
Operating Systems 4/4/2007

CSC 256/456 - Spring 2006 1

4/4/2007 CSC 256/456 - Spring 2006 1

Multiprocessor OS

CS 256/456

Dept. of Computer Science, University of Rochester

4/4/2007 CSC 256/456 - Spring 2006 2

Multiprocessor Hardware
A computer system in which two or more CPUs share full 
access to the main memory
Each CPU might have its own cache and the coherence 
among multiple cache is maintained

write operation by a CPU is visible to all other CPUs
writes to the same location is seen in the same order by all 
CPUs (also called write serialization)

bus snooping and cache invalidation

… … …
Cache

CPU

Cache

CPU

Cache

CPU

Memory

Memory bus

4/4/2007 CSC 256/456 - Spring 2006 3

Multiprocessor Applications

Multiprogramming
Multiple regular applications running concurrently

Concurrent servers
Web servers, … …

Parallel programs
Utilizing multiple processors to complete one task (parallel 
matrix multiplication, Gaussian elimination)

Strong synchronization

x =A B C

4/4/2007 CSC 256/456 - Spring 2006 4

Single-processor OS vs. Multi-processor OS

Single-processor OS
easier to support kernel synchronization

fine-grained locking vs. coarse-grained locking
disabling interrupts to prevent concurrent executions

easier to perform scheduling
which to run, not where to run

Multi-processor OS
evolution of OS structure
synchronization
scheduling



Operating Systems 4/4/2007

CSC 256/456 - Spring 2006 2

4/4/2007 CSC 256/456 - Spring 2006 5

Multiprocessor OS

Each CPU has its own operating system
quick to port from a single-processor OS

Disadvantages
difficult to share things (processing cycles, memory, buffer 
cache)

Bus

4/4/2007 CSC 256/456 - Spring 2006 6

Multiprocessor OS – Master/Slave

Bus

All operating system functionality goes to one CPU
no multiprocessor concurrency in the kernel

Disadvantage
OS CPU consumption may be large so the OS CPU becomes 
the bottleneck (especially in a machine with many CPUs)

4/4/2007 CSC 256/456 - Spring 2006 7

Multiprocessor OS – Shared OS

A single OS instance may run on all CPUs
The OS itself must handle multiprocessor synchronization

multiple OS instances from multiple CPU may access shared 
data structure

Bus

4/4/2007 CSC 256/456 - Spring 2006 8

Synchronization (Fine/Coarse-Grain 
Locking)

Fine-grain locking – only locking necessary critical 
section
Coarse-grain locking – locking large piece of code, 
much of which is unnecessary

simplicity, robustness
prevent simultaneous execution

Simultaneous execution is not possible anyway on 
uniprocessor anyway.



Operating Systems 4/4/2007

CSC 256/456 - Spring 2006 3

4/4/2007 CSC 256/456 - Spring 2006 9

Synchronization (Spin Locking)
Protecting short critical region – busy waiting is OK

Disabling interrupts does not work
Software spin locks
Hardware spin locks

using TSL

entry_section:

TSL R1, LOCK | copy lock to R1 and set lock to 1

CMP R1, #0 | was lock zero?

JNE entry_section | if it wasn’t zero, lock was set, so loop

RET | return; critical section entered

exit_section:

MOV LOCK, #0 | store 0 into lock

RET | return; out of critical section

4/4/2007 CSC 256/456 - Spring 2006 10

TSL on Multiprocessor
TSL involves two actions (reading the value and writing 1) 
and it needs to be atomic
On uniprocessor, we simply need to make the two actions 
unbreakable
On multiprocessor, the TSL implementation is more 
complex, usually it has to monopolize the memory bus

4/4/2007 CSC 256/456 - Spring 2006 11

More on TSL Locks
TSL is a heavy operation, imagine multiple CPUs are busy 
waiting on one block, there will be a lot of load on the bus

Precede each TSL lock will a trylock (basically a simple read)
only when trylock shows the lock is not locked, a TSL lock 
will be applied

… … …
Cache

CPU

Cache

CPU

Cache

CPU

Memory

Memory bus

4/4/2007 CSC 256/456 - Spring 2006 12

Multiprocessor Scheduling
Timesharing

similar to uni-processor scheduling – one queue of ready 
tasks (protected by synchronization), a task is dequeue
and executed when a processor is available

cache affinity 
affinity-based scheduling – try to run each process on the 
processor that it last ran on

caching sharing and synchronization of 
parallel/concurrent applications

gang/cohort scheduling – utilize all CPUs for one 
parallel/concurrent application at a time

CPU 0

CPU 1
web server parallel Gaussian

elimination
client/server

game (civ)



Operating Systems 4/4/2007

CSC 256/456 - Spring 2006 4

4/4/2007 CSC 256/456 - Spring 2006 13

Resource Contention-Aware Scheduling I
Hardware resource sharing/contention in multi-
processors

SMP processors share memory bus bandwidths
Multi-core processors share L2 cache
SMT processors share a lot more stuff

An example: on an SMP machine
a web server benchmark delivers around 6300 reqs/sec on 
one processor, but only around 9500 reqs/sec

Contention-reduction scheduling 
co-scheduling tasks with complementing resource needs (a 
computation-heavy task and a memory access-heavy task)
In [Fedorova et al. USENIX2005], IPC is used to distinguish 
computation-heavy task and memory access-heavy task

4/4/2007 CSC 256/456 - Spring 2006 14

Resource Contention-Aware Scheduling II

What if contention on a resource is unavoidable?
Two evils of contention

high contention ⇒ performance slowdown
fluctuating contention ⇒ uneven application progress over 
the same amount of time ⇒ poor fairness

[Zhang et al. HotOS2007] Scheduling so that:
very high contention is avoided
the resource contention is kept stable

CPU 0

CPU 1

high resource
usage

low resource
usage

high resource
usage

low resource
usage

medium resource
usage

medium resource
usage

4/4/2007 CSC 256/456 - Spring 2006 15

Multiprocessor Scheduling in Linux 2.6
One ready task queue per processor

scheduling within a processor and its ready task queue is 
similar to single-processor scheduling

One task tends to stay in one queue
for cache affinity

Tasks move around when load is unbalanced
e.g., when the length of one queue is less than one quarter 
of the other
which one to pick?

No native support for gang/cohort scheduling or 
resource-contention-aware scheduling

4/4/2007 CSC 256/456 - Spring 2006 16

Disclaimer

Parts of the lecture slides contain original work by 
Andrew S. Tanenbaum. The slides are intended for the 
sole purpose of instruction of operating systems at the 
University of Rochester. All copyrighted materials 
belong to their original owner(s). 


