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Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU
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Figure 1: Comparison between Core i7 and GTX280 Perfor-
mance.
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Contents of Today's Talk

m Introduce GPUs and GPGPU computing

m Execution model

m Memory model

m Programming model
m Code examples

m Discuss what applications are appropriate for GPUs

m Advantages and disadvantages
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What is a GPU?

m GPU=Graphics Processing
Unit

m Processes 3D
graphics/videos, render
pixels, and send them to
the monitor(s).
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Birth of GPUs

m Motivation: Massive geometric transformations, e.g. vertex
transformation, rasterization, global illumination.

m Problem: The amount of computation is so huge that
overwhelms CPU.

m Algorithm feature: Same algorithm works on different sets of
data. (Heavy data parallelism)

m Solution: Design a special dedicated processing unit to carry
out this huge computation. This unit focuses on the data
level parallelism.
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Birth of GPGPU Computing

m Programmable shaders (vertex shaders, geometry shaders,
pixel shaders)

m Program not only for graphics applications on shaders:
GPGPU computing.

m Unified shaders even simplifies GPGPU computing.
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Basic Architecture of GPUs: Execution Model

m Usually serves as a PCle device on a PC.

m GPU programs (kernels) are sent to GPU through PCle bus,
the as way as it's done to data.

m Vendors provide APls to communicate with GPUs.
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Basic Architecture of GPUs: Execution Model

m Single-Instruction-Multiple-Data (SIMD) architecture.

m One instruction is run over multiple pieces of data, typically a
multiple of 32, i.e., 1 PC for 32 pieces of data.

m A program can execute different instructions in parallel, but
each instruction must have a multiple of (typically) 32 pieces
of data to maximize performance.

m Result: More ALUs available on the chip of the same size.

m Hardware multithreading

m Typically the number of threads GPU maintains is bigger than
the number of cores. (>10x)

m Prevent stalling as much as possible if a group of threads is
blocked by either memory latency or instruction dependency.

m Hardware context switch to handle thousands of threads: a
huge number of registers to store all threads, manipulate
intermediate pipeline instruction/data.

m Result: Hide memory access latency and instruction pipeline
latency
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Basic Architecture of GPUs: Execution Model

m Obviously speeds up the computation of the same instruction
on multiple data

m But what about condition jumps? Different branches for the
32 pieces of data?

m Current solution: Will run both branches, but the data which
does not go into the branch will temporarily be inactive.
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Basic Architecture of GPUs: Memory Model

m GPU memory is optimized for bandwidth

m GPUs (especially high-end GPUs) are equipped with GDDR
memory.

m More channels to gain a larger bus size (up to 8 channels each
of 64 bits), increasing bandwidth.

m Some technical changes which further increases bandwidth.
(8n prefetch, request/receive data at the same cycle, etc.)

m GDDR5 vs. DDR3: 12x theoretical bandwidth (170 GB/s
under 6 channels, vs. 15 GB/s under dual channels).

m Memory latency under heavy parallelism

m Synchronization of memory access across multiple threads
causes latency
m Latency is hidden by hardware context switch
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Basic Architecture of GPUs: Memory Model

m What memory access pattern is good? :' £ : =
What is bad? == =

m Prevent making memory access on global =] e || e
memory. a7 o || o

m Shared memory access? ), Gl BT
m Shared memory is divided into 16 or 32 i = [
banks. ::: ::i T

m Conflict-free if no bank conflict z -

m Conflict-free if all threads access the - ., |
same bank (cache). :: ! :: T
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Computing with GPUs: Programming Model

m A lot easier than before. Unified shader takes place of
vertex/pixel /geometry shader so that programmers don’t need
to program under 3 different models.

m nVidia provides CUDA SDK to program using a subset of
C/C++ along with some extensions.

m Emerging open standard OpenCL, supported by major GPU
vendors like nVidia, AMD and Intel.
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Programming for GPUs in C: Minimal Nontrivial Example

CUDA solution:

int a[1024],b[1024],c[1024];

__global__ void add(int* a, int* b, int* c) {
int tid = blockIdx.x;
cltid] = al[tid] + bl[tid];

¥

int main() {
int i;
int *dev_a, *dev_b, *dev_c;
for(i=0; i<n; ++i)
alil = b[il = i;
cudaMalloc((void**)&dev_a, sizeof(a));
cudaMalloc((void**)&dev_b, sizeof(b));
cudaMalloc ((void**)&dev_c, sizeof(c));
cudaMemcpy(dev_a, a, sizeof(a), cudaMemcpyHostToDevice);
cudaMemcpy (dev_b, b, sizeof(b), cudaMemcpyHostToDevice);

add<<<1024,1>>>(dev_a, dev_b, dev_c);

cudaMemcpy (c, dev_c, sizeof(c), cudaMemcpyDeviceToHost);
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Programming for GPUs in C: Minimal Nontrivial Example

OpenCL solution:

...//variable definitions omitted

__kernel void add(__global int* a, __global int* b, __global intx c) {
int tid = get_global_id(0);
cltid] = altid] + b[tid];

¥

int main()

{
context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); //create context
...//get device list, code omitted
cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL);
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(a), a, NULL);
...//other 2 clCreateBuffer are omitted
program = clCreateProgramWithSource(context, 1, &program_source, NULL, NULL); //create program
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); //build program
kernel = clCreateKernel(program, "add", NULL); //create kernel
clSetKernelArg(kernel, 0, (voidx)&memobjs[0], sizeof(cl_mem)); //set arguments for kernel
...//other 2 clSetKernelArg are omitted
global_work_size[0] = 1024;
clEnqueueNDRangeKernel (cmd_queue, kernel, 1, NULL, global_work_size, NULL, O, NULL, NULL); //run
clEnqueueReadBuffer(context, memobjs[2], CL_TRUE, 0, sizeof(c), c, 0, NULL, NULL);

}
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Programs Appropriate to Run on GPUs

m Characterization

m Fewer branches
m Memory access patterns to prevent bank conflicts

m Examples that can easily run on GPUs well

m 3D graphics processing based on rasterization
m FFT (enables a lot of applications to have performance gain)

m Examples that can not easily run on GPUs well

m Compiler, in particular scanner and parser
m Ray tracing (active research area)
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Advantage and Disadvantage of GPU Computing

Advantage:
m Fast and Cheap

m Newest nVidia GTX 580 delivers a theoretical 1.5 TFlops at
$500. How much per TFlops? How much per TFlops for
CPUs?

m Energy efficient

Peak power consumption (W)

FASTRAII

512-core cluster

Power consumption of FASTRA2 (6x GTX 295 and 1x GTX 275, 12TFlops) and a 512-core normal cluster.
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Advantage and Disadvantage of GPU Computing

Disadvantage:
m Not all algorithms can have theoretical speedup.
m Hard to program.

m No mature industrial/academic standard model.

m Architecture is still developing fast.
m Ray tracing can potentially develop a completely new graphics
rendering pipeline.

Xiaoqing Tang Introduction to General Purpose GPU Computing 17/18



Thanks!




