# An Empirical Characterization of Several Server Workloads



### Kai Shen

Dept. of Computer Science, University of Rochester



## **Empirical Server Workloads**

- TPC-C
  - database-driven standard benchmark
  - five types of transactions
- SPECweb
  - web server standard benchmark
  - GET/POST regs, with or without cookie, varying file sizes
- RUBiS
  - J2EE multi-component service
  - several types of requests in a typical auction service
- WeBWorK
  - online homework distribution and solution checking
  - driven by real user traces with thousands of different teacher-created problem sets

3/6/2008

URCS 573 - Spring 2008

3



# Workload Characterization and Benchmarking

- Workload characterization
  - understand realistic workload characteristics/patterns
  - generalize these characteristics/patterns
- Benchmarking
  - compare across systems
  - evaluate the effectiveness of system-level techniques

2

3/6/2008 URCS 573 - Spring 2008





# Re-evaluate Past Results: Type-based Resource Usage Prediction Weighted linear model of request CPU utilization on request types [Stewart et al. 2007] U = c<sub>0</sub> + c<sub>1</sub>\*T<sub>1</sub> + c<sub>2</sub>\*T<sub>2</sub> + ... + c<sub>n</sub>\*T<sub>n</sub> T<sub>1</sub>, T<sub>2</sub>, ..., T<sub>n</sub> are the proportions of each request type in the workload RUBiS: several auction service types WeBWork: submitting/viewing problems, submitting solutions

# 4

## Re-evaluate Past Results:

**Event Chain-based Request Classification** 

- Classify requests into groups based on event chains [Barham et al. 2004]
  - there are multiple types of events
  - event chain distance measured as string-edit distance
- A simple re-evaluation
  - just system call events (each system call number is a type)
  - ignore the event order to save computation time
- Use a representative to represent all group members
- Coefficient of determination,  $R^2$  accuracy (1-  $\frac{E_{predict}}{E_{---}}$ ):
  - TPC-C SPECweb RUBiS WeBWorK
  - 0.98 0.94 0.89 -0.24

3/6/2008 URCS 573 - Spring 2008

# 4

# WeBWorK: An Collaborative Web Application

- WeBWorK
  - weaker clustering, less behavior regularity, weaker interproperty correlation, compared to standard benchmarks like TPC-C, SPECweb, and RUBiS
  - due to independent content creation from large number of end users in collaborative web applications
  - impacts on workload modeling and performance prediction
- Emerging collaborative web applications
  - WiKi-based web sites
  - social networking sites
  - others?

3/6/2008 URCS 573 - Spring 2008

73 - Spring 2008 8

6