Finding Bugs in Operating Systems

1

Kai Shen

Dept. of Computer Science, University of Rochester

Finding Bug-related Patterns

= Compiler can check language syntax errors:
= mismatched "(* and “}"
= accessing an undefined variable

= Similarly we can check bugs with known patterns:

= mismatched “disable_interrupt()" and “enable_interrupt()"

= dereferencing a pointer that was possibly assigned to "NULL"
= But these are a lot more difficult:

= not expressible in a context-free grammar; requiring flow-
sensitive analysis.

3/27/2008 URCS 573 - Spring 2008

Formal Verification — Model Checking

= Formal verification (e.g., model checking) proves the
absence of certain bugs by exhaustively explore the
whole state space.

= Weakness #1: typically works on toy languages with
restricted syntax/semantics
= e.g., doesn't like loop;

= not practical for systems written in high-level languages
like C.

= Weakness #2: potentially large search space

= imagine a program with a series of 10 if-then-else
statements;

= not practical for systems with millions of lines of source
code like operating system.

3/27/2008 URCS 573 - Spring 2008

Scalable Model Checking

= Weaknesses of model checking:

= typically works on oy languages with restricted
syntax/semantics;

= potentially large search space.

= Optimizations [Engler et al OSDI'00]:
= state caching;
= end loop checking when all reachable states are checked;
= reduce search scope - function-local analysis only.

3/27/2008 URCS 573 - Spring 2008




Deriving Bug-related Patterns

= How to derive bug patterns?
= Derive correct behaviors:
= matched "disable_interrupt()" and “enable_interrupt()”

= never dereferencing a pointer that was possibly assigned
to "NULL"

= files must be opened before use; closed after use; no
double close

= avariable V" is protected by lock "L"
= Vis only accessed after lock(L) before unlock(L)

= A rumor repeated a thousand fimes becomes a fact.

3/27/2008 URCS 573 - Spring 2008

Deriving Bug-related Patterns

= Bugs as deviant behavior [Engler et al SOSP'01]
= find common patterns and call them beliefs
= but there must be counter examples to be interesting

= For each suspected belief:

= n total checks, e successes, c=n-e counter examples
= Rank the beliefs:

= just rank e/n?

= also consider the number of samples: z-statistic or t-
statistic on how far e/n is from a given distribution
[Engler et al SOSP'01]

3/27/2008 URCS 573 - Spring 2008

Empirical Results

= A study of bugs in Linux and FreeBSD [Chou et al SOSP'01]

= Where are the errors?
= driver code has error rates three to seven times higher than
code in the rest of the kernel.

= How are bugs distributed?

= skewed error distribution across files (a logarithmic series
distribution).

= How long do bugs live?
= average bug lifetime is about 1.8 years.
= How do operating system kernels compare?

= OpenBSD has higher error rates than Linux (1.2 to six times
higher error rates for error types examined).

3/27/2008 URCS 573 - Spring 2008




