• Understand Dynamic Programming as a technique used to solve optimization problems
Dynamic Programming
Dynamic Programming

- Many programs in computer science are written to optimize some value:
 - Find the shortest path between two points,
 - Find the line that best fits a set of points
 - Find the smallest set of objects that satisfies some criteria
Dynamic Programming

• There are many strategies that computer scientists use to solve these optimization problems

• Dynamic programming is one strategy
Dynamic Programming

- Making change using the fewest coins is one classic optimization problem
Coin Optimization

Using Fewest Coins
Coin Optimization

Using Fewest Coins

- For a currency with coins C_1, C_2, \ldots, C_n (cents) what is the minimum number of coins needed to make K cents of change?

- US currency has 1, 5, 10, and 25 cent denominations. (Also 50 cent and 1 dollar denominations).
Coin Optimization

Using Fewest Coins

- A purchase is made for $0.37
- Change due is $0.63 cents
- We can make 63 cents using two quarters, one dime and 3 pennies
- This is done using a greedy method of choosing as many of largest coins as possible before choosing smaller coins
What if US currency had a $0.21 coin?
Does this greedy method still work?
No, it still chooses the same 6 coins, missing the fact the three 21 cent coins are the optimal solution to the problem
Coin Optimization

Recursive Solution

1. **Base Case**: If we can make change that is satisfied by exactly one coin, then that is a minimum

2. **Otherwise**: minimum of a penny plus the number of coins needed to make change for the original amount minus one cent, nickel, minus five cents; or a dime; minus ten cents, and so on...
Coin Optimization

Recursive Solution

\[
\text{numCoins} = \min \left\{ \begin{array}{l}
1 + \text{numCoins}(\text{originalamount} - 1) \\
1 + \text{numCoins}(\text{originalamount} - 5) \\
1 + \text{numCoins}(\text{originalamount} - 10) \\
1 + \text{numCoins}(\text{originalamount} - 25)
\end{array} \right.
\]
Coin Optimization

Recursive Solution

def rec_mc(coin_values, change):
 min_coins = change
 if change in coin_values:
 return 1
 else:
 for i in [c for c in coin_values if c <= change]:
 num_coins = 1 + rec_mc(coin_values, change-i)
 if num_coins < min_coins:
 min_coins = num_coins
 return min_coins

value = 63
rec_mc([1, 5, 10, 25], value)
Coin Optimization

Recursive Results

• This takes a few minutes to run
• 67,716,925 recursive calls to \texttt{rec_mc}!
Coin Optimization

Call Tree
Coin Optimization
Recursive Performance

- The each graph node represents a call to `rec_mc`.
- Represents a small fraction of the 377 function calls needed for 26 cents.
- Each node indicates the amount of change for which we need to compute the number of coins.
- Arrow label is coin just used.
Coin Optimization

Recursive Performance

- Graph traces path of coin combinations
- Main problem is we are re-doing too many calculations
- Finding optimal change for 15 cents occurs three times
- Itself depends into 52 function calls, each!
Coin Optimization

Recursive Performance

- We need to remember past results to avoid re-computation
- Store results for minimum number of coins in a table
- Before commuting a new minimum, we check to see if the table already has a value
Coin Optimization

Recursive Solution, Using Table Lookup

def rec_dc(coin_values, change, known_results):
 min_coins = change
 if change in coin_values:
 known_results[change] = 1
 return 1
 elif known_results[change] > 0:
 return known_results[change]
 else:
 for i in [c for c in coin_values if c <= change]:
 num_coins = 1 + rec_dc(coin_values, change-i, known_results)
 if num_coins < min_coins:
 min_coins = num_coins
 known_results[change] = min_coins
 return min_coins

value = 63
rec_dc([1, 5, 10, 25], value, [0]*(value+1))
Coin Optimization

Recursive Performance

• We now check to see if table contains the minimum number of coin for a certain amount of change

• Otherwise, we recursively compute and store the result

• Curiously, this is not Dynamic Programming; this is **memoization** — a type of caching

• However, recursion drops to 221 calls!
Dynamic Programming is more systematic

Starts with one cent and systematically works up

At each step of algorithm, we already know the minimum number of coins for any smaller amount
Coin Optimization

Minimum Number of Coins Needed

Change to Make

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Step of the Algorithm

...
Coin Optimization

Minimum Coins for 11 Cents

1 2 3 4 1 2 3 4 5 1 ??

11-1
11-5
11-10
Coin Optimization

Dynamic Programming Solution

- Find optimum solution for 1 cent
- Find optimum solution for 2 cents using previous
- Find optimum solution for 3 cents using previous
- ...etc.
Coin Optimization

Dynamic Programming Solution

• At any amount a, for each denomination d, check the minimum coins for the (previously calculated) amount $a-d$

• We can always get from $a-d$ to a with one more coin
def dp_make_change(coin_values, change, min_coins):
 for cents in range(change+1):
 coin_count = cents
 for j in [c for c in coin_values if c <= cents]:
 if min_coins[cents-j] + 1 < coin_count:
 coin_count = min_coins[cents-j] + 1
 min_coins[cents] = coin_count
 return min_coins[change]

value = 63
dp_make_change([1, 5, 10, 25], value, [0]*(value+1))
def dp_make_change_2(coin_values, change, min_coins, coins_used):
 for cents in range(change + 1):
 coin_count = cents
 new_coin = 1
 for j in [c for c in coin_values if c <= cents]:
 if min_coins[cents-j] + 1 < coin_count:
 coin_count = min_coins[cents-j]+1
 new_coin = j
 min_coins[cents] = coin_count
 coins_used[cents] = new_coin
 return min_coins[change]
def print_coins(coins_used, change):
 coin = change
 coin_dict = {}
 while coin > 0:
 this_coin = coins_used[coin]
 print(this_coin)
 coin = coin - this_coin
cl = [1, 5, 10, 21, 25]
coins_used = [0]*64
coin_count = [0]*64
dp_make_change_2(cl, 63, coin_count, coins_used)
print_coins(coins_used, 63)
print(coins_used)
print_coins(coins_used, 52)
print(coins_used)
Coin Optimization

Dynamic Programming Solution

- $O(NK)$
- N denominations
- K amount of change
- By *backtracking* through the `coins_used` list, we can generate the sequence needed for the amount in question
Do note this is **not** a recursive algorithm

While we started with a recursive algorithm, an iterative solution is better here

Bulk of work in `dp_make_change_2` work is handled on line 4 of the function

All possible coins are considered here for making change for an amount `cents`
Coin Optimization

Dynamic Programming Solution

• This course is meant to expose you to a variety of different problem solving strategies

• While recursion does work here, we discover an iterative solution to this dynamic programming problem is more optimal
Questions?