Introduction to General Purpose GPU Computing

Xiaoqing Tang

University of Rochester

March 16, 2011
Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU

Figure 1: Comparison between Core i7 and GTX280 Performance.
Contents of Today’s Talk

- Introduce GPUs and GPGPU computing
 - Execution model
 - Memory model
 - Programming model
 - Code examples
- Discuss what applications are appropriate for GPUs
- Advantages and disadvantages
What is a GPU?

- GPU = Graphics Processing Unit
- Processes 3D graphics/videos, render pixels, and send them to the monitor(s).
Birth of GPUs

- **Motivation:** Massive geometric transformations, e.g. vertex transformation, rasterization, global illumination.
- **Problem:** The amount of computation is so huge that overwhelms CPU.
- **Algorithm feature:** Same algorithm works on different sets of data. (Heavy data parallelism)
- **Solution:** Design a special dedicated processing unit to carry out this huge computation. This unit focuses on the data level parallelism.
Birth of GPGPU Computing

- Programmable shaders (vertex shaders, geometry shaders, pixel shaders)
- Program not only for graphics applications on shaders: GPGPU computing.
- Unified shaders even simplifies GPGPU computing.
Usually serves as a PCIe device on a PC.

GPU programs (kernels) are sent to GPU through PCIe bus, the as way as it’s done to data.

Vendors provide APIs to communicate with GPUs.
Basic Architecture of GPUs: Execution Model

- Single-Instruction-Multiple-Data (SIMD) architecture.
 - One instruction is run over multiple pieces of data, typically a multiple of 32, i.e., 1 PC for 32 pieces of data.
 - A program can execute different instructions in parallel, but each instruction must have a multiple of (typically) 32 pieces of data to maximize performance.
 - Result: More ALUs available on the chip of the same size.

- Hardware multithreading
 - Typically the number of threads GPU maintains is bigger than the number of cores. (>10x)
 - Prevent stalling as much as possible if a group of threads is blocked by either memory latency or instruction dependency.
 - Hardware context switch to handle thousands of threads: a huge number of registers to store all threads, manipulate intermediate pipeline instruction/data.
 - Result: Hide memory access latency and instruction pipeline latency.
Basic Architecture of GPUs: Execution Model

- Obviously speeds up the computation of the same instruction on multiple data
- But what about condition jumps? Different branches for the 32 pieces of data?
- Current solution: Will run both branches, but the data which does not go into the branch will temporarily be inactive.
Basic Architecture of GPUs: Memory Model

- GPU memory is optimized for bandwidth
 - GPUs (especially high-end GPUs) are equipped with GDDR memory.
 - More channels to gain a larger bus size (up to 8 channels each of 64 bits), increasing bandwidth.
 - Some technical changes which further increases bandwidth. (8n prefetch, request/receive data at the same cycle, etc.)
 - GDDR5 vs. DDR3: 12x theoretical bandwidth (170 GB/s under 6 channels, vs. 15 GB/s under dual channels).

- Memory latency under heavy parallelism
 - Synchronization of memory access across multiple threads causes latency
 - Latency is hidden by hardware context switch
Basic Architecture of GPUs: Memory Model

- What memory access pattern is good? What is bad?
- Prevent making memory access on global memory.
- Shared memory access?
 - Shared memory is divided into 16 or 32 banks.
 - Conflict-free if no bank conflict
 - Conflict-free if all threads access the same bank (cache).
Computing with GPUs: Programming Model

- A lot easier than before. Unified shader takes place of vertex/pixel/geometry shader so that programmers don’t need to program under 3 different models.
- nVidia provides CUDA SDK to program using a subset of C/C++ along with some extensions.
- Emerging open standard OpenCL, supported by major GPU vendors like nVidia, AMD and Intel.
CUDA solution:

```c
int a[1024], b[1024], c[1024];

__global__ void add(int* a, int* b, int* c) {
    int tid = blockIdx.x;
    c[tid] = a[tid] + b[tid];
}

int main() {
    int i;
    int *dev_a, *dev_b, *dev_c;
    for(i=0; i<n; ++i)
        a[i] = b[i] = i;
    cudaMalloc((void**)&dev_a, sizeof(a));
    cudaMalloc((void**)&dev_b, sizeof(b));
    cudaMalloc((void**)&dev_c, sizeof(c));
    cudaMemcpy(dev_a, a, sizeof(a), cudaMemcpyHostToDevice);
    cudaMemcpy(dev_b, b, sizeof(b), cudaMemcpyHostToDevice);
    add<<<1024,1>>>(dev_a, dev_b, dev_c);
    cudaMemcpy(c, dev_c, sizeof(c), cudaMemcpyDeviceToHost);
}
```
OpenCL solution:

```c
__kernel void add(__global int* a, __global int* b, __global int* c) {
    int tid = get_global_id(0);
    c[tid] = a[tid] + b[tid];
}

int main() {
    context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); //create context
    cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL);
    memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(a), a, NULL);
    program = clCreateProgramWithSource(context, 1, &program_source, NULL, NULL); //create program
    kernel = clCreateKernel(program, "add", NULL); //create kernel
    clSetKernelArg(kernel, 0, (void*)&memobjs[0], sizeof(cl_mem)); //set arguments for kernel
    global_work_size[0] = 1024;
    clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL); //run
    clEnqueueReadBuffer(context, memobjs[2], CL_TRUE, 0, sizeof(c), c, 0, NULL, NULL);
}
```
Programs Appropriate to Run on GPUs

- Characterization
 - Fewer branches
 - Memory access patterns to prevent bank conflicts

- Examples that can easily run on GPUs well
 - 3D graphics processing based on rasterization
 - FFT (enables a lot of applications to have performance gain)

- Examples that can *not* easily run on GPUs well
 - Compiler, in particular scanner and parser
 - Ray tracing (active research area)
Advantage and Disadvantage of GPU Computing

Advantage:

- **Fast and Cheap**
 - Newest nVidia GTX 580 delivers a theoretical 1.5 TFlops at $500. How much per TFlops? How much per TFlops for CPUs?

- **Energy efficient**

![Bar chart showing power consumption of FASTRA2 and 512-core cluster](image)

Power consumption of FASTRA2 (6x GTX 295 and 1x GTX 275, 12TFlops) and a 512-core normal cluster.
Advantage and Disadvantage of GPU Computing

Disadvantage:

- Not all algorithms can have theoretical speedup.
- Hard to program.
- No mature industrial/academic standard model.
 - Architecture is still developing fast.
 - Ray tracing can potentially develop a completely new graphics rendering pipeline.
Thanks!