Kernel Assignments

CS 256/456

Dept. of Computer Science, University of Rochester

2/12/2007 CSC 256/456 - Spring 2007

Deadlock Problem and Characterization

Definition:
o A set of blocked processes each holding some resources and

waiting to acquire a resource held by another process in the
set.

o None of the processes can proceed or back-off (release
resources it owns)

Characteristics:
o Mutual exclusion, hold&wait, no preemption, circular wait

How to systematically deal with deadlock?

o Do nothing

o Make sure it never happens in the first place
o Detect its occurrence and recover from it

2/12/2007 CSC 256/456 - Spring 2007

Deadlock Avoidance

When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

System is in safe state if there exists a safe sequence of all
processes.

Sequence <P, P,, ..., P is safe if for each £, the resources that
Pi can still request can be satisfied by currently available
resources + resources held by all the £, with j<.

o If P, resource needs are not immediately available, then #; can wait
until all #; have finished.

o When PJ is finished, A can obtain needed resources, execute, return
allocated resources, and terminate.

o When P, terminates, #;; can obtain its needed resources, and so on.

2/12/2007 CSC 256/456 - Spring 2007

Deadlock Avoidance (cont.)

If a system is in safe state

= no deadlocks. unsafe
deadlock

If a system is in unsafe
state = possibility of
deadlock.

safe

Deadlock avoidance

a dynamically examines the
resource-allocation state

o ensure that a system will
never enter an unsafe state.

2/12/2007 CSC 256/456 - Spring 2007 4

Banker’s Algorithm

Each process must a priori claim the maximum set of
resources that might be needed in its execution.

Safety check
o repeat

pick any process that can finish with existing available resources;
finish it and release all its resources

until no such process exists
o all finished — safe; otherwise — unsafe.

When a resource request is made, the process must wait if:

o no enough available resource this request
o granting of such request would result in a unsafe system state

2/12/2007 CSC 256/456 - Spring 2007 5

Another Method: Detect Deadlocks and Recover

Maintain wait-for graph
o Nodes are processes.
o A Pif P;is waiting for P,
Periodically search for a cycle in the graph.

Pl

L)

Resource-Allocation Graph Corresponding wait-for graph
2/12/2007 CSC 256/456 - Spring 2007 6

Recovery from Deadlock

Recovery through preemption
o take a resource from some other process
o depends on nature of the resource

Recovery through rollback
o checkpoint a process state periodically

o rollback a process to its checkpoint state if it is found
deadlocked

Recovery through killing processes
o kill one or more of the processes in the deadlock cycle
o the other processes get its resources

In which order should we choose process to kill?

2/12/2007 CSC 256/456 - Spring 2007 7

Introduction to Nachos: Our Objective

Provide a basic understanding of the structure of
Nachos
o not a replacement of your own practice and learning

Learn design rationale for Nachos
o you are welcome to suggest improvements to the assignments

Jump start you on Programming Assignment #3

2/12/2007 CSC 256/456 - Spring 2007 8

‘Motivation for Nachos

= Motivation: need good projects for teaching operating systems

= Assignments so far are all at user level
o OKwith understanding OS concepts
o Not real OS development experience

= Develop an OS from scratch on a real hardware (e.g., Intel TA32)
o Real hardware is too complex to work with
o Very hard to support even the most basic user programs

= Making enhancement/adjustment of an existing OS (e.g., Linux)
o Modern OSes are too complex to understand
o Not complete view about OS development

= Nachos is a toolkit for teaching operating systems; not an
operating system itself

2/12/2007 CSC 256/456 - Spring 2007 9

Overall Nachos Structure

’ Nachos user programs ‘

user programs / \

Naeh 1
T syseans

—System-eatls— Nachos kernel

OS kernel
/.

Host OS kernel

Host user
programs

Normal computer structure Nachos structure

2/12/2007 CSC 256/456 - Spring 2007 10

‘Nachos Kernel and User Programs

’ Nachos user programs ‘ = The Nachos kernel runs
directly as a user program

/ \ on the host machine.

Nachossysealls = Kernel code written in C++.

= User programs run on the
Nachos kernel and the
simulated hardware (with a
MIPS CPU).

= User programs access
simulated I/0 devices
through Nachos syscalls.

= User programs written in a
stripped-down C, compiled
info MIPS executables.

Nachos kernel

Host OS kernel

Host user
programs

Nachos structure

2/12/2007 CSC 256/456 - Spring 2007 11

‘ Simulated Nachos Hardware

’ Nachos user programs ‘ = Simulated MIPS CPU

o A MIPS instruction
/ \ interpreter

Nach it
vachos-syscans

= Simulated memory

o Basically an array of
words

Nachos kernel

Host OS kernel

Host user
programs = Simulated I/0 devices

a Console terminal

o Disk
o Timer
o Network interface
Nachos structure
2/12/2007 CSC 256/456 - Spring 2007 12

Nachos as An Instructional Tool

The Nachos toolkit contains:
o The simulated hardware (MIPS CPU, memory, I/0 devices)
a A cross-complier/linker that compiles your C user programs
into Nachos executables
instructions are in MIPS

the segment layout and header format can be recognized by the
Nachos kernel

o A skeleton OS kernel supporting
a single system call: halt
limited synchronization primitives
runhing a single user program at a time
no inter-process communication

Your job is to augment the OS step by step
o don't touch the simulated hardware

o shouldn't need to touch the compiler
2/12/2007 CSC 256/456 - Spring 2007 13

The Most Common Confusion

Nachos kernel and Nachos user programs do not run on the
same machine (real or virtual)

Implications:
o they don't run on the same CPU (real or virtual)
o they don't share the same memory (real or virtual)

This is a big weakness
o why not let Nachos kernel run on the simulated hardware?
o the projects become too challenging

o a pain to develop code on the simulated hardware, e.g., can't
run gdb

2/12/2007 CSC 256/456 - Spring 2007 14

Nachos Assignments

Start from a given skeleton OS, filling the missing pieces
step by step
Assignment #3: threads and synchronization
Assignment #4: supporting multiple user programs
Assignment #5: virtual memory
Assignment #6: file system and disk scheduling

2/12/2007 CSC 256/456 - Spring 2007 15

Learning about Nachos

You cannot learn all about software systems from
textbooks

o read the source code for systems that other people have
written

For Nachos:

o it is not sufficient to just read the textbook, lectures, and
information on the assignment Web pages

o read over the Nachos source code

o try to understand where the various pieces of the system
live, and how they fit together

It will take a while to develop an understanding. Start
early and be patient!

2/12/2007 CSC 256/456 - Spring 2007 16

Traversing the Nachos Files

starting from the Makefiles

threads/
o support threads and synchronization

o the threads support is fully functional, though some of the
synchronization primitives have not been implemented.

userprog/
o support the loading and execution of user programs
o basic memory management

vm/
o virtual memory subsystem

2/12/2007 CSC 256/456 - Spring 2007 17

Traversing the Nachos Files

test/
o some simple Nachos user programs

o Makefile for compiling these programs and converting them
to NOFF

machine/
o support machine simulation.

o You need to read some header files to know how to access
the simulated machine.

o It might also be instructive to look at the implementation of
the machine simulation.

o But you shouldn't have to modify anything here.

2/12/2007 CSC 256/456 - Spring 2007 18

An Alternative Assignment Track

Nachos-based assignments:

o Nachos is specifically designed for OS course projects.
o The kernels you develop on it are not "real".
Xen-based assignments

o Xen, on the other hand, is a "true" virtual machine.

o You will be working with slightly modified Linux on it.

Why not choose Xen assignments?

o More realistic, but much more challenging (the Nachos assignments
will be challenging enough).

o Not able to develop a whole-system understanding as you might for
Nachos assignments.

o We are the first to introduce the Xen assignments so there might
be problems and you heed to be very patient with us.

2/12/2007 CSC 256/456 - Spring 2007 19

Xen: An “True” Virtual Machine

Real operating systems (with slight modifications) can run
on Xen.
o we use a modified Linux 2.6.10

For Xen assighments:

o you will spend most of your time reading, understanding the
Linux code.

o and you will also spend a lot of time on Linux administration.
even debugging becomes very challenging.

o you will get help from us, but you are expected to figure out
lots of things on your own.

2/12/2007 CSC 256/456 - Spring 2007 20

Xen Assignments

Make adjustment to a fully functional kernel

Assignment #3: write a system call
Assignment #4: threads and synchronization
Assignment #5: CPU scheduling

Assignment #6: memory management

2/12/2007 CSC 256/456 - Spring 2007

21

What Are Other Schools Doing?

Most do Nachos-based assignments
o Berkeley, Washington, Duke, ...

Improved Nachos where the kernel runs (along with user
programs) on the instructional virtual machine
o Harvard

Some have assignments through modifying the Linux
kernel on real virtual machines (mostly VMware)
o Columbia, Washington

The most challenging is to develop a workable OS (not as
complete as Linux) from scratch
o Princeton

2/12/2007 CSC 256/456 - Spring 2007 22

