
1

Protection and Extension in the
Microsoft Singularity Operating System

Michael Spear
csc 256/456
25 April 2007

Outline

• Background
– Protection and Isolation
– Recent Software Innovations

• Singularity
– End to End System
– Trust -vs- Verification
– Safe Microkernel Code
– Software Isolated Processes
– IPC via Channels
– Manifests and Installation
– Applications and Device Drivers

• Summary

Protection and Isolation

Why are they needed?

Protection and Isolation… Why?

• Protect kernel from application code / protect
applications from each other
– Limit impact of bugs
– Prevent malice

• Justification
– Your application should not touch my application's memory

in unexpected ways

2

Protection and Isolation… Why?

• Restrict access to bare hardware
– Device drivers and kernel only

• Justification
– Safety and security (i.e. restrict access to DMA)
– Necessary for resource management Protection and Isolation

How are they provided
on conventional systems?

Protection and Isolation… How?

• Hardware
– Protected and Privileged modes

• Certain instructions are available only to 'privileged-mode'
applications (i.e. the kernel)

• Exception if protected-mode application uses these
instructions

• ex - read/write to I/O port, set IRQ
– Virtual addressing

• Every application (along with its extensions) lives in a
separate virtual address space

• No matter what the app does, it can't
harm anyone else

Protection and Isolation… How?

• Software
– The process abstraction

• Encapsulate an application and its extensions
• Give it its own virtual address space (memory safety)
• Restrict its access to bare hardware (protected mode)

3

Protection and Isolation

What are the problems?

Protection and Isolation… Problems

• Performance
– IPC is expensive and slow

• Requires kernel crossing, TLB remap, virtual page
translation

• Often fallback to shared memory between processes,
violating process protection

– Switching apps is slow
• Context switch overhead is tremendous

Protection and Isolation… Problems

• Correctness
– Extensions have access to everything and can see the

whole process space
– Cannot assume system states, invariants, or transitions

• JVM: Any interrupt, thread switch, or exception can
result in a new file overwriting a class and method body

• Reflection: Can inspect class internals, get around
information hiding and data abstraction

– Drivers are known to be incorrect
• But 85% of Windows crashes are from drivers

[Swift et al. OSDI 2004]
• Linux isn't much better

[Padioleau et al. EuroSys2006]

Software in the New Millennium

What’s different now?

4

Software Innovations

• Languages: Type and Memory Safety
– Objects are interpreted and manipulated in the right ways
– Pointers are only to valid points within live objects
– Metadata can be part of program

• Compilers: Speed and safety
– Compiler can ensure that privileged instructions aren't

emitted except in verifiable ways
– Compiler can output native code from intermediate code:

little performance penalty even with garbage collection
– Run-time checks prevent many errors, but static analysis

limits their overheads

Software Innovations

• Software Analysis
– Typed Assembly Language and Typed Intermediate

Language make it easy to parse and analyze code, prove
properties

• Validation: end-to-end safety from code compiler
executable running code

• Analysis tools:
– Sound: find all errors (plus false positives)
– Specification-driven: no fixed collection of bugs (adapts;

tests abstractions)

Singularity Philosophy

• The whole systems software community (Theoretical,
OS, Languages, Compilers, Verification and Analysis)
has done an awful lot since 1970, and maybe it's time
to stop exclusively using a 1970 design philosophy for
operating systems
– Use software to provide safe, uniform extensibility
– Detect errors early (design or compile time, not execution or

crash time)
– Don’t use any hardware protection

• Everything runs in Ring0, single address space

Key Concept: End to End System

• A safe system is more than just a kernel
– Compiler outputs safe applications
– Application uses safe libraries (and safe generics)
– Installer ensures applications obey system policy
– Boot Loader ensures nothing was changed off-line
– Drivers are sandboxed and monitored
– Application configuration is verified

5

Key Concept: Trust -vs- Verification

• Some code is simply safe
– Pure MSIL with no [unsafe] metadata

• Some code is trusted
– GC (if not type safe), HAL

• Some code is verifiably safe
– Pure MSIL + GC + call to HAL that obeys certain properties

• Native version of verified MSIL is safe
– If you trust the compiler…
– Trusted code is injected into verified code at install time... it's

like inlining syscalls... but it's safe
• Typed Assembly Language and Proof-Carrying

Code are safe (Future direction)
– Key recent innovation: Garbage Collected TAL

Key Concept: Safe Microkernel

• Written in C#
– Most kernel code is verified C# (exceptions: 13,000 lines of

C/assembly in HAL, a few runtime components)
– Kernel has its own GC

• Kernel ABI
– ABI is versioned
– All parameters to ABI calls are value types
– ABI calls are often inlined

• Modularity
– ex: can select a scheduler at build time

• Blurred Boundary
– With inlined ABI calls and no HW protection, boundary

between kernel and applications is very blurry

Key Concept: Software Isolated Processes

• Closed object space (not memory space)
– All SIPs can share an address range, but can't see each

other's objects (64-bit address space)
– Linked stacks

• Closed code space
– No reflection, no dynamic loading/generating code

• IPC via channels
• Applications are written in safe code (Sing#)

– App should never have [unsafe] tags
– Sing# == C# + channel support + additional safety

Key Concept: IPC via Channels

• Channels are safer than pipes and shared memory
– Messages are strongly typed
– Communication must obey a contract (protocol)
– IPC can be statically verified
– Built into Sing#
– Programmers must consider extensibility at design time
– Only values are communicated, not objects (marshalling)

If two processes are to communicate, they had better
agree on HOW

6

Key Concept: IPC via Channels

• Channels are fast
– Lots of memory tricks to transfer memory from one GC

domain to another
– No copying on IPC… each level of the network stack can

be its own SIP

Key Concept: Manifests

• Configuration is strongly typed, verified
– Application == Code + Configuration (Manifest)
– Manifest is mostly inferred from metadata tags on objects

that represent resources (devices, channels) and arguments
• Lists all dependencies, all exported channels
• Specifies valid arguments / invocations

– It's theoretically possible to auto-generate the --help
invocation code for an application from the tags on its
command-line parameters

• System manifest aggregates application manifests
– Enables off-line analysis

Key Concept: Installation is a First-Class Operation

• Verify at Install Time
– Apply standard system policy based on application

classification
• Prohibit use of certain objects or channels

– Apply local policy too
• Optimize at Install Time

– Apps are compiled and statically linked
– Runtime, GC, and ABI calls are inlined
– Whole program analysis and optimization
– Result: Sealed native code binary

• Reconfigure at Install Time
– Build application manifest
– Update system manifest

Key Concept: Device Drivers are Applications

• Device drivers are a special class of applications
– Permitted to use certain objects (IOObject hierarchy), but

lose other privileges (interactivity)
– Each driver is a SIP, communicates to SIPs via channels

• IOObjects
– IOObjects are trusted: they contain native code for accessing

hardware (IODma, IOIrq, IOMemory, and IOPort)
– IOObjects can be monitored at run-time (i.e. to detect IRQ

remapping)
– IOObjects are annotated in the code to create manifest

7

Key Concept: Safe Boot

• Kernel uses driver manifests to control boot
– Kernel does full resource discovery of PnP and PCI buses
– Kernel uses a resolution algorithm to match drivers to

resources (no etc/init.d)
– Kernel binds drivers to devices
– Drivers don't acquire resources at all

• When the driver is activated, its declared resources are
already configured and bound to IOObjects

Briefly Noted: Hardware Isolated Processes

• Hardware Isolation need not be discarded entirely, but
it can be selectively applied

• i.e. put all of your web SIPs in one HIP, the kernel in a
HIP, and the shell in another HIP...
– Big performance penalty
– Why is this ‘defence in depth’ necessary?

Summary

• Software Isolated Processes provide uniform
extensibility

• As a closed, end-to-end system, Singularity does not
require hardware for software protection and extension
– Some design aspects can't just be added to

Windows/Linux/MacOS

Additional Reading

• A Garbage-Collecting Typed Assembly Language [Hawblitzel et
al. TLDI 2007]

• Deconstructing Process Isolation [Aiken et al. MSPC 2006]
• Sealing OS Processes to Improve Dependability and Safety

[Hunt et al. EuroSys2007]
• Language Support for Fast and Reliable Message-based

Communication in Singularity OS [Fähndrich et al.
EuroSys2006]

• Solving the Starting Problem: Device Drivers as Self-Describing
Artifacts [Spear et al. EuroSys2006]

• Access Control in a World of Software Diversity [Abadi et al.
HotOS 2005]

• Broad New OS Research: Challenges and Opportunities [Hunt
et al. HotOS 2005]

• Making system configuration more declarative [DeTreville
HotOS 2005]

