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Abstract

The complexity of parallel I/O systems lies in the deep
I/O stack with many software layers and concurrent I/O
request handling at multiple layers. This paper explores
multi-layer event tracing and analysis to pinpoint the sys-
tem layers responsible for performance problems. Our ap-
proach follows two principles: 1) collect generic (layer-
independent) events and I/O characteristics to ease the
analysis on cross-layer I/O characteristics evolution; 2)
perform bottom-up trace analysis to take advantage of the
relatively easy anomaly identification at lower system lay-
ers. Our empirical case study discovered root causes for
several anomalous performance behaviors of MPI-IO ap-
plications running on a parallel file system. First, we detect
an anomaly with the asynchronous I/O implementation in
the GNU C runtime library. Additionally, we find that con-
current I/O from multiple MPI processes may induce fre-
quent disk seek/rotation and thus degrade the I/O efficiency.
We also point out that lack of asynchronous support at the
parallel file system client side may result in inefficiency for
fine-grained writes. Using an aggressive I/O prefetching
strategy and a corrected asynchronous I/O implementation,
we achieve 39–156% read I/O throughput improvement for
four out of five applications that we experimented.

1 Introduction

The system architecture for data-intensive high-end ap-
plications must scale to meet the rapidly growing demands
on the performance and I/O capacity. One approach is
to support high-performance parallel I/O using clusters of
commodity servers, storage devices, and communication
networks. In this architecture, storage resources are directly
attached to dedicated or general-purpose compute nodes.
Cluster nodes are connected to each other through a back-
plane LAN like Myrinet or Gigabit Ethernet. Such cluster-
based parallel I/O is supported by parallel file systems like
PVFS [1], GPFS [14], and Lustre [7].

∗This work was supported in part by the National Science Foundation
grants CCR-0306473, ITR/IIS-0312925, CNS-0615045, CCF-0621472,
NSF CAREER Award CCF-0448413, and an IBM Faculty Award.
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Figure 1. An illustration of parallel applica-
tion on cluster-based parallel storage.

Typically, MPI parallel applications access data in the
parallel file system through the MPI-IO library [2,17]. The
MPI-IO interface allows multiple processes to access I/O
data simultaneously with correct semantics. Application
dataset is often partitioned or striped over multiple storage
servers for high aggregate I/O throughput. Each parallel
I/O operation often consists of sub-actions at multiple stor-
age servers, managed by I/O middleware and the host OS at
those nodes. Figure 1 provides an illustration of the targeted
system architecture.

Despite the promises of scalable I/O performance, spe-
cific implementations of these systems under particular
workloads may not achieve intended high performance.
Performance analysis for these systems are inherently com-
plex for at least two reasons. First, the application I/O work-
load is transformed several times in the deep I/O stack (by
the MPI-IO library, by the parallel file system, by system li-
braries, and by storage server host OS) before reaching the
storage devices. Second, two independent flavors of paral-
lelism (one for the parallel program and the other for the
parallel storage) co-exist in one system.

Event tracing at multiple layer boundaries in the deep
I/O stack may assist pinpointing the system layers respon-
sible for performance problems. This paper discusses is-
sues in such multi-layer event tracing and analysis. First,
to facilitate the analysis on cross-layer I/O characteristics
evolution, we focus on generic events and I/O character-
istics that apply to all layers (i.e., not specific to any par-
ticular layer functions). Specifically, we use a few generic
I/O events such as request admission, issuance, completion,



and callback to derive a rich set of useful characteristics
like the I/O request granularity, sequentiality, and workload
concurrency, and idleness. Second, since the lower layer is
closer to the raw storage device whose characteristics are
relatively well understood, it is easier to realize anomalous
I/O characteristics (that trigger worse-than-expected perfor-
mance) at a lower layer. Consequently we perform multi-
layer anomaly identification in a bottom-up fashion.

The rest of this paper is organized as follows. Section 2
evaluates the performance of five MPI-IO applications on a
parallel I/O system. Section 3 presents our approach for
multi-layer event tracing and analysis. In section 4, we
provide a specific case study that has identified three per-
formance anomalies and pinpoint their root causes. Sec-
tion 5 presents our performance tuning techniques that ad-
dress some of the discovered problems. Section 6 discusses
related work and Section 7 concludes the paper.

2 Application Performance Evaluation

Through application performance evaluation, we under-
line the existence of performance anomalies in real systems.

We set up a computing and storage cluster with 14 ma-
chines each with dual 2 GHz Xeon processors and 2 GB
memory. The native OS kernel and C runtime library on
all machines are Linux 2.6.12 and GNU libc 2.4 respec-
tively. Among the 14 machines, eight are used as com-
pute servers and the remaining six are set up as dedi-
cated storage servers. Each compute server can run up
to two MPI processes (one per processor) and therefore a
total of 16 MPI processes can run simultaneously on the
cluster. MPI programs in our platform are supported by
MPICH2 1.0.3 compiled with ROMIO [17]. Each storage
server is equipped with an IBM 10 KRPM SCSI drive with
raw seek time in the range of 1.3–9.5ms (depending on seek
distance) and raw sequential transfer rate in the range of
33.8–66.0MBytes/sec (depending on the disk zone where
the data is located). We install PVFS2 1.4.0 on the storage
servers. Large files are striped at 64 KB blocks across the
six storage servers by PVFS2. All machines are connected
through a switched Gigabit Ethernet with TCP/IP roundtrip
latency at around 80 us.

2.1 Evaluated Applications

Five MPI-IO applications with different I/O workload
characteristics are collected to benchmark the MPI-IO and
parallel file system performance. All applications support
both read and write modes.

1. mpi-io-test is an MPI-IO benchmark provided in
the PVFS2 software package1. For a read/write test run

1The originalmpi-io-test in the PVFS2 software package does
not clean memory cache at the storage servers before each read throughput

with N MPI processes, all processes open the same file
and each processi (0 ≤ i < N ) reads/writes blocki,
block N + i, block 2N + i, · · ·, until the end of the
file. The block size, representing the data access gran-
ularity, can be adjusted for each test. Our tests use five
block sizes: 64 KB, 256 KB, 1 MB, 4 MB and 16 MB.
The write tests have two modes depending on whether
thesync() operation is called after each write or only
once at the end.

2. ior mpiio [3] is an MPI-IO benchmark as part of the
ASCI Purple Benchmarks developed at Lawrence Liv-
ermore National Laboratory. Each test run consists of
writing data into a file and reading the data back. Each
MPI process reads/writes an equal-sized block of con-
tiguous bytes that constitutes the whole data file with-
out gaps or overlaps. The I/O request size is adjustable
and our tests use five request sizes: 64 KB, 256 KB,
1 MB, 4 MB and 16 MB. Each write test performs one
sync() operation at the end.

3. mandelbrot-par [18] is an MPI-IO application
that generates the Mandelbrot dataset, stores it as a sin-
gle data file, and reads it back for visualization. The
data file is partitioned into equal-sized blocks of con-
tiguous bytes for each MPI process. ForN MPI pro-
cesses manipulating a data file of sizeS, each process
i (0 ≤ i < N ) reads/writes the block from file offset
S × i/N to S × (i + 1)/N − 1. A data file of 8 GB
large is used for our tests. Each write test performs
onesync() operation at the end.

4. mpi-tile-io [9] is an MPI-IO program from the
Parallel I/O Benchmarking Consortium at Argonne
National Laboratory. It divides a data file into tiles in a
two dimensional space. Each MPI process is assigned
one tile for read/write operations. In our tests, we only
split the file vertically (i.e., each process gets a strip
tile in the space). Our test uses an 8 GB data file. Each
write test performs onesync() operation at the end.

5. NPB3.2IO-MPI [10] a program to solve the Block-
Tridiagonal problem in NAS Parallel Benchmarks
(NPB) from NASA. The original program only tests
the write performance. We extended it to support read
tests by having it read over the data file with the same
access patterns of the original writes. We use problem
size C in the test and the data file size is around 6.8 GB.
NPB3.2IO-MPI only allows a perfect square number
of MPI processes. We use 1, 4, 9 and 16 processes in
the tests. Each write test performs onesync() opera-
tion at the end.

test and thus it provides inflated throughput results. We fix it by flushing
storage server memory cache before each test.
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Figure 2. Read throughput for five MPI-IO applications. Both mpi-io-test and ior mpiio allow
configurable data access block sizes at the application leve l and we show results at five different
block sizes. The parallel file system stripes data over six st orage servers for all tests.

2.2 Experiment Results and Observations

To isolate the read and write I/O performance, we run the
five applications in read-only mode and write-only mode
separately. Results are reported and analyzed below.

Read I/O performance Figure 2 presents the read
throughput for the five applications at up to 16 MPI pro-
cesses. Formpi-io-test, when the block size is large
(e.g., 4 MB or larger), the performance curve indicates
good scalability of the system with increasing number of
MPI processes. Understandably, the read throughput for
block size 16 MB with one MPI process is limited by the
bandwidth of Gigabit Ethernet. The top read throughput
across all tests can be interpreted as the maximum aggre-
gate throughput that the entire system can possibly achieve,
which is around 202 MB/sec. It is observed from the fig-
ure that the read throughput can be two or three fold higher
for larger-granularity accesses. One obvious exception to
the above performance trend is the high read throughput at
6 MPI processes and 64 KB block size. This is due to a
coincidental absence of I/O concurrency for the following
reason. At this setting, the parallelism of the MPI program
equals that of the storage servers and the program I/O block

size equals the storage server striping block size. There-
fore all I/O accesses from each MPI process is directed to
one dedicated storage server (i.e., no I/O concurrency and
contention at each storage server).

From ior mpiio, we observe similar performance
trend that large read I/O request granularity has consider-
ably better performance compared with small granularity
I/O. The difference can be up to four to five folds.

The performance results formandelbrot-par per-
fectly match our expectation from scalable MPI-IO and par-
allel file system. The read I/O throughput climbs as the
number of MPI processes increases.

In mpi-tile-io, the read throughput dramatically
drops while the system starts to have concurrent MPI pro-
cess executions. And it continues to decrease when the con-
currency increases. This is due to the particular applica-
tion access pattern. In our parameter setting, high MPI pro-
cess count inmpi-tile-io results in highly fine-grained
(usually below the strip size) concurrent I/O requests to
multiple storage servers. The coordination and the commu-
nication overhead are therefore more significant. Note that
this particular application parameter setting is used for ex-
amining the system performance and may not be practical
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Figure 3. Write throughput for five MPI-IO applications. Not e that mpi-io-test has two write modes
and the results are presented separately.

in a real system.
The performance results forNPB3.2IO-MPI are simi-

lar but slightly different from those ofmpi-tile-io. The
difference is that the read throughput is actually increasing
instead of decreasing when the concurrency level is being
raised. It suggests that the I/O scheduler works well in this
case when highly concurrent I/O operations are presented
to the host OS at storage servers.

Overall, the read test results from four out of the five
applications exhibit dissatisfying I/O performance. They
include mpi-io-test with up to 1 MB block size,
mpi-tile-io, NPB3.2IO-MPI, andior mpiio with
up to 1 MB block size. Specifically, the applications tend
to exhibit poor read performance when the I/O access gran-
ularity is not large (e.g., up to 128 KB per storage server).
In some cases the performance keeps dropping when the
number of MPI processes increases. This suggests there
might be inefficient I/O operations taking place at the stor-
age servers with fine-grained, concurrent read I/O requests.

Write I/O performance Figure 3 illustrates the write
I/O throughput results for the five applications. For
mpi-io-test with synchronous writes, when the block
size is small, the write I/O throughput is low. This is under-
standable because each synchronous write has to wait the

disk head to seek and disk plate to rotate to the exact posi-
tion where the data should be written to. More fine-grained
writes result in more time spent in seek and rotation, which
greatly reduces the I/O efficiency. Note that an important
difference between synchronous writes and reads is that OS
prefetching may increase the access granularity of read re-
quests but it cannot help writes directly.

We expect that the rest of the write tests have write I/O
throughput that are independent of the I/O granularity since
they synchronize the writes only at the end of the test.
However, the results ofmpi-io-test andior mpiio
show that the write performance for fine-grained MPI-IO
accesses (e.g., up to 1 MB MPI-IO access size) is still vis-
ibly inferior. Therefore, our investigation focus for write
is mpi-io-test (with write synchronizations only at the
end) andior mpiio with block size up to 1 MB.

In mpi-tile-io, the write I/O throughput sharply re-
duces as the number of MPI processes increases, due to the
same reason as in the read test.

3 Multi-Layer Event Tracing and Analysis

Figure 4 provides a high-level illustration of system
components involved in an I/O operation for MPI-IO and
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I/O operation and possible locations of layer
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parallel file system. The parallel file system client library
is usually well integrated with the host file system on each
compute server and hidden from the user applications. All
I/O requests made to the parallel file system are transpar-
ently handled by the client library, which takes care of the
communication, connection establishment, metadata ma-
nipulation and data transfer with appropriate parallel file
system server daemons on storage servers across the net-
work. The server daemon is responsible for managing its
storage domain and serving the I/O requests received from
the client library. The server daemon interacts with system
libraries and host OS at the storage server to perform actual
I/O operations on the physical disk.

The entire system is multi-layered and all layers together
form a deep I/O stack. Each read/write operation in user
MPI programs takes a round-trip through all layers of the
I/O stack. On the issuance path, each I/O request proceeds
top-down from the MPI program all the way to the disk,
where every layer admits and processes the request from
its above layer and then issues it to the layer beneath itself.
On the completion path, the notification travels back in a
bottom-up fashion through the stack in the way that every
layer receives the notification message from its lower layer
and passes it to the upper layer. Layers often support I/O
parallelism such that a layer allows the existence of simulta-
neous I/O streams (i.e., concurrent issuance and completion
notification) to increase the efficiency.

In such a system, each layer may transform and opti-
mize I/O request characteristics and completed I/O results
in ways that relate to functions at other layers. Performance
problems may occur at a layer due to incorrect implemen-

tation of the layer itself or inefficient coupling among mul-
tiple layers. However, finding the sources of those prob-
lems is challenging due to I/O concurrency and the multi-
layering system structure. We propose to trace important
I/O events at layer boundaries of the I/O stack. Characteris-
tics extracted through these traces allow us to discover the
transformation from normal to abnormal behaviors at spe-
cific layers, which consequently help pinpointing sources
of performance problems. Specifically, we mark possible
locations of layer boundary event tracing in Figure 4.

We follow two important principles in our approach:

• Generic (layer-independent) events and I/O character-
istics. Although one can trace a variety of events and
derive many I/O characteristics at multiple system lay-
ers, the subsequent analysis may be difficult given the
semantic details of different layer functions. To fa-
cilitate automated cross-layer analysis, we only trace
generic events and derive a set of generic I/O charac-
teristics. Here bygeneric, we mean an event or an I/O
characteristic that is not specific to any particular layer
function and thus can apply to all system layers. It
is much easier to track the evolution of a generic I/O
characteristics (e.g., I/O request concurrency) between
two layers than to compare different I/O characteristics
that are only meaningful to specific layer functions.
We describe an example set of traced generic events
and derived generic I/O characteristics later.

• Bottom-up trace analysis. Our trace analysis starts at
a low system layer and proceeds upwards. We find
this approach advantageous for the following reason.
A lower system layer is closer to the raw storage device
whose characteristics are relatively well understood,
and therefore it is easier to pinpoint anomalous I/O
characteristics that trigger lower-than-expected perfor-
mance. The anomaly labeling can be either manual, or
it can be performed automatically by comparing with
a reasonable value range for each I/O characteristics
collected from known anomaly-free systems. Based on
the labeled anomalous I/O characteristics, we then per-
form a layer-by-layer comparison to uncover the high-
est layer where the anomalous I/O characteristics was
first introduced.

Based on the two principles, we can systematically de-
rive anomalous I/O characteristics and the range of system
layers that exhibit such anomalies. Although the highest
manifestation layer is typically the source of problem, other
causes may also be possible and a human performance ana-
lyst will take over from this point on.

Traced events and derived I/O characteristics We trace
the events of I/O request being passing through layer bound-
aries. The life span of each I/O request in a layer is marked
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by four types of generic boundary events. Admission event
(or ADMIT) denotes the receipt of an I/O request from up-
per layer. Issuance event (orISSUE) denotes the action
of a layer passing an I/O request to lower layer. Comple-
tion event (orCOMPLT) denotes that the acknowledgment
of completion notification of an I/O request received from
lower layer. Callback event (orCALLBACK) denotes that
the layer notifies its upper layer about an I/O request’s com-
pletion. Figure 5 provides an illustration of these events.

In the event trace, we record each I/O request event’s
timestamp, associated I/O file descriptor (fd), offset
(offset) and byte count (nbytes). Based on the trace, we
are able to derive a set of key characteristics that describe
an I/O workload between two adjacent layers in the system.

• Sequential Access Stream: a group of spatially con-
tiguous data items that are requested by a layer within
an application execution. Note that a layer may not
continuously access the stream at once. In other words,
during an application execution, a layer may alter-
nately access multiple streams in an interleaved fash-
ion. This notion depicts the overall spatial contiguity
of the layer’s I/O footprint.

• Sequential Access Run: a portion of a sequential
stream that is accessed contiguously without inter-
leaved I/O. Sequential access run reflects the granu-
larity of sequential accesses.

• Maximum/Average I/O Request Size: the maxi-
mum/average size of an I/O request issued by a layer.
This metric indicates the request granularity.

• Maximum/Average Concurrency: the maxi-
mum/average number of simultaneous outstanding I/O
requests in a layer during an application execution.
We say that an I/O request is outstanding at a layer
when its ADMIT in this layer has happened but
CALLBACK has not. The I/O concurrency at an
instant τ , called C(τ), is defined as the number of
outstanding I/O requests at the instant. Formally, the

average I/O concurrency metric over a time period

[τstart, τend] is defined as

∫
τ

end

τstart

C(τ) dτ

τend−τstart
.

• Throughput: the total size of requested data completed
in a layer divided by the time during which the layer
is busy. We say that a layer is busy if in that particular
moment there is at least one outstanding I/O request at
this layer.

• Timing breakdown: the detailed and timed activities
information of a layer and the detailed timing informa-
tion of an I/O request in a layer. The timing breakdown
can be utilized to monitor the layer activities and un-
expectedly long waiting or blocking in any phase be-
tween two boundary events.

4 Trace Analysis Case Study

We provide a specific case study on trace analysis and
anomaly root cause investigation. In our experimental sys-
tem, the PVFS2 server daemon on storage server issues I/O
operations through POSIX asynchronous I/O (aio) API.
The asynchronous I/O is not directly supported by the Linux
operating system. Instead, the runtime GNU C runtime li-
brary provides an emulation of asynchronous I/O.

Following the approach described in Section 3, we
instrumented the MPI-IO library, the PVFS2 client, the
PVFS2 server and theaio library to collect layer boundary
event traces. The event traces are compact in size. They are
aggregated in a separate memory area during the application
executions and dumped to disk after the executions are com-
pleted. The overhead of our instrumentation is negligible
since no extra I/O operations are incurred for the executions.
In the rest of this paper, we use a layer prefix together with
ADMIT, ISSUE, COMPLT and CALLBACK to denote the
boundary events at a particular layer (e.g., PVFS2ISSUE
represents the issuance of an I/O request from the PVFS2
server daemon to its lower layer — theaio emulation in
the C runtime library).

4.1 Case I: Asynchronous I/O

We repeat the read tests that previously showed unsatis-
factory performance on the instrumented system. We col-
lect event traces and process them to derive I/O characteris-
tics introduced in Section 3. Following the bottom-up trace
analysis approach, the first anomaly that we observe is lack
of I/O request concurrency at the OS level. Theaio library
never issues more than one I/O request at a time. This is
confirmed by a detailed look at the collected traces — Fig-
ure 6 presents a trace segment with serialized AIOISSUE
and AIO COMPLT events.

Lack of concurrency at the OS level may seriously im-
pair the effectiveness of elevator I/O scheduler in the OS.



Time: 2650212.242744 EVENT: AIO ISSUE OP: READ FD: 15 OFFSET:712114176 NBYTES:65536
Time: 2650212.244758 EVENT: AIO COMPLT OP: READ FD: 15 OFFSET:712114176 NBYTES:65536
Time: 2650212.244823 EVENT: AIO ISSUE OP: READ FD: 15 OFFSET:712179712 NBYTES:65536
Time: 2650212.249684 EVENT: AIO COMPLT OP: READ FD: 15 OFFSET:712179712 NBYTES:65536
Time: 2650212.249731 EVENT: AIO ISSUE OP: READ FD: 15 OFFSET:712310784 NBYTES:65536
Time: 2650212.257953 EVENT: AIO COMPLT OP: READ FD: 15 OFFSET:712310784 NBYTES:65536
Time: 2650212.258010 EVENT: AIO ISSUE OP: READ FD: 15 OFFSET:712900608 NBYTES:65536
Time: 2650212.273527 EVENT: AIO COMPLT OP: READ FD: 15 OFFSET:712900608 NBYTES:65536
........

Figure 6. I/O trace segment showing request serialization i n the aio library.

This is because elevator I/O scheduler re-orders outstanding
I/O requests to minimize the disk head movement and there-
fore improve I/O throughput. Elevator scheduler works bet-
ter when there are more outstanding requests to choose from
for the purpose of seek reduction. Moreover, serialization
of I/O request issuance is more likely to create idle time
between system layers and thus decrease the resource uti-
lization efficiency.

A cross-layer analysis shows that the lack of I/O con-
currency is limited to the OS layer. The timing breakdown
further shows unexpectedly long average waiting time for
an I/O request to be issued in theaio library (i.e., the phase
between AIOADMIT and AIO ISSUE). This potentially
suggests excessive I/O request blocking and queuing in the
aio library. Both observations (the workload concurrency
transition and the excessive I/O request blocking in theaio

library) suggest that that I/O request issuance from theaio

library is serialized.
We have investigated theaio library implementation

(GNU libc 2.4) for the cause of I/O request issuance se-
rialization. We find that theaio library employs a single
thread to serve pending I/O requests on each file descrip-
tor. And all requests are issued to the OS through blocking
I/O system callpread/pwrite. Under this implementa-
tion, all I/O requests on the same file descriptor are strictly
ordered without concurrency. At the same time, the PVFS2
server daemon employs a single file descriptor to issue all
I/O operations on one file (regardless whether these opera-
tions come from multiple remote MPI processes). For paral-
lel applications that operate on a single large file, effectively
all I/O operations at a storage server are serialized.

There are multiple ways to address the request serial-
ization problem. First, we can lift theaio library’s one-
thread-per-file-descriptor restriction so multiple I/O opera-
tions on the same file may be issued to the OS simultane-
ously. Second, we can augment the PVFS2 server by using
different file descriptors for I/O operations from different
remote MPI processes (even if these operations are on the
same file).

4.2 Case II: Interleaved Read I/O

The collected event traces ofaio library indicate another
anomaly that most sequential access runs are small even

Sequential access run length Percentage
64 KB 92.4 %
128 KB 4.5 %
256 KB 1.9 %
320 KB 1.1 %
384 KB or larger 0.1 %

Table 1. Percentage of different lengths of se-
quential access runs in an I/O trace segment.

when a large amount of spatially contiguous data is eventu-
ally accessed (indicating long sequential access stream).As
a specific example, Figure 7 displays an I/O trace segment
of ISSUE events occurring in the PVFS2 server daemon that
illustrates such an interleaved execution. Table 1 shows the
distribution of read I/O requests at various sequential access
run lengths. The average length of a sequential access run
is 73 KB. Considering that the average read I/O request size
is 64 KB, only a small portion of adjacent read I/O requests
is spatially contiguous.

Upwards trace investigation in the PVFS2 client and
server reveals that the concurrent I/O workload is a result
of multiple MPI processes accessing the storage server si-
multaneously. The data accesses to one sequential access
stream are therefore frequently interrupted by accesses to
other streams under a concurrent I/O workload.

Modern disk drives have large seek and rotational delays.
Operating systems (including Linux) employ two main op-
timization techniques to reduce disk seeks and rotations
during concurrent operations: prefetching and anticipatory
scheduling [4]. We briefly describe these two techniques
and why they do not work well for MPI-IO and parallel file
system under interleaved concurrent I/O requests.

• Prefetching. The OS reads ahead of the currently re-
quested data in the hope that the upcoming I/O requests
are sequential to previous ones. In such cases, data can
be immediately returned without requiring any disk ac-
cess. However, prefetching does not help much in our
problematic cases for at least two reasons:1) Our pre-
vious work [6] found that the default OS prefetching is
usually too conservative for I/O-intensive applications.
For instance, the prefetching size in default Linux does
not go beyond 128 KB.2) It is common for MPI pro-
grams that many concurrent I/O operations from MPI



Time: 2653111.280135 EVENT: PVFS2 ISSUE OP: READ FD: 15 OFFSET: 192151552 NBYTES: 65536
Time: 2653111.283790 EVENT: PVFS2 ISSUE OP: READ FD: 15 OFFSET: 192020480 NBYTES: 65536
........
Time: 2253111.360168 EVENT: PVFS2 ISSUE OP: READ FD: 15 OFFSET: 192937984 NBYTES: 65536
Time: 2253111.361018 EVENT: PVFS2 ISSUE OP: READ FD: 15 OFFSET: 192806912 NBYTES: 65536
Time: 2253111.362385 EVENT: PVFS2 ISSUE OP: READ FD: 15 OFFSET: 192217088 NBYTES: 65536
Time: 2253111.362916 EVENT: PVFS2 ISSUE OP: READ FD: 15 OFFSET: 192086016 NBYTES: 65536
Time: 2253111.363668 EVENT: PVFS2 ISSUE OP: READ FD: 15 OFFSET: 193200128 NBYTES: 65536
........
Time: 2653111.452228 EVENT: PVFS2 ISSUE OP: READ FD: 15 OFFSET: 193003520 NBYTES: 65536
Time: 2653111.452727 EVENT: PVFS2 ISSUE OP: READ FD: 15 OFFSET: 192872448 NBYTES: 65536
........
Time: 2653111.481709 EVENT: PVFS2 ISSUE OP: READ FD: 15 OFFSET: 193265664 NBYTES: 65536

Figure 7. I/O trace segment showing interleaved read I/O und er concurrent operations.

processes are requesting data jointly from the same
file. This might confuse the storage server OS to be-
lieve the access pattern for this file is non-sequential
and thus curb or even disable prefetching.

• Anticipatory Scheduling. At the completion of an I/O
request, anticipatory scheduling may keep the disk idle
for a short period of time even if there are outstanding
requests. The scheduler does so in anticipation of a
new I/O request from the process that issued the just
completed request, which often requires little or no
seeking from the current disk head location. Though
the anticipatory scheduling may significant improve
the performance of concurrent I/O workloads, it is only
effective when the I/O scheduler is aware of request-
issuing process contexts. However, due to the inherent
nature of remote I/O access in parallel I/O systems,
the identities of remote MPI processes that issued I/O
requests are not available at storage server host OS.
Specifically in PVFS2, all I/O requests from remote
MPI processes are handled by a single PVFS2 daemon
process before entering the OS.

There are multiple ways to address the above perfor-
mance issue. For instance, the PVFS2 server can employ
aggressive I/O prefetching on its own. Additionally, we can
also let the PVFS2 server to preserve the request-issuing
remote MPI process contexts so the OS anticipatory I/O
scheduling can be effective. More specifically, the PVFS2
server can use one unique local proxy process to issue read
I/O requests on behalf of each remote MPI process.

4.3 Case III: Lack of Write Buffering

We also collect and analyze the traces for the anomalous
write tests on the instrumented system. The timing break-
down at the PVFS2 server layer suggests that the PVFS2
server has low average I/O concurrency and spends exces-
sively long time on idling. Formpi-io-testwrite test at
block size 64 KB, the average I/O concurrency is well below
1.0, which suggests that the storage server is under-utilized
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Figure 8. Timing breakdown in a PVFS2
server daemon. Sync time is the time that
PVFS2 spends on perform sync() operation.
Busy and idle time denote the time that the
PVFS2 has or does not have outstanding re-
quest respectively.

for most of the time. The I/O concurrency improves at large
block sizes. Figure 8 further illustrates the time spent in
each activity for an individual storage server during the ex-
ecution. As we can see, The PVFS2 server daemon spends a
significant portion of time on waiting for requests when the
block size is small, which reduces the I/O efficiency of the
entire system. We label the excessive idling at the PVFS2
server as the anomaly in this case.

The bottom-up trace analysis reveals that the PVFS2
server inefficiency for the small writes results from lack
of write buffering in the PVFS2 client. Each PVFS2 write
call in the client side blocks until the data is synchronously
transferred to and buffered in the storage server OSes.
Therefore each write request incurs a significant amount
of delay. When the application (mpi-io-test) employs
small write request size, more write requests are needed and
thus the write request delay is more pronounced.

Implementing write buffering at the PVFS2 client can
help address the above performance problem. With the
buffering capability, each MPI-IO write call from the MPI
processes could return asynchronously once the data is



Affected scenario Anomalous I/O characteristics Identified cause

Read Lack of concurrency at the OS level One-thread-per-open-file limitation inaio library
Read Interleaved small I/O Concurrent accesses from multiple MPI processes;

OS prefetching and anticipatory scheduling fail to help
Write Low concurrency and long idling at PVFS2 serverLack of write buffering in the PVFS2 client

Table 2. Case study summary.
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Figure 9. Read throughput of the original system and a tuned s ystem.

handed off to the PVFS2 client. The PVFS2 client is able to
further optimize small writes through aggregation and col-
lective transfer.

4.4 Summary

Our proposed collection of generic I/O characteristics
and bottom-up event trace analysis allow us discover root
causes for three performance anomalies in the experimented
system. Table 2 summarizes the trace analysis and root
cause identification result. The asynchronous I/O imple-
mentation anomaly was also discovered independently by
the PVFS2 authors [13]. More aggressive prefetching at the
OS level has been investigated [6] to better support con-
current sequential I/O. The lack of write buffering at the
PVFS2 client is still listed as an open issue in the PVFS2
development manuscript.

5 Evaluation of A Tuned System

We run experiments to validate that the performance
problems discovered in the previous section are indeed
causes of performance degradation. Note that our goal here

is not to seek perfect corrections to these problems. We em-
ploy simple performance fixes to the previously discovered
problems in cases I and II. We do not have a fix for case III
since it requires more fundamental software changes.

First, we augment the PVFS2 server to prefetch 256 KB
sequentially ahead the currently requested data. This would
increase the sequential access granularity of I/O requests,
addressing the first performance problem (Section 4.1).
Second, we let PVFS2 server daemon bypass theaio li-
brary and issue parallel I/O requests to the operating system
directly through multiple helper threads. This would allow
concurrent requests at the OS layer, addressing the second
performance problem (Section 4.2).

We repeated all application read tests in Section 2 with
our tuned system. We use defaultsystem and tunedsystem
respectively to denote the original and the corrected systems
throughout. Results in Figure 9 show that tunedsystem has
significant throughput improvement over defaultsystem in
all problematic tests. On average, tunedsystem boosts read
I/O performance of the four applications with anomalies by
89%, 110%, 39%, and 156% respectively. The results con-
firm the soundness and capability of our methodology in
findings and pinpointing I/O performance problems in MPI-
IO on parallel file system.



6 Related work

Previous research has recognized the importance of
providing cluster-based software infrastructure for I/O-
intensive parallel applications. These efforts include con-
tinued development of parallel file systems [1,7,12] and the
integration with parallel I/O standards like MPI-IO [2, 17].
Despite the success of these efforts, there is still a lack of
comprehensive understanding on performance issues asso-
ciated with concurrent I/O workloads, where I/O requests
from multiple compute processes arrive simultaneously at
the cluster-based parallel storage.

Tracing has been commonly employed as a general ap-
proach to debug programs and study system or applica-
tion behaviors. In the high performance computing area,
I/O tracing is used to study scientific workload character-
istics [5, 11], to model and predict the system I/O behav-
iors [8], and to make access pattern adjustments to improve
I/O efficiency [16]. Our work in this paper complements
these previous studies by focusing on the discovery of per-
formance problems and their causes in systems with deep
I/O stacks (specifically MPI-IO on parallel file systems). In
this paper, we demonstrate that the collection of a small
number of generic I/O characteristics at multiple system
layer boundaries are effective for this purpose.

There has been extensive studies on operating system
(OS) support for I/O-intensive applications, in terms of I/O
prefetching [6], scheduling [4], and performance anomaly
analysis [15]. However, OS support targeting general-
purpose workloads may not work well for high-end com-
puting (HEC) applications with parallel I/O. In particular,
many HEC applications exhibit large sequential I/O access
pattern and thus more aggressive OS prefetching is desir-
able. Additionally, the anticipatory scheduling [4] may be
ineffective due to the lack of information on remote process
contexts in a parallel I/O architecture. Our performance
analysis uncovered these problems which call for new OS
I/O subsystem design on dedicated HEC platforms.

7 Conclusion

In this paper, through our multi-layer trace analysis, we
discover that current OS and parallel file system may ineffi-
ciently manage I/O requests of concurrent MPI programs.
Our approach follows two principles: 1) collect generic
(layer-independent) events and I/O characteristics to ease
the analysis on cross-layer I/O characteristics evolution; 2)
perform bottom-up trace analysis to take advantage of the
relatively easy anomaly identification at lower system lay-
ers. Our empirical study on a specific parallel I/O system
uncovers the causes to three performance anomalies. Be-
yond the specific case study in this paper, we believe the

multi-layer trace analysis technique is general and should
be applicable to other systems with deep I/O stacks.
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