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Fun news

Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU
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Contents of Today’s Talk

Introduce GPUs and GPGPU computing

Execution model
Memory model
Programming model
Code examples

Discuss what applications are appropriate for GPUs

Advantages and disadvantages
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What is a GPU?

GPU=Graphics Processing
Unit

Processes 3D
graphics/videos, render
pixels, and send them to
the monitor(s).
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Birth of GPUs

Motivation: Massive geometric transformations, e.g. vertex
transformation, rasterization, global illumination.

Problem: The amount of computation is so huge that
overwhelms CPU.

Algorithm feature: Same algorithm works on different sets of
data. (Heavy data parallelism)

Solution: Design a special dedicated processing unit to carry
out this huge computation. This unit focuses on the data
level parallelism.
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Birth of GPGPU Computing

Programmable shaders (vertex shaders, geometry shaders,
pixel shaders)

Program not only for graphics applications on shaders:
GPGPU computing.

Unified shaders even simplifies GPGPU computing.
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Basic Architecture of GPUs: Execution Model

Usually serves as a PCIe device on a PC.

GPU programs (kernels) are sent to GPU through PCIe bus,
the as way as it’s done to data.

Vendors provide APIs to communicate with GPUs.

Xiaoqing Tang Introduction to General Purpose GPU Computing 7/18



Basic Architecture of GPUs: Execution Model

Single-Instruction-Multiple-Data (SIMD) architecture.
One instruction is run over multiple pieces of data, typically a
multiple of 32, i.e., 1 PC for 32 pieces of data.
A program can execute different instructions in parallel, but
each instruction must have a multiple of (typically) 32 pieces
of data to maximize performance.
Result: More ALUs available on the chip of the same size.

Hardware multithreading
Typically the number of threads GPU maintains is bigger than
the number of cores. (>10x)
Prevent stalling as much as possible if a group of threads is
blocked by either memory latency or instruction dependency.
Hardware context switch to handle thousands of threads: a
huge number of registers to store all threads, manipulate
intermediate pipeline instruction/data.
Result: Hide memory access latency and instruction pipeline
latency.
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Basic Architecture of GPUs: Execution Model

Obviously speeds up the computation of the same instruction
on multiple data

But what about condition jumps? Different branches for the
32 pieces of data?

Current solution: Will run both branches, but the data which
does not go into the branch will temporarily be inactive.
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Basic Architecture of GPUs: Memory Model

GPU memory is optimized for bandwidth

GPUs (especially high-end GPUs) are equipped with GDDR
memory.
More channels to gain a larger bus size (up to 8 channels each
of 64 bits), increasing bandwidth.
Some technical changes which further increases bandwidth.
(8n prefetch, request/receive data at the same cycle, etc.)
GDDR5 vs. DDR3: 12x theoretical bandwidth (170 GB/s
under 6 channels, vs. 15 GB/s under dual channels).

Memory latency under heavy parallelism

Synchronization of memory access across multiple threads
causes latency
Latency is hidden by hardware context switch
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Basic Architecture of GPUs: Memory Model

What memory access pattern is good?
What is bad?

Prevent making memory access on global
memory.

Shared memory access?

Shared memory is divided into 16 or 32
banks.
Conflict-free if no bank conflict
Conflict-free if all threads access the
same bank (cache).
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Computing with GPUs: Programming Model

A lot easier than before. Unified shader takes place of
vertex/pixel/geometry shader so that programmers don’t need
to program under 3 different models.

nVidia provides CUDA SDK to program using a subset of
C/C++ along with some extensions.

Emerging open standard OpenCL, supported by major GPU
vendors like nVidia, AMD and Intel.
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Programming for GPUs in C: Minimal Nontrivial Example

CUDA solution:

int a[1024],b[1024],c[1024];

__global__ void add(int* a, int* b, int* c) {

int tid = blockIdx.x;

c[tid] = a[tid] + b[tid];

}

int main() {

int i;

int *dev_a, *dev_b, *dev_c;

for(i=0; i<n; ++i)

a[i] = b[i] = i;

cudaMalloc((void**)&dev_a, sizeof(a));

cudaMalloc((void**)&dev_b, sizeof(b));

cudaMalloc((void**)&dev_c, sizeof(c));

cudaMemcpy(dev_a, a, sizeof(a), cudaMemcpyHostToDevice);

cudaMemcpy(dev_b, b, sizeof(b), cudaMemcpyHostToDevice);

add<<<1024,1>>>(dev_a, dev_b, dev_c);

cudaMemcpy(c, dev_c, sizeof(c), cudaMemcpyDeviceToHost);

}
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Programming for GPUs in C: Minimal Nontrivial Example

OpenCL solution:

...//variable definitions omitted

__kernel void add(__global int* a, __global int* b, __global int* c) {

int tid = get_global_id(0);

c[tid] = a[tid] + b[tid];

}

int main()

{

context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); //create context

...//get device list, code omitted

cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL);

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(a), a, NULL);

...//other 2 clCreateBuffer are omitted

program = clCreateProgramWithSource(context, 1, &program_source, NULL, NULL); //create program

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); //build program

kernel = clCreateKernel(program, "add", NULL); //create kernel

clSetKernelArg(kernel, 0, (void*)&memobjs[0], sizeof(cl_mem)); //set arguments for kernel

...//other 2 clSetKernelArg are omitted

global_work_size[0] = 1024;

clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL); //run

clEnqueueReadBuffer(context, memobjs[2], CL_TRUE, 0, sizeof(c), c, 0, NULL, NULL);

}
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Programs Appropriate to Run on GPUs

Characterization

Fewer branches
Memory access patterns to prevent bank conflicts

Examples that can easily run on GPUs well

3D graphics processing based on rasterization
FFT (enables a lot of applications to have performance gain)

Examples that can not easily run on GPUs well

Compiler, in particular scanner and parser
Ray tracing (active research area)
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Advantage and Disadvantage of GPU Computing

Advantage:

Fast and Cheap

Newest nVidia GTX 580 delivers a theoretical 1.5 TFlops at
$500. How much per TFlops? How much per TFlops for
CPUs?

Energy efficient

Power consumption of FASTRA2 (6x GTX 295 and 1x GTX 275, 12TFlops) and a 512-core normal cluster.
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Advantage and Disadvantage of GPU Computing

Disadvantage:

Not all algorithms can have theoretical speedup.

Hard to program.

No mature industrial/academic standard model.

Architecture is still developing fast.
Ray tracing can potentially develop a completely new graphics
rendering pipeline.
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Thanks!
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