand_stack.pop()
 result = do_math(token, operand1, operand2)
 # Can you eliminate `do_math` with a one-liner?
 operand_stack.push(result)

 return operand_stack.pop()
Infix, Prefix, Postfix Exps.

Postfix Evaluation

```python
def do_math(op, op1, op2):
    if op == '*':
        return op1 * op2
    elif op == '/':
        return op1 / op2
    elif op == '+':
        return op1 + op2
    else:
        return op1 - op2

print(postfixEval('7 8 + 3 2 + /'))
```
Questions?
• Next, a workshop where you will add some methods to our Stack class

• A new lab assignment will appear at 11:55, due in 1 week

• Recall that your first lab is due in 2 days, and submissions for Friday’s workshop close tonight!

• Email me anytime for advice or to schedule a Zoom meeting