An Empirical Characterization of Several Server Workloads

Kai Shen
Dept. of Computer Science, University of Rochester

Workload Characterization and Benchmarking

- Workload characterization
 - understand realistic workload characteristics/patterns
 - generalize these characteristics/patterns
- Benchmarking
 - compare across systems
 - evaluate the effectiveness of system-level techniques

Empirical Server Workloads

- TPC-C
 - database-driven standard benchmark
 - five types of transactions
- SPECweb
 - web server standard benchmark
 - GET/POST reqs, with or without cookie, varying file sizes
- RUBiS
 - J2EE multi-component service
 - several types of requests in a typical auction service
- WeBWorK
 - online homework distribution and solution checking
 - driven by real user traces with thousands of different teacher-created problem sets

Distribution of Request CPU Usage

- X-axis
 - 1 to 99-percentile range
- Y-axis
 - normalize to even distribution
- Discussions
 - clustering
 - regularity
Inter-property Correlation

- **X/Y-axes**: 1 to 99th percentile range
- **Discussion**: correlation, implication

Re-evaluate Past Results:
Event Chain-based Request Classification

- Classify requests into groups based on event chains [Barham et al. 2004]
 - there are multiple types of events
 - event chain distance measured as string-edit distance
- A simple re-evaluation
 - just system call events (each system call number is a type)
 - ignore the event order to save computation time
- Use a representative to represent all group members
- **Coefficient of determination**, R^2 accuracy $\left(1 - \frac{E_{\text{model}}}{E_{\text{mean}}}\right)$:
 - TPC-C: 0.98
 - SPECweb: 0.94
 - RUBiS: 0.89
 - WebWorK: -0.24

Re-evaluate Past Results:
Type-based Resource Usage Prediction

- Weighted linear model of request CPU utilization on request types [Stewart et al. 2007]
 - $U = c_0 + c_1 T_1 + c_2 T_2 + \ldots + c_n T_n$
 - T_1, T_2, \ldots, T_n are the proportions of each request type in the workload
- RUBiS: several auction service types
- WebWorK: submitting/viewing problems, submitting solutions

WeBWorK: An Collaborative Web Application

- **WeBWorK**
 - weaker clustering, less behavior regularity, weaker inter-property correlation, compared to standard benchmarks like TPC-C, SPECweb, and RUBiS
 - due to independent content creation from large number of end users in collaborative web applications
 - impacts on workload modeling and performance prediction
- Emerging collaborative web applications
 - Wiki-based web sites
 - social networking sites
 - others?