
Operating Systems 2/12/2007

CSC 256/456 - Spring 2007 1

2/12/2007 CSC 256/456 - Spring 2007 1

Kernel Assignments

CS 256/456

Dept. of Computer Science, University of Rochester

2/12/2007 CSC 256/456 - Spring 2007 2

Deadlock Problem and Characterization
Definition:

A set of blocked processes each holding some resources and
waiting to acquire a resource held by another process in the
set.
None of the processes can proceed or back-off (release
resources it owns)

Characteristics:
Mutual exclusion, hold&wait, no preemption, circular wait

How to systematically deal with deadlock?
Do nothing
Make sure it never happens in the first place
Detect its occurrence and recover from it

2/12/2007 CSC 256/456 - Spring 2007 3

Deadlock Avoidance
When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

System is in safe state if there exists a safe sequence of all
processes.

Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that
Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j<i.

If Pi resource needs are not immediately available, then Pi can wait
until all Pj have finished.
When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate.
When Pi terminates, Pi+1 can obtain its needed resources, and so on.

2/12/2007 CSC 256/456 - Spring 2007 4

Deadlock Avoidance (cont.)

If a system is in safe state
⇒ no deadlocks.

If a system is in unsafe
state ⇒ possibility of
deadlock.

Deadlock avoidance
dynamically examines the
resource-allocation state
ensure that a system will
never enter an unsafe state.

Operating Systems 2/12/2007

CSC 256/456 - Spring 2007 2

2/12/2007 CSC 256/456 - Spring 2007 5

Banker’s Algorithm
Each process must a priori claim the maximum set of
resources that might be needed in its execution.

Safety check
repeat

pick any process that can finish with existing available resources;
finish it and release all its resources
until no such process exists

all finished → safe; otherwise → unsafe.

When a resource request is made, the process must wait if:
no enough available resource this request
granting of such request would result in a unsafe system state

2/12/2007 CSC 256/456 - Spring 2007 6

Another Method: Detect Deadlocks and Recover

Maintain wait-for graph
Nodes are processes.
Pi → Pj if Pi is waiting for Pj.

Periodically search for a cycle in the graph.

Resource-Allocation Graph Corresponding wait-for graph

2/12/2007 CSC 256/456 - Spring 2007 7

Recovery from Deadlock
Recovery through preemption

take a resource from some other process
depends on nature of the resource

Recovery through rollback
checkpoint a process state periodically
rollback a process to its checkpoint state if it is found
deadlocked

Recovery through killing processes
kill one or more of the processes in the deadlock cycle
the other processes get its resources

In which order should we choose process to kill?

2/12/2007 CSC 256/456 - Spring 2007 8

Introduction to Nachos: Our Objective

Provide a basic understanding of the structure of
Nachos

not a replacement of your own practice and learning

Learn design rationale for Nachos
you are welcome to suggest improvements to the assignments

Jump start you on Programming Assignment #3

Operating Systems 2/12/2007

CSC 256/456 - Spring 2007 3

2/12/2007 CSC 256/456 - Spring 2007 9

Motivation for Nachos
Motivation: need good projects for teaching operating systems

Assignments so far are all at user level
OK with understanding OS concepts
Not real OS development experience

Develop an OS from scratch on a real hardware (e.g., Intel IA32)
Real hardware is too complex to work with
Very hard to support even the most basic user programs

Making enhancement/adjustment of an existing OS (e.g., Linux)
Modern OSes are too complex to understand
Not complete view about OS development

Nachos is a toolkit for teaching operating systems; not an
operating system itself

2/12/2007 CSC 256/456 - Spring 2007 10

Overall Nachos Structure

user programs

OS kernel

Hardware machine

System calls

Normal computer structure Nachos structure

I/O devices CPU & mem

Host user
programs

Host OS kernel

Host hardware machine

Host Syscalls

I/O devices CPU & mem

Nachos kernel Simulated Nachos HW

I/O
devices

MIPS CPU
& mem

Nachos syscalls

Nachos user programs

2/12/2007 CSC 256/456 - Spring 2007 11

Nachos Kernel and User Programs
The Nachos kernel runs
directly as a user program
on the host machine.
Kernel code written in C++.

User programs run on the
Nachos kernel and the
simulated hardware (with a
MIPS CPU).
User programs access
simulated I/O devices
through Nachos syscalls.
User programs written in a
stripped-down C, compiled
into MIPS executables.

Nachos structure

Host user
programs

Host OS kernel

Host hardware machine

Host Syscalls

I/O devices CPU & mem

Nachos kernel Simulated Nachos HW

I/O
devices

MIPS CPU
& mem

Nachos syscalls

Nachos user programs

2/12/2007 CSC 256/456 - Spring 2007 12

Simulated Nachos Hardware
Simulated MIPS CPU

A MIPS instruction
interpreter

Simulated memory
Basically an array of
words

Simulated I/O devices
Console terminal
Disk
Timer
Network interface

Nachos structure

Host user
programs

Host OS kernel

Host hardware machine

Host Syscalls

I/O devices CPU & mem

Nachos kernel Simulated Nachos HW

I/O
devices

MIPS CPU
& mem

Nachos syscalls

Nachos user programs

Operating Systems 2/12/2007

CSC 256/456 - Spring 2007 4

2/12/2007 CSC 256/456 - Spring 2007 13

Nachos as An Instructional Tool
The Nachos toolkit contains:

The simulated hardware (MIPS CPU, memory, I/O devices)
A cross-complier/linker that compiles your C user programs
into Nachos executables

instructions are in MIPS
the segment layout and header format can be recognized by the
Nachos kernel

A skeleton OS kernel supporting
a single system call: halt
limited synchronization primitives
running a single user program at a time
no inter-process communication

Your job is to augment the OS step by step
don’t touch the simulated hardware
shouldn’t need to touch the compiler

2/12/2007 CSC 256/456 - Spring 2007 14

The Most Common Confusion
Nachos kernel and Nachos user programs do not run on the
same machine (real or virtual)

Implications:
they don’t run on the same CPU (real or virtual)
they don’t share the same memory (real or virtual)

This is a big weakness
why not let Nachos kernel run on the simulated hardware?
the projects become too challenging
a pain to develop code on the simulated hardware, e.g., can’t
run gdb

2/12/2007 CSC 256/456 - Spring 2007 15

Nachos Assignments

Start from a given skeleton OS, filling the missing pieces
step by step

Assignment #3: threads and synchronization
Assignment #4: supporting multiple user programs
Assignment #5: virtual memory
Assignment #6: file system and disk scheduling

2/12/2007 CSC 256/456 - Spring 2007 16

Learning about Nachos

You cannot learn all about software systems from
textbooks

read the source code for systems that other people have
written

For Nachos:
it is not sufficient to just read the textbook, lectures, and
information on the assignment Web pages
read over the Nachos source code
try to understand where the various pieces of the system
live, and how they fit together

It will take a while to develop an understanding. Start
early and be patient!

Operating Systems 2/12/2007

CSC 256/456 - Spring 2007 5

2/12/2007 CSC 256/456 - Spring 2007 17

Traversing the Nachos Files
starting from the Makefiles

threads/
support threads and synchronization
the threads support is fully functional, though some of the
synchronization primitives have not been implemented.

userprog/
support the loading and execution of user programs
basic memory management

vm/
virtual memory subsystem

2/12/2007 CSC 256/456 - Spring 2007 18

Traversing the Nachos Files
test/

some simple Nachos user programs
Makefile for compiling these programs and converting them
to NOFF

machine/
support machine simulation.
You need to read some header files to know how to access
the simulated machine.
It might also be instructive to look at the implementation of
the machine simulation.
But you shouldn't have to modify anything here.

2/12/2007 CSC 256/456 - Spring 2007 19

An Alternative Assignment Track
Nachos-based assignments:

Nachos is specifically designed for OS course projects.
The kernels you develop on it are not "real".

Xen-based assignments
Xen, on the other hand, is a "true" virtual machine.
You will be working with slightly modified Linux on it.

Why not choose Xen assignments?
More realistic, but much more challenging (the Nachos assignments
will be challenging enough).
Not able to develop a whole-system understanding as you might for
Nachos assignments.
We are the first to introduce the Xen assignments so there might
be problems and you need to be very patient with us.

2/12/2007 CSC 256/456 - Spring 2007 20

Xen: An “True” Virtual Machine

Real operating systems (with slight modifications) can run
on Xen.

we use a modified Linux 2.6.10

For Xen assignments:
you will spend most of your time reading, understanding the
Linux code.
and you will also spend a lot of time on Linux administration.
even debugging becomes very challenging.
you will get help from us, but you are expected to figure out
lots of things on your own.

Operating Systems 2/12/2007

CSC 256/456 - Spring 2007 6

2/12/2007 CSC 256/456 - Spring 2007 21

Xen Assignments

Make adjustment to a fully functional kernel

Assignment #3: write a system call
Assignment #4: threads and synchronization
Assignment #5: CPU scheduling
Assignment #6: memory management

2/12/2007 CSC 256/456 - Spring 2007 22

What Are Other Schools Doing?
Most do Nachos-based assignments

Berkeley, Washington, Duke, …

Improved Nachos where the kernel runs (along with user
programs) on the instructional virtual machine

Harvard

Some have assignments through modifying the Linux
kernel on real virtual machines (mostly VMware)

Columbia, Washington

The most challenging is to develop a workable OS (not as
complete as Linux) from scratch

Princeton

