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Abstract— Hardware execution throttling mechanisms such

as duty cycle modulation and voltage/frequency scaling can

effectively control core or chip-level resource consumption and

hence have been advocated to manage multicore resource com-

petition. However, finding the right throttle setting is challenging

since the configuration space grows exponentially as the number

of cores increases, making the naive approach of exhaustive

search untenable. This paper proposes a flexible framework

for Throttling-Enabled Multicore Management (TEMM) that

efficiently finds a high-quality hardware execution throttling

configuration for a user-specified resource management objective.

In a manner similar to the Newton-Raphson method in numerical

analysis, TEMM employs an iterative method to continuously

improve the configuration search quality by leveraging the search

results from previous iterations. Within each iteration, TEMM

extrapolates the effects of throttling from reference configura-

tions, searches for a high-quality throttling configuration based

on model predictions (accelerated by hill climbing), sample-runs

the selected configuration, and adds the measured performance

and recorded execution statistics of interest as a new reference.

Our evaluations show TEMM can quickly arrive at the exact or

close to optimal throttling configuration.

I. INTRODUCTION

Today’s server markets are increasingly turning toward

consolidation of resources using, for example, virtualization

in cloud computing systems. With the dominance of multi-

core chips in today’s cloud computing systems, performance

isolation and quality of service (QoS) for the resulting multi-

programmed workloads has become an increasing challenge.

Largely due to contention for shared chip-level resources like

the last-level cache and the off-chip memory bandwidth, a pro-

cess may exhibit unexpected low performance because other

simultaneously executing processes monopolize the shared

resource. Malicious users could also take advantage of this

system vulnerability to launch chip-level denial-of-service

attacks [1].

Recent studies [2], [3], [4] advocated multicore resource

management using hardware execution throttling. Specifically,

commodity processors are deployed with mechanisms such

as duty cycle modulation and dynamic voltage and frequency
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scaling (DVFS), originally designed for power/thermal man-

agement [5], to slow down (throttle) execution speed. By

throttling down the execution speed of some of the cores,

we can control an application’s relative resource utilization to

achieve a desired fairness or other quality-of-service objective.

Execution throttling enables much finer-grain resource con-

trol compared to alternatives like page-coloring-based cache

partitioning [6], [7], [8], [9] and scheduling quantum adjust-

ment [10]. It also does not suffer from page coloring’s prob-

lems of high recoloring costs and artificial memory pressure.

Despite the promises of execution throttling-enabled multi-

core management, identifying the appropriate throttling con-

figuration (duty-cycle level and frequency) for a given re-

source management objective is challenging. First, execution

throttling affects resource allocation indirectly and a throttling

configuration may not obviously map to specific management

objectives, including fairness, quality-of-service, overall per-

formance, and power efficiency. Second, the space of possible

throttling configurations grows exponentially with the number

of CPU cores (for instance, eight duty-cycle levels per core

allows 84=4096 throttling choices on a quad-core machine

and 812≈69 billion choices on a 12-core machine). Searching

for a high-quality configuration in a large, multi-dimensional

space is challenging.

This paper presents a software system framework,

called TEMM, for Throttling-Enabled Multicore Management.

TEMM can automatically and quickly determine an optimal

(or close to optimal) hardware throttling configuration given a

user-specified service-level objective (SLO). The SLO could

be an unfairness bound that specifies equal or proportional

progress for concurrently executing programs, an absolute

performance guarantee for a particular application, or a guar-

anteed resource allocation. TEMM models the effects of

execution throttling from reference configurations, searches for

a high-quality configuration based on model predictions, and

iteratively refines the search with a broadening set of measured

references. To enable online deployment with low overhead,

we further develop a hill-climbing optimization to accelerate

configuration search without exhaustive checking.

II. BACKGROUND

A. Hardware Execution Throttling Mechanisms

Duty cycle modulation [5] is a hardware feature introduced

for thermal management on Intel processors. The operating
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system can specify the fraction (as a multiplier of 1/8 or

1/16) of total CPU cycles during which the CPU is on

duty, i.e., executing, by writing to the logical processor’s

IA32 CLOCK MODULATION register. The processor is ef-

fectively halted during non-duty cycles for a duration of

∼3 microseconds [11]. Different fractional duty cycle ratios

are achieved by keeping the time for which the processor

is halted at a constant duration of ∼3 microseconds and

adjusting the time period for which the processor is enabled.

The microsecond granularity of duty cycle modulation ensures

that memory bandwidth utilization is reduced, since any back-

log of requests is drained quickly, so that no memory and

cache requests are made for most of the 3 microsecond non-

duty cycle duration. Thus, duty cycle modulation has a direct

influence on memory bandwidth consumption [2] and can be

used to control resource utilization. Duty cycle modulation can

be applied on a per-core basis and has been used to simulate

an asymmetric CMP [12] or artificially slow down application

execution speed to measure its cache miss ratio curve [13] on

multicore processors.

Dynamic voltage/frequency scaling (DVFS) is mainly de-

signed for power management purposes. Since most current

processors use off-chip voltage regulators (or a single on-chip

regulator for all cores), they require that all sibling cores be set

to the same voltage level. Therefore, a single frequency setting

applies to the entire multicore chip on Intel processors [14],

[15]. Compared to duty cycle modulation, DVFS is less

effective at throttling memory bandwidth utilization since it

operates only on the CPU and not on memory. The effect of

DVFS is that throttled cores slow their rate of computation

at a fine per-cycle granularity, although outstanding mem-

ory accesses continue to be processed at regular speed. On

applications with high demand for memory bandwidth, the

resulting effect is that of matching processor speed to memory

bandwidth rather than that of throttling memory bandwidth

utilization.

Re-configuring duty cycle or voltage/frequency level re-

quires manipulation of platform-specific registers, which in-

curs very small overhead (about hundreds of cycles on our

experimental platforms).

B. Resource Management Objectives

This paper presents a flexible multicore resource manage-

ment framework that can support a variety of objectives for

fairness, quality-of-service, overall performance, and power

optimization. Here we describe two specific examples of

service-level objectives (SLOs) for multicore resource man-

agement:

• The fairness-centric objective specifies roughly equal

performance progress among multiple applications. We

are aware that there are several possible definitions of

fair use of shared resources [16]. The particular choice

of fairness measure should not affect the main purpose of

our work. We take fairness as equal performance degra-

dation compared to a standalone run for the application.

Based on this fairness goal, we define an unfairness factor

metric as the coefficient of variation (standard deviation

divided by the mean) of all applications’ performance

normalized to that of their individual standalone run. At

perfect fairness, the unfairness factor should be zero.

• The QoS-centric objective specifies a guarantee of a

certain level of performance to a high priority application.

In this case, we call this application the QoS application

and we call the CPU core that the QoS application runs

on the QoS core.

Given one such service-level objective, the best configuration

should maximize performance (or power efficiency in the case

of DVFS) while satisfying the objective. In the rare case that

no possible configuration can meet the objective, we deem

the closest one as the best. For example, for configurations C1

and C2, if both C1 and C2 meet the objective, but C1 has better

performance than C2 does, then we deem C1 to be a better

configuration than C2. Also, if neither of the two configurations

meet the objective but C1 is closer to the target than C2, then

we deem C1 to be a better configuration than C2.

III. CONFIGURATION SEARCH USING MODEL-DRIVEN

ITERATIVE REFINEMENT

A multicore machine allows different combinations of throt-

tling levels at its CPU cores and each such throttling configu-

ration affects cross-core relative utilization of shared resources

in a certain way. The foundation for TEMM is a search method

that identifies a high-quality throttling configuration that meets

a specified SLO while achieving high performance or power

efficiency. TEMM’s configuration search employs an iterative

refinement framework using performance models of execution

throttling mechanisms.

A. Iterative Refinement

TEMM’s configuration search approach is in part motivated

by the Newton-Raphson method in numerical analysis. To

find an approximate root to a function, the Newton-Raphson

method iteratively identifies approximations using sampled

function points. While each iteration is driven by an inaccurate

linear tangent line from a previously sampled function point

(or a reference), the approximation quickly becomes more

accurate as sampled reference function points move closer to

a real root.

Specifically, our approach identifies a high-quality throttling

configuration by iteratively repeating the following routine. At

each iteration:

• a reference-based throttling performance model is used

to estimate per-core performance and calculates whole-

system performance/fairness/power metrics for each can-

didate throttling configuration;

• a “best” configuration is chosen based on the model-

estimated performance metrics and the SLO;

• the system is run using the selected configuration for

a sampling duration; the new sample is added to the

reference base.
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The search continuously improves over iterations because we

use the results from measuring/sampling the performance and

hardware execution statistics of the selected configuration at

each iteration to improve the throttling performance model

at the next iteration. Specifically, our throttling performance

models are based on references—previously executed con-

figuration samples. By leveraging the measured statistics at

references, rather than directly predicting performance, the

model needs to estimate only the difference between the target

configuration and a reference. The closer the target and refer-

ence are, the easier it is to model their difference accurately.

Since each iteration adds a new reference in the neighborhood

of some high-quality throttling configuration, the throttling

performance model is improved for future iterations with better

search results.

The iterative refinement maintains a broadening set of

measured references (we call it the reference set). The re-

finement ends when a predicted best configuration is already

a previously executed configuration sample in the reference

set (and therefore would not lead to a growth of the reference

set or better configuration search). In some cases, such an

ending condition may lead to too many configuration samples

with associated cost and little benefit. To maintain stability, we

introduce an early ending condition so that refinement stops

when no better configurations (as defined in Section II-B) are

identified after several steps.

B. Reference-Based Throttling Performance Model

Recall that each iteration of our approach utilizes

a reference-based throttling performance model. While

reference-based performance models exist for other complex

systems such as the I/O system [17], the modeling of CPU

throttling configuration differences requires new methods. We

present our solutions for two throttling mechanisms, as well as

an approach to predict the performance of a hybrid configura-

tion involving both mechanisms. We use cycles-per-instruction

(CPI) 1 as a performance indicator to guide runtime throttling

and use normalized execution time or throughput (normalized

to running-alone performance) for final SLO evaluation.

1) Duty Cycle Modulation: We consider an n-core system

and each core hosts a computation intensive application. Our

model utilizes performance at a set of reference configurations

as input. At a minimum, the set contains n+1 configurations—

n single-core running-alone configurations (i.e., ideal perfor-

mance) 2 and a configuration of all cores running at full

speed (i.e., default performance without any throttling). More

reference sample configurations may become available as the

iterative refinement progresses.

We represent a throttling configuration as

s = (s1, s2, ..., sn) where si’s correspond to individual

1Cycles are captured by the CPU CLK UNHALTED.REF performance
counter, which uses a fixed reference frequency that is invariant to CPU
frequency change to count cycles.

2We require running-alone performance since normalized performance is
used in our fairness and QoS objectives. If the SLO is an absolute performance
target that does not rely on run-alone performance, this configuration would
not be necessary.

cores’ duty-cycle levels. We collect the CPI of each running

application and calculate appi’s (the application running of

core i) normalized performance, P s
i . P s

i is the ratio between

the CPI when appi runs alone (without resource contention

and at full speed) and its CPI when running at configuration

s.

Generally speaking, an application will suffer more resource

contention if its sibling cores run at higher speed. To quantify

this, we define the sibling pressure of application appi under

configuration s = (s1, s2, ..., sn) as Bs
i =

∑n

j=1,j 6=i sj . We

assume an application’s performance degrades linearly with

respect to its sibling pressure. Under this assumption, the

linear coefficient k can be approximated as:

k =
P ideal

i − P
default
i

Bideal
i − Bdefault

i

, (1)

where P ideal
i is appi’s performance under ideal conditions

(i.e., running alone at full speed without duty cycle modu-

lation), and P
default
i is appi’s performance when all sibling

applications and appi run at full speed with no duty cycle

modulation. Since ideal is appi running alone, Bideal
i equals

0.

For a given configuration t = (t1, t2, ..., tn) that is the target

of performance prediction, we need to choose a reference

configuration r = (r1, r2, ..., rn) that is the closest to t in

our reference set. We introduce sibling Manhattan distance

between configuration r and t w.r.t appi as:

Di(r, t) =

n∑

j=1,j 6=i

|rj − tj |. (2)

The closest reference r would be one with minimum such

distance.

Ignoring changes in sibling pressure, we assume the applica-

tion’s performance is linear to its duty-cycle level. In order to

incorporate the effect of sibling pressure changes, we apply the

linear coefficient k to the sibling Manhattan distances. Hence,

appi’s performance under configuration t can be estimated as:

E(P t
i ) = P r

i ·
ti

ri

+ k · (Bt
i − Br

i ). (3)

Equation (3) assumes that an application’s performance is

affected by two main factors: the duty-cycle level of the

application itself and sibling pressure from its sibling cores.

The first part of the equation assumes a linear relationship

between the application’s performance and its duty-cycle level.

The second part assumes that performance degradation caused

by inter-core resource contention is linear to the sum of duty-

cycle levels of sibling cores. While these assumptions may not

be precise (just like the inaccurate linear tangent line used in

each step of the Newton-Raphson numerical analysis method),

they are good approximations when the target and reference

configurations are similar (small Manhattan distance). Our

iterative refinement utilizes the reference-based model to con-

tinuously sample more references in the neighborhood of high-

quality configurations and consequently allow better reference-
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based configuration search in later iterations.

2) Voltage/Frequency Scaling: We use a simple frequency-

to-performance model that we devised in previous work [18].

Specifically, it assumes that the execution time is dominated

by memory and cache access latencies, and accesses to off-

chip memory are not affected by frequency scaling while

on-chip cache access latencies are linearly scaled with the

CPU frequency. Let F be the maximum frequency and f a

scaled frequency, and T (F ) and T (f) be execution times of

an application when the CPU runs at frequency F and f . The

performance at f (normalized to running at the full frequency

F ) is defined as:

T (F )

T (f)
=

Lcache + RF · Lmemory

F
f
· Lcache + Rf · Lmemory

(4)

Lcache and Lmemory are access latencies to the cache and

memory respectively measured at full speed, which we assume

are platform-specific constants. Rf and RF are run-time cache

miss ratios measured by performance counters at frequency

f and F . Since DVFS is applied to the whole chip, shared

cache space competition among sibling cores on the same

chip can be assumed to change very little under DVFS. We

therefore assume RF equals Rf as long as all cores’ duty cycle

configurations are the same for two different runs.

3) A Hybrid Model: Our approach requires finding a ref-

erence configuration to estimate the normalized performance

of a target configuration. After adding DVFS, we have two

components (duty cycle and DVFS) in a configuration setting.

Thus, when we pick a closest reference configuration, we first

find the set of samples with the closest DVFS configuration on

appi, then we pick the one with minimum sibling Manhattan

distance on the duty cycle configuration. When we estimate

the performance of the target, if the reference has the same

DVFS settings as the target, the estimation is exactly the same

as Equation (3). Otherwise, we first estimate the reference’s

performance at the target’s DVFS settings using Equation (4),

and then use the estimated reference performance to predict

the performance at the target configuration.

C. Hill Climbing-Based Search

Our throttling performance model in Section III-B can

estimate the performance at any duty cycle configuration.

At each iteration of our configuration search, we can apply

the model to all possible configurations and choose the best

according to the desired SLO. However, such an exhaustive

check is not scalable as an n-core system with a maxi-

mum of m throttling levels per core allows mn possible

configurations. On the 2.27GHz CPU of our test platform,

it takes about 10microseconds to estimate the performance

of a configuration. Applying the model on 84 configurations

(quad-core platform) would lead to an excessive cost of about

41milliseconds while applying it on 812 configurations (12-

core platform) is clearly infeasible.

To reduce computation overhead, we apply a hill climbing

algorithm to prune the mn search space. Using our quad-core

Nehalem platform as an example, assuming we are currently

at a configuration (x, y, z, u), we calculate (or fork) 4 children

configurations: (x−1, y, z, u), (x, y−1, z, u), (x, y, z−1, u),
and (x, y, z, u− 1). The best one of the 4 configurations will

be chosen as the next fork position. Note that the sum of the

throttling level of the next fork position (x′, y′, z′, u′) is 1

smaller than the sum of the current fork position (x, y, z, u):

x′ + y′ + z′ + u′ = x + y + z + u − 1.

In our example, the first fork position is (8, 8, 8, 8) (default

configuration with every core running at full speed). The end

condition is that we either cannot fork any more or find a

configuration that meets our unfairness or QoS constraint. As

with any hill climbing algorithm, the caveat is that there is the

possibility of finding a local rather than a global minimum.

Under this hill climbing algorithm, the worst-case search

cost for a system with n cores and m throttling levels occurs

when forking from (m, m, ..., m) to (1, 1, ..., 1). Since the

difference between the sum of the throttling levels of two

consecutive fork positions is 1, and the first fork position

has a configuration sum of m · n while the last one has a

configuration sum of n, the total possible fork positions is

m · n − n. Each of these fork positions will probe at most

n children. So, we examine (m − 1)n2 configurations in the

worst case, which is substantially cheaper than enumerating

all mn configurations.

D. Dynamic Environments

While our approach can identify a high-quality throt-

tling configuration for a stable multicore execution, dynamic

changes in a real system require adaptation of the throt-

tling configuration. Application execution characteristics may

change due to a change in phase behavior, requiring different

throttling levels for fairness or high performance. TEMM

supports continuous configuration search in which recency is

reflected by replacing an old measurement sample with a new

sample at the same configuration. By doing so, our iterative

framework takes a phase change as a mistaken prediction and

automatically incorporates the behavior in the current phase

into the model to correct the next round of prediction. In

addition to phase changes within applications, an operating

system context switch also affects TEMM’s effectiveness since

it requires a new configuration search for the new set of co-

running applications.

IV. EVALUATION RESULTS

A. System Implementation

We implemented the necessary kernel support for perfor-

mance counter monitoring, duty cycle modulation (8 duty-

cycle levels), and DVFS in Linux 2.6.30. TEMM’s configura-

tion search and policy control are implemented in a user-level

daemon thread. The kernel maintains a per-core data structure

and exports a system call interface allowing the daemon to

query per-core hardware counter metrics and to update the
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current configuration. The per-core data structure is asyn-

chronously updated (and checked for current configuration) at

each kernel clock tick (which is 1 millisecond by default). If a

configuration change is required, the kernel writes to its local

configuration at that time and each core reads and updates its

configuration at the next tick. By default, configurations are

sampled and changed (if necessary) by the daemon at 1 second

intervals.

The online system uses CPI as run-time performance guid-

ance. In addition, it takes baseline performance (running each

application alone) and SLOs as inputs.

B. Experimental Setup

Our evaluation is conducted on three platforms. The first

is an Intel Xeon E5520 2.27GHz “Nehalem” quad-core pro-

cessor. The second is a 2-chip NUMA machine with Intel

Xeon L5640 2.27Ghz “Westmere” six-core processors (hy-

perthreading disabled, 12 cores in total). The last is a 2-chip

SMP machine with Intel Xeon 5160 3.0Ghz “Woodcrest”

dual-core processors (4 cores in total). All platforms run our

modified 2.6.30 Linux kernel configured with 8 duty-cycle

levels and Woodcrest is additionally configured with 4 DVFS

levels (3/2.67/2.33/2Ghz).

In order to test our framework, we focus on multipro-

grammed workloads. For the 4-core platforms (Nehalem and

Woodcrest), we use sets of four co-running applications se-

lected from the SPECCPU2000 benchmarks that show sig-

nificant resource contention. The five workloads used in our

experiments are:

set-1 = {mesa, art, mcf, equake},
set-2 = {swim, mgrid, mcf, equake},

set-3 = {swim, art, equake, twolf},
set-4 = {swim, applu, equake, twolf},

set-5 = {swim, mgrid, art, equake}.

For the 12-core Westmere platform, we run 12 representative

SPECCPU2006 benchmarks concurrently:

{leslie3d, dealII, soplex, povray, GemsFDTD, lbm, mcf, hm-
mer, libquantum, h264ref, omnetpp, astar}.

The benchmarks are compiled using gcc 4.4.1 at the -O3

optimization level.

We also include 4 server-style applications (for platforms

with 4 cores):

{TPC-H, WebClip, SPECWeb, SPECJbb2005}.

TPC-H runs on the MySQL 5.1.30 database. Both WebClip

and SPECWeb use independent copies of the Apache 2.0.63

web server. WebClip hosts a set of video clips, synthetically

generated following the file size and access popularity dis-

tribution of the 1998 World Cup workload [19]. SPECWeb

hosts a set of static web content following a Zipf distribution.

SPECJbb2005 runs on IBM 1.6.0 Java. All server applications

are configured with 300∼400MB footprints so that they can

fit into the memory on our test platforms. We do not use any

I/O bound applications since our focus is on CPU/memory-

intensive workload configuration.

C. Evaluation of Configuration Search Effectiveness

1) Comparison to Exhaustive Search: In order to provide

a baseline for comparison, we populate the performance of

all possible configurations of the 5 SPECCPU2000 sets on

the Nehalem platform. Since DVFS is only applied on a per-

chip basis, we only consider duty cycle modulation in this

first experiment. Our 8 duty-cycle levels result in a total of 84

possibilities. Since the configurations with lower duty cycles

will have very long execution times and are unlikely to provide

reasonable performance even if SLO objectives are met, we

limit our experimental time for the exhaustive search by only

populating duty-cycle levels from 8 (full speed) to 4 (half

speed). We also avoid configurations in which all cores are

throttled (i.e., we want at least one core to run at full speed).

In total, we try 54 − 44 = 369 configurations for each set.

Since each application executes for different lengths of time,

we run each configuration for tens of minutes and use the

average execution time of each application within this run in

determining performance. In total, it took us two weeks to

populate the configuration space for the 5 test sets. We use

this data to determine the optimal configuration for the Oracle

method (see Section IV-C4).

2) SLO metrics: Our examined SLOs are the two discussed

in Section II-B. For the fairness-centric tests, we consider un-

fairness values of 0.05, 0.10, 0.15, and 0.20 as objectives. For

the QoS-centric tests, we consider a normalized (to running

alone) performance of 0.50, 0.55, 0.60, and 0.65 as targets for

a selected application in each set. We chose mcf in set-1 and

set-2, twolf in set-3 and set-4, and art in set-5 as the high-

priority QoS application, because they are the most negatively

affected application in the full-speed configuration (i.e., no

throttling at any core) of the corresponding test set.

Since there may be multiple configurations satisfying a

SLO target, we use an overall performance metric to compare

their quality. For a set of applications, overall performance

is defined as the geometric mean of their normalized perfor-

mance. We use execution time as the performance metric for

SPECCPU2000 applications, and throughput (transactions per

second) for server applications. For the fairness-centric test,

overall performance includes all co-running applications. For

the QoS-centric test, overall performance only includes the

non-prioritized applications (those with no QoS guarantees).

Our goal is therefore to find a configuration that maximizes

overall performance while satisfying SLOs.

We also compare the convergence speed of different meth-

ods, i.e., the number of configurations sampled before select-

ing a configuration that meets the constraints. The performance

samples of the applications’ standalone runs are not counted

in the number of samples (they can be collected independently

and a priori).

3) Effectiveness of Iterative Refinement: Given a service

level target, TEMM iteratively samples configurations toward

the region where a high-quality configuration resides. We

show four examples of real tests on the Nehalem platform in

Figure 1. We present configurations as a quad-tuple (u, v, w, z)
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(d) Set−2 w. unfairness 0.10

Fig. 1: Examples of our iterative refinement for some real tests. X-axis shows the N -th sample. For the top half of the

sub-figures, the Y-axis is the L1 distance (or Manhattan distance) from the current sample to the optimal. Configuration is

represented as a quad-tuple (u, v, w, z) with each dimension indicating the duty-cycle level of the corresponding core. For the

bottom half of the sub-figures, the Y-axis is the average performance prediction error of all considered points over applications

in the set. Here, considered points are selected according to the hill climbing algorithm in Section III-C.

with each letter indicating the duty-cycle level of the corre-

sponding core. The top half of Figure 1 shows the Manhattan

or L1 distance of the selected configuration from that pre-

dicted by Oracle. The first sample (8, 8, 8, 8) (i.e., full-speed

configuration) is usually not close to the optimal configuration,

but TEMM automatically adjusts subsequent samples toward

the optimal region (represented by a smaller L1 distance).

The iterative procedure terminates when the predicted best

configuration stabilizes, which is the optimal in Figures 1(a)

and (b). It is possible that TEMM will terminate at a different

configuration from the optimal (as in Figure 1(d), where the L1

distance is not zero when the algorithm terminates) by discov-

ering a local minimum, although the SLO is satisfied. TEMM

may also continue sampling even after discovering a satisfying

configuration in the hope of discovering a better configuration:

in Figure 1(c), it finds the optimal configuration (7, 5, 8, 7)
at the 5th sample, but continues to explore (8, 6, 8, 7). If the

next prediction is within the set of sampled configurations

((7, 5, 8, 7) in this case), the algorithm concludes that a better

configuration will not be found and stops exploration.

4) Comparison of Different Methods: In order to isolate

and identify the effectiveness of TEMM’s configuration search

method, we compare it with several alternatives in an offline

manner, using whole application performance at the requisite

configuration as input. 1-iteration TEMM is the same as

TEMM but without iterative refinement. Oracle uses exhaus-

tive search to always use the optimal configuration — the

one with the best overall performance (geometric mean of

application performance on all cores) while satisfying the

fairness or QoS objective. Random search randomly samples

15 configurations and picks the best.

We also consider a greedy configuration search for compar-

ison. It begins by sampling the configuration with every CPU

running at full speed. Greedy search bears similarity to the

hill climbing approach, but without the help of a performance

model to guide the search. At each step of the greedy search,

we lower one core’s throttling level by one and sample its

overall performance. The choice of the throttled core depends

on the resource management objective. For resource manage-

ment with a fairness-centric objective, the throttled core at

each greedy step is the one with the the highest CPI ratio (the

ratio between the CPI when the application runs alone and the

CPI when it runs along with other applications). The rationale

is that this core is the most aggressive in competing for shared

cache and memory bandwidth resources, and therefore slowing

it down would most likely lead to fairness improvement.

For resource management with a QoS-centric objective, the

throttled core at each greedy step is the core with the highest

CPI ratio among the non-QoS cores. By slowing down this

core, a high-priority core has a better chance of meeting its

QoS target with fewer duty cycle adjustments. The greedy

search stops when the QoS objective is met.

Figure 2 shows the results using a 0.10 unfairness thresh-

old. From Figure 2(a), we can see that only Oracle and

TEMM satisfy the objectives for each experiment (indicated

by unfairness below the horizontal solid line). Figure 2(b)

shows the corresponding overall performance normalized to

the performance of Oracle. In some tests, 1-iteration TEMM,

greedy search, and random search show better performance

than Oracle, but in each case, they fail to meet the unfairness
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Fig. 2: Comparison of methods for the fairness-centric tests with unfairness ≤ 0.10. In (a), the unfairness target threshold is

indicated by a solid horizontal line (lower is good). In (b), performance is normalized to that of Oracle. In (c), Oracle requires

zero samples. The optimization metric is to find a configuration that first satisfies the unfairness threshold (0.10) and then

maximizes overall performance.
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Fig. 3: Comparison of methods for the QoS-centric tests with high-priority thread performance normalized to running alone

≥ 0.60. In (a), the QoS target is indicated by a horizontal line (higher is good). In (b), performance is normalized to that of

Oracle. In (c), Oracle requires zero samples. The optimization metric is to find a configuration that first maintains a performance

target of 0.60 for the QoS core and then maximizes overall performance for the non-QoS cores.

target. Only TEMM meets all unfairness requirements and is

very close to (less than 2% away from) the performance of

Oracle. Figure 2(c) shows the number of samples before a

method settles on a configuration.

Figure 3 shows results of QoS tests with a performance

target (normalized to running alone) of 0.6 for a selected high-

priority application. From Figure 3(a), we can see that Oracle,

TEMM, and greedy search all meet the QoS target (equal

to or higher than the 0.6 horizontal line). However, TEMM

consistently achieves better performance than greedy search:

TEMM is within 7% of Oracle while greedy search could lose

30%. For set-2, 1-iteration TEMM and random search achieve

good performance in Figure 3(b) but they fail to meet the QoS

target in Figure 3(a). For set-1, random search shows lower

performance while also failing to meet the QoS target.

Figures 2(c) and 3(c) show that TEMM has more stable

convergence speed (3∼5 samples) than greedy search (2∼13

samples). The convergence speed of greedy search is largely

determined by how far away the satisfying configuration is

from the starting point since it only moves one duty-cycle

level each time. This could be a serious limitation for systems

with many cores and more configurations. TEMM converges

quickly because it has the ability to estimate the whole search

space at each step.

In total, we have 8 tests (4 parameters for both unfairness

and QoS) for each of the five co-running workloads and we

summarize the 40 tests in Table I. TEMM meets SLOs in all

cases but one (set-2 with QoS target ≥ 0.65) where there is

no configuration in our search space (duty-cycle levels from 4

to 8) that can meet the target (i.e., even Oracle failed on this

one). We compare the overall performance (normalized to that

of Oracle) in 2 ways: 1) we pick 18 common tests for which all

methods meet the SLOs in order to provide a fair comparison;

2) we include any passing test of a method in the performance

calculation for that method. In both cases, TEMM shows the

best results, achieving 99% of Oracle’s performance.

D. Scalability Evaluation

In order to evaluate the scalability of our iterative method,

we ran 12 SPECCPU2006 benchmarks on our 2-chip (12
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Method # tests # Perf1 Perf2

meeting SLO samples

The Oracle 39/40 0 100% 100%

TEMM 39/40 4.1 99.6% 99.4%

1-iteration TEMM 23/40 1 94.1% 95.0%

Greedy search 33/40 4.2 98.1% 96.8%

Random search 25/40 15 90.9% 91.1%

TABLE I: Summary of the comparison among methods. Here

Perf1 is average normalized performance of 18 common

tests for which all methods meet the SLO. Perf2 is average

normalized performance for all tests of a method that meet the

SLO.

Method # Unfairness Chosen

samples (target 0.10) configuration

TEMM 2 0.13 (8,6,8,5,8,8,8,5,8,5,8,6)

Full-speed 1 0.35 (8,8,8,8,8,8,8,8,8,8,8,8)

Random 50 0.26 (8,8,8,6,7,7,8,6,8,5,6,6)

Method # QoS Chosen

samples (target 0.6) configuration

TEMM 8 0.61 (8,6,8,5,8,8,8,5,8,5,8,6)

Full-speed 1 0.38 (8,8,8,8,8,8,8,8,8,8,8,8)

Random 50 0.55 (8,8,8,6,4,5,4,7,4,7,4,6)

TABLE II: Scalability results on 12-core Westmere platform

for 12 SPECCPU2006 benchmarks.

cores total) “Westmere” platform. We configured the NUMA

setup such that memory allocation is interleaved between

the two memory nodes. While our throttling-based resource

management should work under different NUMA setups, the

interleaved allocation is more relevant because it stresses

cross-chip memory controller contention and introduces new

resource management complexity. In addition, interleaved

memory allocation eliminates the uncertainty in the location

of shared libraries and therefore leads to more stable measure-

ments.

We set the lowest duty-cycle level to 4 (half speed) to limit

our experimental time (many SPECCPU2006 benchmarks take

tens of minutes to finish a single run even at full speed).

Even with limited levels, it is impossible to exhaustively

populate the whole search space for 12 cores. Hence we only

compare the results of our algorithm against a random method

(choosing the best out of 50 randomly sampled configurations)

and the default full-speed configuration (no throttling at any

core). We chose an unfairness threshold of 0.10 and QoS of

0.6 for the 3rd core (since soplex running on the 3rd core is the

most severely affected application) as SLOs. Results shown in

Table II suggest that our algorithm can quickly converge to a

good configuration on a 12-core platform.

E. Evaluation on Dynamic Systems

The results presented in the previous sections assume stable

behaviors for each test configuration. In this section, we
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(b) QoS target 0.90

Full−speed

TEMM

Fig. 4: Dynamic system evaluation results for 5 SPEC-

CPU2000 sets. Only duty cycle modulation is used by TEMM

as the throttling mechanism.

evaluate the TEMM system in an online dynamic system en-

vironment with effects of application phase behavior changes.

1) Evaluation of SPECCPU Benchmarks: In the first set

of dynamic system experiments, we run one application per

core so that no context switch is involved. This emulates batch

mode scheduling for non-interactive applications.

We evaluate the full TEMM system using an unfairness

objective of 0.10 and a QoS target of 0.90 for the 5 SPEC-

CPU2000 sets as described in Section IV-B on the Nehalem

platform. Figure 4 shows the results of the online tests.

The full-speed configuration exhibits poor fairness among

applications and has no control over providing QoS for the

selected applications. TEMM meets targets for sets 3-5 but

fails to provide the QoS target of 0.90 for mcf in set-1 and

set-2. The reason is that the current duty-cycle modulation

on our platform can only throttle the CPU to a minimum of

1/8—we do not attempt to de-schedule any application (i.e.,

virtually throttle CPU to 0 speed), which would be necessary

to give mcf enough of the shared resource to maintain 90% of

its ideal performance. Nevertheless, TEMM manages to keep

mcf’s performance fairly close to the target (within 10%).

The runtime overhead of our approach mainly comes from

the computation load of predicting the best configuration based

on the existing reference pool (reading performance counters

and setting the modulation level only takes several microsec-

onds). Recall that we introduced a hill climbing algorithm

in Section III-C, which significantly reduces the worst-case

number of evaluated configurations from mn to (m−1)n2 for

an n core system with a maximum of m modulation levels.

As shown in Table III, the hill climbing optimization reduces

computation overhead by 20∼60x and mostly incurs less than

1 millisecond overhead in our tests.

2) Evaluation of Server Benchmarks: In order to demon-

strate the more general applicability of our approach, we

add DVFS as another source of throttling, and change the

management objective from overall performance to power

efficiency. Note that DVFS is applied to the whole chip and

not per core on our Intel processors. We test this new model

only on the 2-chip Woodcrest platform.

We run 4 server benchmarks together on Woodcrest (2 dual-

core chips, 4 cores in total) and bind each server application

to one core (simulating encapsulation of each server in a
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Set Target Hill-Climbing Exhaustive

#1 Unfairness ≤ 0.1 0.32 ms 15.94 ms

QoS ≥ 0.9 1.06 ms 27.48 ms

#2 Unfairness ≤ 0.1 0.49 ms 31.64 ms

QoS ≥ 0.9 1.28 ms 66.14 ms

#3 Unfairness ≤ 0.1 0.18 ms 9.93 ms

QoS ≥ 0.9 0.88 ms 21.92 ms

#4 Unfairness ≤ 0.1 0.21 ms 6.54 ms

QoS ≥ 0.9 1.81 ms 35.03 ms

#5 Unfairness ≤ 0.1 0.19 ms 10.04 ms

QoS ≥ 0.9 1.33 ms 28.82 ms

TABLE III: Average runtime overhead in milliseconds of

calculating the best duty cycle configuration in dynamic

system evaluation. To choose a sampling configuration at

each TEMM iteration, Exhaustive searches and compares all

possible configurations while Hill-Climbing limits calculation

to a subset.

single-core virtual machine). The pairing is randomly selected:

TPC-H and WebClip run together on one chip, and SPECWeb

and SPECJbb2005 run on the other chip. We first consider only

duty cycle modulation as the throttling mechanism. The goal

here is to maximize power efficiency while limiting unfairness

(threshold target 0.10). We are mainly interested in active

power (whole system operating power minus idle power) in

this test and define active power efficiency as performance

divided by active power in watts. We empirically determine

active power to be quadratically proportional to frequency (a

result of the limited range for voltage scaling as well as activity

outside the CPU such as at memory) and linearly proportional

to duty-cycle levels, and create a model accordingly. Perfor-

mance is calculated in terms of throughput (i.e., transaction

per second) although our TEMM implementation is guided

by the CPI metric. This might be problematic for applications

whose instructions mutate during different runs, but this is not

the case in our experiments.

Figure 5 shows unfairness and active power efficiency under

the default system (Full-speed) and under TEMM with and

without DVFS. We can see that TEMM with DVFS achieves

much better active power efficiency while providing good fair-

ness. This experiment also demonstrates that our framework

can be applied to different resource management scenarios.

V. RELATED WORK

There has been considerable focus on the issue of quality

of service for applications executing on multicore proces-

sors [20], [21], [22], [23], [24], [25], [26], [27]. Suh et al. [20]

use hardware counters to estimate marginal gains from increas-

ing cache allocations to individual processes. Zhao et al. [23]

propose the CacheScouts architecture to determine cache

occupancy, interference, and sharing of concurrently running

applications. Tam et al. [24] use the data sampling feature

available in the Power5 performance monitoring unit to sample

data accesses. Awasthi et al. [26] use an additional layer of
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Fig. 5: Dynamic system evaluation on active power efficiency
(performance per watt). TEMM without DVFS only uses duty cy-
cle modulation as the throttling mechanism. TEMM with DVFS
combines two throttling mechanisms (duty cycle modulation and
voltage/frequency scaling).

translation to control the placement of pages in a multicore

shared cache. Mutlu et al. [25] propose parallelism-aware

batch scheduling at the DRAM level in order to reduce inter-

thread interference at the memory level. These techniques are

orthogonal and complementary to controlling the amount of a

resource utilized by individual threads. Without extra hardware

support, software page coloring [28], [6], [7], [8], [9] is an

effective mechanism to achieve cache partitioning. However,

cache partitioning alone does not take into account contention

on other on-chip resources such as the on-chip interconnect

and memory controllers. Hardware execution throttling can

control the number of accesses to the cache, thereby affecting

cache reference pressure and indirectly the cache space sharing

as well as memory bandwidth consumption.

Existing scheduling quantum adjustment [10] at the operat-

ing system level could be used for the purpose of execution

throttling. To better guide scheduling quantum adjustment,

West et al. [13] introduce an analytical model to estimate

an application’s cache occupancy on-the-fly. However, CPU

scheduling quantum adjustment suffers from its inability to

provide fine-grained quality of service guarantees [3]. The

coarser throttling granularity results in higher performance

fluctuations, especially for fine-granularity tasks such as in-

dividual requests in a server system.

Ebrahimi et al. [4] propose a new hardware design to

track contention at different cache/memory levels and throt-

tle threads with unfair resource usage or disproportionate

progress. We address the same problem but without requiring

special hardware support.

Herdrich et al. [2] and Zhang et al. [3] show that duty cycle

modulation is effective at controlling utilization of contended

resources (last-level cache and off-chip bandwidth). While

these studies focus on the characteristics of execution throttling

mechanisms, this paper addresses the policy question—how

to automatically and quickly identify a high-quality throttling

configuration to achieve a desired SLO.

Our hill-climbing algorithm is similar in principle to that

in [29] where the optimization target is a chip-wide DVFS

setting with a polynomial search space. We study per-core

throttling plus chip-wide DVFS and dramatically reduce the
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search space from exponential to O(n2) (it can be further

reduced to O(n× log n) by binary search, though we did not

evaluate it in this work). Besides this, our studied SLOs are

more diversified and evaluation is done on real machines.

There are also feedback-driven models based on formal con-

trol theory. They usually require system parameter tuning [30],

[31]. Our model is kept simple and intuitive, allowing easy

portability across different platforms. Our iterative method

allows us to acquire measurements gradually closer to the

target and these near-target measurements eventually help

overcome any model inaccuracy. Our evaluation shows that

this approach works effectively.

VI. CONCLUSION

This paper presents TEMM, a software framework that

manages multicore resources via controlled hardware execu-

tion throttling on selected CPU cores. It models the effects

of duty cycle modulation and voltage/frequency scaling from

reference configurations, searches for a high-quality throttling

configuration based on model predictions, and iteratively re-

fines the search with a broadening set of measured references.

TEMM also employs a hill-climbing optimization to accelerate

configuration search.

We evaluate TEMM using a set of SPECCPU2000/2006

benchmarks and 4 server-style applications. We test our ap-

proach on a variety of resource management objectives such

as fairness, QoS, performance, and active power efficiency (in

the case of DVFS) using three different multicore platforms

for multiprogrammed workloads. Our results demonstrate that

hardware throttling coupled with our iterative framework ef-

fectively supports multiple forms of service level objectives

for multicore platforms in an efficient and flexible manner.
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