1

Operating System
Performance Anomalies

Kai Shen

Dept. of Computer Science, University of Rochester

!-L What is Performance Anomaly?

= Performance falls below expectation
= What is the right expectation?

= Poor performance that cannot be explained by high-level
design features and intuitions
= Often due to implementation deviations from high-level
design
= unintentional deviations that are obviously wrong (bugs)

= intentional deviations that address practical issues that
escaped high-level design

4/29/2008 URCS 573 - Spring 2008 2

= A concrete example:

Performance Anomaly Identification

How do you identify a performance anomaly?
= Given two executions Aand R If A delivers much worse performance
than R (against “expectation”), then you call A4 an anomaly in relation
to R the reference.

System version evolution

= Anomaly - Linux 2.6.23

» Reference - Linux 2.6.10 —_—

0.5

Normalized 1/O throughput

263 2610 2619 2623
Linux kernel versions

4/29/2008 URCS 573 - Spring 2008

Expectation

= Unsaid expectation:
= A newer system version should not significantly degrade the
performance.
= Learning the expectation:
= Constructing the probability distribution on the performance change

due to Linux version upgrade.

Throughput change distribution
02

o
o

o
o
&

Probability distribution
o

0 .|II|‘ ‘llllll.ll
0.0 1.

-1.0 0

Change: (new-old)/max

4/29/2008 URCS 573 - Spring 2008 4

Reference-Driven Performance Expectation

= Help identify an anomaly by observing an "unexpected"”
performance degradation from a reference.
= Single-parameter relative model:

= provide expected performance difference between two
executions that only differ on one condition parameter.

= preceding example - a relative model on OS version.
= A complex system has many exec. condition parameters:
= configurable parameters and workload properties

system configuration: system configuration:
1/0 scheduling policy memory caching policy

workload property:
data access pattern

4/29/2008 URCS 573 - Spring 2008 5

Case Study: Linux I/O Subsystem

= System configurations:
= File system prefetching depth
= I/0 scheduler: noop, deadline, anticipatory

= Workload parameters:
= I/O concurrency
= Access pattern: e.g., sequential/random
= inter-I/0 compute time

4/29/2008 URCS 573 - Spring 2008

Anomaly Cause #1

= InLlinux 2.6.10 and earlier:

= anomaly: high-concurrency I/0 sometimes delivers extremely
low performance

= disk is marked as "congested” when the device queue has 113
requests or more

= when the disk queue is "congested”, prefetching is cancelled

= however, prefetching sometimes include synchronously
requested data, which is resubmitted as single-page I/0

= InLinux 2.6.11 and above:
= only cancel asynchronous prefetching when disk is
“congested”
= anomaly: medium-concurrency I/0 sometimes delivers much
worse performance than high-concurrency I/0
4/29/2008 URCS 573 - Spring 2008 7

Anomaly Cause #2

= Anticipatory I/O scheduler

/* max time we may wait to anticipate a read (default around 6ms) */
#define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)

/* Kai Shen: the above is problematic given that HZ defaults to 250
for 2.6.23 kernel */

4/29/2008 URCS 573 - Spring 2008

Anomaly Cause #3

Anticipatory I/0 scheduler

Sometimes anticipatory scheduler allows multiple
outstanding device-level I/0 requests

= splitting of large I/0 requests

= asynchronous prefetching and synchronous I/0 from one

process

anticipation timer is started after the first disk request
returns

= incorrect because there are still outstanding requests

4/29/2008 URCS 573 - Spring 2008

