
Kai Shen 3/27/2008

URCS 573 - Spring 2008 1

Finding Bugs in Operating SystemsFinding Bugs in Operating Systems

Kai Shen

Dept. of Computer Science, University of Rochester

3/27/2008 URCS 573 - Spring 2008 2

Finding Bug-related Patterns

Compiler can check language syntax errors:
mismatched “{“ and “}”
accessing an undefined variable

Similarly we can check bugs with known patterns:
mismatched “disable_interrupt()” and “enable_interrupt()”
dereferencing a pointer that was possibly assigned to “NULL”

But these are a lot more difficult:
not expressible in a context-free grammar; requiring flow-
sensitive analysis.

3/27/2008 URCS 573 - Spring 2008 3

Formal Verification – Model Checking

Formal verification (e.g., model checking) proves the
absence of certain bugs by exhaustively explore the
whole state space.

Weakness #1: typically works on toy languages with
restricted syntax/semantics

e.g., doesn’t like loop;
not practical for systems written in high-level languages
like C.

Weakness #2: potentially large search space
imagine a program with a series of 10 if-then-else
statements;
not practical for systems with millions of lines of source
code like operating system.

3/27/2008 URCS 573 - Spring 2008 4

Scalable Model Checking

Weaknesses of model checking:
typically works on toy languages with restricted
syntax/semantics;
potentially large search space.

Optimizations [Engler et al OSDI’00]:
state caching;
end loop checking when all reachable states are checked;
reduce search scope – function-local analysis only.

Kai Shen 3/27/2008

URCS 573 - Spring 2008 2

3/27/2008 URCS 573 - Spring 2008 5

Deriving Bug-related Patterns

How to derive bug patterns?
Derive correct behaviors:

matched “disable_interrupt()” and “enable_interrupt()”
never dereferencing a pointer that was possibly assigned
to “NULL”
files must be opened before use; closed after use; no
double close
a variable “V” is protected by lock “L”

V is only accessed after lock(L) before unlock(L)

A rumor repeated a thousand times becomes a fact.

3/27/2008 URCS 573 - Spring 2008 6

Deriving Bug-related Patterns

Bugs as deviant behavior [Engler et al SOSP’01]
find common patterns and call them beliefs
but there must be counter examples to be interesting

For each suspected belief:
n total checks, e successes, c=n-e counter examples

Rank the beliefs:
just rank e/n?
also consider the number of samples: z-statistic or t-
statistic on how far e/n is from a given distribution
[Engler et al SOSP’01]

3/27/2008 URCS 573 - Spring 2008 7

Empirical Results

A study of bugs in Linux and FreeBSD [Chou et al SOSP’01]

Where are the errors?
driver code has error rates three to seven times higher than
code in the rest of the kernel.

How are bugs distributed?
skewed error distribution across files (a logarithmic series
distribution).

How long do bugs live?
average bug lifetime is about 1.8 years.

How do operating system kernels compare?
OpenBSD has higher error rates than Linux (1.2 to six times
higher error rates for error types examined).

