Parallelism beyond MapReduce: Distributed Data Processing

Kai Shen

Parallel Data Processing Models

- Single-machine shared memory
 - Data must fit in one machine
 - Multiple threads, each can access the entire memory space (shared memory actually makes programming easy)
 - Synchronization to protect shared data and enforce dependency
- Weaknesses:
 - Limited scalability
 - Limited I/O capacity (even if the computing capability is sufficient)

Parallel Data Processing Models

- Distributed data processing
 - Data is partitioned and distributed
 - Tasks run on different machines on different data partitions; collaboration through network communication
- Weaknesses:
 - Inconvenience for not being able to access all the data
 - Slower data communication

Programming for Distributed Data Processing

- MapReduce: simple programming (load balancing, data movement, fault tolerance is automated) but restrictive in semantics
- MPI (Message Passing Interface)
- General distributed data processing
- Make use of idle resources (where you can find them)
- Not required assignment on any beyond MapReduce
Message Passing Interface

- De facto standard programming interface for message passing-based parallel programs
 - think of threads for shared memory parallel programming
- You write a single program, multiple copies of which will run on multiple machines
 - Assumption: all processes do mostly similar things
 - Different parts distinguish through process ID
- Communications
 - Point-to-point: send/receive
 - Group communications: broadcast, gather, scatter, reduce, barrier
- It has a variety of implementations that we won’t go into

MPI Send/Receive

- Matching send/receive:
 - Process x sends a message to process y
 - Process y receives a message from process x
- Nonblocking send
- Synchronous send
- Nonblocking receive

MPI Group Communications

- Barrier
 - All processes wait until all have arrived
- Broadcast
 - One process (root) sends a message to be received by others
- Reduce (just like reduce in MapReduce)
 - A function (MAX, SUM, ...) is applied to data supplied by all processes; result is returned at one process (root)
 - Function is evaluated following process rank order
 - Reduce(R₁, R₂) = R₁₂, Reduce(R₁₂, R₃) = R₁₂₃, ...
 - Can be optimized if associative and/or commutative
 -

MPI Applications

- Word counting
 - Divide the documents into partitions
 - Each MPI task counts words in its own partition
 - Reduce at the end

- K-means
 - Divide the samples into subsets
 - In each iteration, an MPI task assigns samples in its partition
 - Barrier between iterations (re-computation of cluster centers is a bit tricky)
MPI Applications

- PageRank / matrix-vector multiplication
 - Divide the matrix into blocks/rows, all nodes have a copy of the vector
 - Each MPI task computes matrix-vector multiplication for its own data
 - All-to-all broadcast between iterations, new pagerank vector is distributed to all
- Gaussian Elimination
 - Divide the matrix into blocks/rows
 - ... can be done, but somewhat complex

MPI vs. MapReduce

- Ease of programming
 - complexity of interface specification
- Automatic system support
 - for load balancing, data movement, and fault tolerance
- Flexibility
 - in supporting complex application semantics
 - in custom data distribution and transfer
- MPI is still restrictive
 - in communication modes
 - in custom performance optimization

General Distributed Data Processing

- As usual, we first divide the data into partitions
- Individual per-partition data processing runs on each machine
- Tasks communicate through sockets (TCP/IP)
 - Send/receive
 - Asynchronous Send/receive
- Implement everything else on top of the above
 - MPI synchronous send?
 - Reduce, data aggregation?
 - ...
- Most flexible, and most efficient (if done right), but requiring most programming work

Communication Performance

- Direct data accesses on a shared memory machine
- TCP/IP on a shared memory machine
- TCP/IP over a cluster

10/3/2013 CSC 296/576 - Fall 2013
Communication Performance

- Long communication latency (vs. high bandwidth)
 - our Ethernet cluster: 250us latency, 80MB/sec bandwidth
 - if 1KB per synchronization, effective bandwidth is 4MB/sec
 - synchronize/wait as few times as possible
- Performance issues with TCP/IP
 - Connection establishment
 - Congestion control
 - UDP or raw IP with some error detection management

Custom Fast Communications

- Fast local area network (Myrinet, Infiniband, ...)
 - No need to support Internet communications (TCP/IP)
- Large multiprocessors from Cray, IBM, ...
 - Each processor (or processor group) has some local memory
 - Fast access to remote memory through fast system bus

Load Balancing

- With most flexibility, you also must take care of all performance optimization and fault/anomaly management
- Dynamic load balancing
 - Implement master (in MapReduce) or TaskTracker (in Hadoop)
 - Maintain more tasks than machines; assign tasks to machines
 - Reactive assignment: assign one more task to a machine that just informed me it has completed its current assignment
 - Proactive assignment: poll the load situation at machines and assign more to those with low load (don’t have to poll all frequently)
 - Observe data locality as much as possible

Parallel Data Aggregation

- How to implement reduce()?
- All data sent to the one node; reduced at that node
- Tree-ordered parallel reduction (if reduction op is associative)
- Adaptive order based on progress at each node (if reduction op is commutative)
Performance Outliers

- Performance of your application is bounded by the slowest task
- Many reasons for a particularly slow task (even if load appears to be balanced):
 - awful data locality
 - long network switch distance
 - OS daemons run at unfortunate time
 - disk/SSD remapped data layouts (due to wear) hinder I/O speed
 - ...
- Monitor the progress of tasks, and re-launch a redundant task (at a different machine) if necessary

Deadlocks

- Why does my distributed program get stuck?
 - The MapReduce system support typically ensures progress is always made
 - Possible reasons
 - Receive without a matching send (or a matching send cannot be reached)
 - Group communications are not called by all in the group
 - Send blocked by insufficient buffer space
 - ...

- Debugging
 - Find out where each process is blocked at
 - How does it conflict with design? What’s wrong with implementation?

Fault Tolerance

- Checkpointing and restart
 - Checkpointed state (a distributed state) is a consistent state
 - A consistent state is one that can be reached (after freezing the execution of all nodes at once) in some real execution
 - Easy to do for MapReduce
 - Since each map or reduce task does not send data or interact with others til completion, wiping out the partial work of one task still reaches a consistent state (as if the task execution has been extremely slow, actually made no progress since start)
- Challenging for general distributed applications
 - If A is checkpointed before sending out a message (dest. B), then B should be checkpointed before receiving the message

Utilizing Idle Resources

- Motivation: lots of machines are mostly idle in a University lab or across the Internet
- We distribute work to those machines (screen saver download) and have them done when the machine is idle
- SETI@home
 - Distributed task: a data partition to process
 - Brute-force password cracking
 - Distributed task: passwords to try
- Realization:
 - Data/work must be easily partitionable without interdependencies
 - Must tolerate potentially long network delays
 - Must deal with unpredictable response time of tasks
 - Must be un-annoying
- Is it worth doing?