The Art of Data Structures

Recursion

Alan Beadle
CSC 162: The Art of Data Structures
Agenda

• To understand that complex, difficult problems that may have a simple recursive solutions
• To learn how to formulate programs recursively
• To understand and apply the three laws of recursion
• To understand recursion as a form of iteration
• To implement the recursive formulation of a problem
• To understand how recursion is implemented by a computer system
Recursion
RECURSION

Here we go again
Recursion

- A description of something that refers to itself is called a *recursive definition* (like this one for example)
Recursion

• In mathematics, recursion is frequently used

• The most common example is the factorial:

For example, $5! = 5(4)(3)(2)(1)$
Recursion

• In other words,

\[n! = n(n - 1)! \]

• Or

\[n! = \begin{cases} 1 & \text{if } n = 0 \\ n(n - 1)! & \text{otherwise} \end{cases} \]

• This definition says that 0! is 1, while the factorial of any other number is that number times the factorial of one less than that number
Recursion

- Our definition is recursive, but definitely not circular. Consider 4!

- $4! = 4(4-1)! = 4(3!)$

- What is 3!? We apply the definition again
 $4! = 4(3!) = 4[3(3-1)!] = 4(3)(2!)$
Recursion

- Factorial is not circular because we eventually get to $0!$, whose definition does not rely on the definition of factorial and is just 1.
- This is called a base case for the recursion.
- When the base case is encountered, we get a closed expression that can be directly (often, trivially) computed.
Suppose that you want to calculate the sum of a list of numbers, e.g. [1, 3, 5, 7, 9]
Recursion

Numbers Sum: Iterative

def list_sum(num_list):
 the_sum = 0
 for i in num_list:
 the_sum = the_sum + i
 return the_sum

print(list_sum([1,3,5,7,9]))
Recursion

Numbers Sum

- total = (1+(3+(5+(7+9))))
 total = (1+(3+(5+16))))
 total = (1+(3+21))
 total = (1 + 24)
 total = 25

- listSum(numList) =
 first(numList) +
 listSum(rest(numList))
Recursion

Numbers Sum: Recursive

def list_sum_rec(num_list):
 if len(num_list) == 1:
 return num_list[0]
 else:
 return num_list[0] + list_sum_rec(num_list[1:])

print(list_sum_rec([1, 3, 5, 7, 9]))
Recursion

- This is inefficient (lots of copying), but Python runs out of stack to keep track of the calls before the cost gets out of hand.
- Note that the two implementations actually sum the elements in opposite order.
- We could make them do it in the same order like this:
Recursion

Numbers Sum: Recursive (better)

def listsum_rec2(the_sum, l):
 if len(l) == 0:
 return the_sum
 return listsum_rec2(the_sum + l[0], l[1:])

print(listsum_rec2(0, [1,3,5,7,9]))
Recursion

The Recursive Sum Function

def helper(sum, l):
 if len(l) == 0:
 return sum
 return helper(sum + l[0], l[1:])

def listsum_rec3(l):
 return helper(0, l)
Recursion

Recursive Calls Adding a List of Numbers

\[\text{sum}(1,3,5,7,9) = 1 + \]
\[\text{sum}(3,5,7,9) = 3 + \]
\[\text{sum}(5,7,9) = 5 + \]
\[\text{sum}(7,9) = 7 + \]
\[\text{sum}(9) = 9 \]
Recursion

Recursive Calls Adding a List of Numbers

\[
\begin{align*}
25 &= \text{sum}(1,3,5,7,9) = 1 + 24 \\
&= \text{sum}(3,5,7,9) = 3 + 21 \\
&= \text{sum}(5,7,9) = 5 + 16 \\
&= \text{sum}(7,9) = 7 + 9 \\
&= \text{sum}(9) = 9
\end{align*}
\]
Recursion

The Three Laws of Recursion

1. A recursive algorithm must have a base case
2. A recursive algorithm must change its state and move toward the base case
3. A recursive algorithm must call itself, recursively
Recursion

Areas of Use

- Two fundamental computational concepts
- Divide & Conquer: Solve a problem in terms of a smaller version of itself
- Backtracking: Systematically explore a set of possible solutions
Factorial
Factorial

- We’ve seen previously that fact can be calculated using a loop accumulator
- If fact is written recursively...
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n-1)
Factorial

• We’ve written a function that calls itself, a *recursive function*

• The function first checks to see if we’re at the base case \((n==0)\). If so, return 1

• Otherwise, return the result of multiplying \(n\) by the factorial of \(n-1\), \(\text{fact}(n-1)\)
Factorial

>>> fact(4)
24
>>> fact(10)
3628800
>>> fact(100)
93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082
72237582511852109168640000000000000000000000000000L

- Remember that each call to a function starts that function anew, with its own copies of local variables and parameters
Figure 13.1: Recursive computation of 5!
Fibonacci
Fibonacci

- Sometimes one has to be careful with recursion
- In addition to limits on stack depth [sys.setrecursionlimit(limit)], and the cost of argument copying, some naive recursive algorithms are inherently expensive
Fibonacci

Iterative Fibonacci function – $O(n)$

def fib_iter(n):
 a = 0
 b = 1
 i = 0

 print(a)
 while i < n:
 t = a + b
 a = b
 b = t
 print(a)
 i += 1

 return a
Fibonacci

Naive recursive version, $O(2^n)$

def fib_rec_1(n):
 if n < 2:
 return 1

 return fib_rec_1(n-1) + fib_rec1(n-2)
def fib_rec_2(n):
 def helper(a, b, i):
 if i == n:
 return b
 return helper(b, a + b, i + 1)
 return helper(1, 0, 0)
Take this recursive function:

```python
1   def fun(n):
2       if n == 0:
3           return []
4
5       return fun(n//2) + [n%2]
6
7   fun(25)
```

(a) Identify the line number for the base case in `fun(n)`:

(b) Identify the line number, and specific recursive call in `fun(n)`:

(c) Use the table below to determine the output of `fun(n)` when it is called with `n = 25` (line 7):

<table>
<thead>
<tr>
<th>Recursion Level</th>
<th>n</th>
<th><code>fun(n)</code> is called with…</th>
<th>is <code>n == 0</code>?</th>
<th>line 5, calculate <code>n//2</code></th>
<th>line 5, calculate <code>n%2</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (start)</td>
<td>25</td>
<td><code>fun(25)</code></td>
<td>FALSE</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(d) The final returned value from calling `fun(25)`:
```python
def fun(n):
    if n == 0:
        return []
    return fun(n//2) + [n%2]

def fun(n):
    if n == 0:
        return []
    return fun(n//2) + [n%2]

def fun(n):
    if n == 0:
        return []
    return fun(n//2) + [n%2]

def fun(n):
    if n == 0:
        return []
    return fun(n//2) + [n%2]
```
<table>
<thead>
<tr>
<th>recursion level</th>
<th>n</th>
<th>fun(n) is called with...</th>
<th>is n == 0?</th>
<th>line 5, calc n//2</th>
<th>line 5, calc n%2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (start)</td>
<td>25</td>
<td>fun(25)</td>
<td>FALSE</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>fun(12)</td>
<td>FALSE</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>fun(6)</td>
<td>FALSE</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>fun(3)</td>
<td>FALSE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>fun(1)</td>
<td>FALSE</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>fun(0)</td>
<td>TRUE</td>
<td>nothing, it returns</td>
<td>nothing, it returns</td>
</tr>
</tbody>
</table>
Int \rightarrow Str

(in any base)
Int → Str
(in any base)

- Reduce the original number to a series of single-digit numbers
- Convert the single digit-number to a string using a lookup
- Concatenate the single-digit strings together to form the final result
Int → Str

in Base 10

toStr(769) → 769 / 10 + ‘9’
toStr(76) → 76 / 10 + ‘6’
toStr(7) → 7 < 10 → ‘7’
def to_str(n, base):
 convert_string = "0123456789ABCDEF"

 if n < base:
 return convert_string[n]
 else:
 return to_str(n // base, base) + convert_string[n % base]

print(to_str(1453, 16))
Int → Str

Decimal 10 to its Binary String

toStr(10) → 10 / 2 + ‘0’

toStr(5) → 5 / 2 + ‘1’

toStr(2) → 2 / 2 + ‘0’

toStr(1) → 1 < 2 → ‘1’
Int → Str

Pushing the Strings onto a Stack

r_stack = Stack()

def to_str(n, base):
 convert_string = "0123456789ABCDEF"
 if n < base:
 r_stack.push(convert_string[n])
 else:
 r_stack.push(convert_string[n % base])
 to_str(n // base, base)
Int \rightarrow Str

Strings Placed on the Stack
Int → Str

Call Stack: toStr(10,2)

1

toStr(2,2)
 n = 5
 base = 2

toStr(2/2,2) + convertString[2%2]

toStr(5,2)
 n = 5
 base = 2

toStr(5/2,2) + convertString[5%2]

toStr(10,2)
 n = 10
 base = 2

toStr(10/2,2) + convertString[10%2]
String Permutations
Revisit Anagram Tester
def permutation(s, prefix=""):
 n = len(s)
 if (n == 0):
 print(prefix)
 else:
 for i in range(n):
 permutation(s[0:i] + s[i+1:n], prefix + s[i])

permutation("ape")
Towers of Hanoi
A Complex Recursive Problem
Towers of Hanoi

Background

- Objective: move N disks from peg A to C can be reduced to three subproblems:
 1. Move $N-1$ disks from peg A to intermediate peg B
 2. Move the largest Disk N from peg A to target C
 3. Move the $N-1$ parked disks from B to C
Towers of Hanoi

Background

• [Tower of Hanoi (Wikipedia)]

• [Tower of Hanoi - 5 disks - 31 moves]
Towers of Hanoi
An Example Arrangement of Disks

fromPole withPole toPole
Towers of Hanoi
An Example Arrangement of Disks

• Move a tower of height-1 to an intermediate pole, using the final pole

• Move the remaining disk to the final pole

• Move the tower of height-1 from the intermediate pole to the final pole using the original pole
Towers of Hanoi

Python Code for the Tower of Hanoi

def move_tower(height, from_pole, to_pole, with_pole):
 if height >= 1:
 move_tower(height - 1, from_pole, with_pole, to_pole)
 move_disk(from_pole, to_pole)
 move_tower(height - 1, with_pole, to_pole, from_pole)

def move_disk(fp,tp):
 print("moving disk from",fp,"to",tp)

move_tower(3, "A", "B", "C")
Towers of Hanoi

An Iterative Version

Interesting secret: there's also an easy iterative solution, but it isn't anywhere near as intuitive

1. On every even-numbered move (starting with zero), move the little disk one pole "clockwise"

If the total number of disks is even, the first move should be from from_pole to with_pole; if the total number of disks is odd, the first move should be from from_pole to with_pole
2. On every odd-numbered move, make the only legal move not involving the smallest disk (there can be only one)
def hanoi_iter(height, fromPole, toPole, withPole):
 if height % 2 == 0:
 poles = [fromPole, withPole, toPole]
 else:
 poles = [fromPole, toPole, withPole]
 stacks = [range(height, 0, -1), [height], [height]]
 for i in range(2**height-1):
 if i % 2 == 0: # move little disk
 fd = (i//2)%3
 td = (i//2+1)%3
 else: # move other disk
 fd = (i//2)%3
 td = (i//2+2)%3
 if (stacks[fd][len(stacks[fd])-1] >
 stacks[td][len(stacks[td])-1]):
 td = (i//2)%3
 fd = (i//2+2)%3
 stacks[td].append(list(stacks[fd]).pop())
 move_disk(poles[fd], poles[td])
Recursion Summary
Recursion Summary

• All recursive algorithms must have a base case
• A recursive algorithm must change its state and make progress toward the base case
• A recursive algorithm must call itself (recursively); Recursion can take the place of iteration in some cases
Recursion Summary

- Recursive algorithms often map very naturally to a formal expression of the problem you are trying to solve.
Recursion Summary

- Recursion doesn't have to be any more expensive than iteration (though it is in Python)
- It's definitely more expressive: iteration can't capture recursion in the general case without an explicit stack
Questions?