Shared Memory Multiprocessors
* and Cache Coherence

Kai Shen

2/4/2014

CSC 258/458 - Spring 2014

Multiprocessors

= Limitation of instruction-level parallelism
= Dependences

= Complexity to support high-degree instruction-level parallelism
= Why so challenging?
= Hardware has to extract parallelism from software that doesn’t explicitly
expose parallelism
= Multiprocessors
= A machine that contains multiple CPUs

= Software explicitly exposes parallelism and runs multiple tasks
simultaneously on the CPUs

2/4/2014 CSC 258/458 - Spring 2014

Shared Memory Multiprocessors

= Multiple processors sharing memory

= Does not require data partitioning; easy data access in programming

processor processor

memory

= Traditional shared memory multiprocessors
= Processors and shared memory connected by a bus
= Each processor may contain private cache

2/4/2014 CSC 258/458 - Spring 2014

Multiprocessor Architecture:
Hardware Multithreading

= The center of a processor contains

= the instruction fetching, decoding, pipelining units etc. (with registers)
= Other peripheral things on processor

= L1/L2 cache, floating-point units, etc.
= Hardware multithreading

= Multiple processors share the same set of peripheral things so they can
be manufactured on the same silicon die

processor I processor)
One chip / socket

L1/L2 cache, flt-op, ...

2/4/2014 CSC 258/458 - Spring 2014

2/4/2014

Multiprocessor Architecture:
Hardware Multithreading

. . rocessor rocessor
= Hardware multithreading One chip /
= Multiple processors share the same set L1/L2 cache, fit-op, ... || socket

of peripheral things so they can be
manufactured on the same silicon die

m Benefits:

= Less manufacturing cost = more processors on one silicon die
= Less power consumption per processor
m Faster processor-to-processor coordination and data sharing

= Problems:
= Resource contention diminish benefits, leads to unpredictable
performance
2/4/2014 CSC 258/458 - Spring 2014 5

Multiprocessor Architecture:
Multicore

= Last-level cache (LLC) is most significant part of the chip

= Multicore: just sharing the LLC allows multiple processors on the
same silicon die

.
One chip / socket
Last-level cache

memory

]

= Between traditional multiprocessor and multithreading
= Inherit much of the benefits for hardware multithreading
= Only resource contention is on the shared LLC space

2/4/2014 CSC 258/458 - Spring 2014

Multiprocessor Architecture:
NUMA

= Memory bandwidth is a big problem for large-scale multiprocessor
= Non-Uniform Memory Access

= Each processor can still access all memory, but accesses are faster to
“local memory”

Processor Processor
/ socket / socket

memory memory

= Data placement has significant performance impact (controllable by
software)

= Memory is not connected through a single bus — better scalability,
but implication to the cache coherence problem we will discuss

2/4/2014 CSC 258/458 - Spring 2014 7

Our Experimental Machines

= node2x12xla
= two CPU chips (sockets), each containing 12 cores

= nodedx2a

= four CPU chips, each containing two cores, each further containing
two hardware threads

= cycle2 / cycle3
= you may find out by reading /proc/cpuinfo

= nodel7 —node28

= two CPU chips, each containing two hardware threads

2/4/2014 CSC 258/458 - Spring 2014

2/4/2014

Cache Coherence Problem

In shared memory multiprocessors (except hardware
multithreading), each processor has a local cache

processor processor

cache cache

J

memory/more cache

For each data item in memory, additional copies may exist in
processor local caches
= after one processor updates the data, another processor’s local copy
may be incoherent

= What is wrong about it?

2/4/2014 CSC 258/458 - Spring 2014 9

Cache Coherence

s Coherence means the system semantics is the same as that of a
system without processor-local caches

m» Multiprocessor cache coherent if there exists an equivalent
sequential ordering of all operations on a data location:
= returned value in the read operation is that written by last write in
the sequential order
= the sequential order matches the order of operations from each
processor

2/4/2014 CSC 258/458 - Spring 2014 10

Cache Coherence Through Bus Snooping

All caches and memory connected by a shared bus
Bus snooping
= Each processor can monitor the bus for activities

Not always the case (particularly for NUMA)

2/4/2014 CSC 258/458 - Spring 2014 11

Bus Snooping For Write-Through Caches

processor processor

cache cache

]

| memory/more cache

= Cache can be write-through or write-back
= Assume write-through cache — every write goes to the bus

= Bus snooping
= Each processor monitors the bus for writes
= If there is a local cached copy of the write target, it is invalidated or
updated.
= Tradeoff between invalidation vs. update?
= How does it ensure cache coherence?
= Construct an equivalent sequential ordering of memory accesses

2/4/2014 CSC 258/458 - Spring 2014 12

2/4/2014

Coherence on Write-Back Caches

= Write-back caches are much more favored in practice

= Writes do not necessarily go to bus, so we may not directly
snoop them

2/4/2014 CSC 258/458 - Spring 2014 13

MSI Write-Back Invalidation

= Three states for a cache entry
= Modified (M) — I modified it, | am the only one who has a copy
= Shared (S) — | have a clean copy, possibly shared by others
= Invalid (1)

= Write to a modified cache entry?

= Write to a shared/invalid cache entry?

= Local write preceded by a read-exclusive (must go to bus, invalidate
other caches’ copies)

= How to handle a read?
= State transition diagram
= http://wiki.expertiza.ncsu.edu/images/e/e4/MSl.jpg

2/4/2014 CSC 258/458 - Spring 2014 14

MSI Write-Back Invalidation

= Three states for a cache entry
= Modified (M) — | modified it, | am the only one who has a copy
= Shared (S) — I have a clean copy, possibly shared by others
= Invalid (1)

= Operations on bus? Things that are snoop-able.
= Read-exclusive, read (miss local cache), write back

= What is the equivalent sequential ordering?

2/4/2014 CSC 258/458 - Spring 2014 15

MESI Write-Back Invalidation

= Modified (M) — I modified it, | am the only one who has a copy
n Shared (S) — I have a clean copy, possibly shared by others
= | have a clean copy. But can’t tell if | am the only one who has a
copy.
= When does it matter?

= |read an entry into cache and then write to it

= With S state, write must be preceded by a read-exclusive

= Add a new state
= Exclusive clean (E)
= When to assign E to an entry?
= First read, no other cache has a copy

2/4/2014 CSC 258/458 - Spring 2014 16

2/4/2014

Directory-based Cache Coherence

No all multiprocessors use shared bus for memory access
= |t does not scale!

Large multiprocessors with NUMA
= Many local memory accesses

= Without the ability of bus snoop, an explicit directory about memory
block’s caching state can be used

= May need to check the directory for cache coherence operations

2/4/2014 CSC 258/458 - Spring 2014

17

2/4/2014

