
Dependency Isolation for Thread-based Multi-tier
Internet Services

Lingkun Chu* Kai Shen† Hong Tang* Tao Yang*,§ Jingyu Zhou*,§

* Ask Jeeves Inc. † Department of Computer Science § Department of Computer Science
Piscataway, NJ 08854 University of Rochester University of California at Santa Barbara
{lchu, htang}@ask.com kshen@cs.rochester.edu {tyang, jzhou}@cs.ucsb.edu

Abstract— Multi-tier Internet service clusters often contain
complex calling dependencies among service components spread-
ing across cluster nodes. Without proper handling, partial failure
or overload at one component can cause cascading performance
degradation in the entire system. While dependency management
may not present significant challenges for even-driven services
(particularly in the context of staged event-driven architecture),
there is a lack of system support for thread-based online services
to achieve dependency isolation automatically. To this end, we
propose dependency capsule, a new mechanism that supports
automatic recognition of dependency states and per-dependency
management for thread-based services. Our design employs a
number of dependency capsules at each service node: one for
each remote service component. Dependency capsules monitor
and manage threads that block on supporting services and isolate
their performance impact on the capsule host and the rest of
the system. In addition to the failure and overload isolation,
each capsule can also maintain dependency-specific feedback
information to adjust control strategies for better availability
and performance.

In our implementation, dependency capsules are transparent
to application-level services and clustering middleware, which
is achieved by intercepting dependency-induced system calls.
Additionally, we employ two-level thread management so that
only light-weight user-level threads block in dependency capsules.
Using four applications on two different clustering middleware
platforms, we demonstrate the effectiveness of dependency cap-
sules in improving service availability and throughput during
component failures and overload.

I. INTRODUCTION

Large-scale Internet service clusters are usually organized
in multiple tiers, where external services are based on the
aggregation of a large number of internal service compo-
nents with multi-stage calling dependencies. At the single
component level, event-driven service programming has been
demonstrated to be highly efficient for constructing online
services [1], [2], [3], [4]; however, such a style requires
the partitioning of service programs into non-blocking event
handlers. This is a challenging task for software develop-
ment and maintenance, especially for progressively evolving
services [5]. Thread-based systems provide a simpler pro-
gramming model; but the weakness of multithreading lies in

This work was supported in part by NSF grants ACIR-0086061/0082666,
EIA-0080134, CCF-0234346, CCR-0306473, and ITR/IIS-0312925, and by
Ask Jeeves.

context switching overhead and poor caching performance at
high concurrency levels. A common practice for managing
highly concurrent Internet services is to impose a bound on
the number of active threads [6], [7], [8], [9].

Component failures due to misconfiguration, lost network-
ing connection, operational errors, and software bugs are com-
mon in large-scale Internet service clusters [10]. Together with
server overload, these anomalies can result in slow-responding
or unresponsive service components (faulty components). For
component implementations based on a bounded-size thread
pool, a slow-responding service component may block all
threads at remote components that depend on it. This prevents
the remote components from servicing their own requests and
such an effect may spread to other service components through
the dependency hierarchy.

This paper studies system availability problems aggravated
by service calling dependencies. Our idea is to explicitly
manage states of service threads in a per-dependency basis.
We propose a new mechanism, called dependency capsule,
which supports dependency isolation for service components
implemented with thread-based programming model. A de-
pendency capsule manages threads that block on calls to an
internal device or to a remote component in the service cluster.
More specifically, a capsule contains a thread pool and a
management policy that decides whether a blocking service
call should be delayed, terminated, or migrated to a different
capsule (e.g., migrated to the capsule handling connections to
a replica of the originally-called remote component).

In addition to dependency isolation, dependency capsules
also support quick bypass of faulty components when service
semantics allow. It should be noted that dependency capsule is
a technique orthogonal to replication. In particular, failure of
a replica may not be detected promptly and the faulty replica
could still cause cascading component failures when bounded-
size thread pooling is used at service nodes. Dependency
capsules can help quickly discover misbehaving components
and bypass them.

To achieve automatic per-dependency management, service
administrators specify a set of calling dependencies that need
to be managed by dependency capsules and provide specific
management policies for them. Different thread pool limits and
management policies can be employed for different capsules.

The proposed mechanism, dependency capsule, and its imple-
mentation have the following contributions: (1) Dependency-
oriented thread state partitioning provides a per-component
view of service dependencies, which helps to achieve depen-
dency isolation. (2) Dependency capsules allow component-
specific feedback for better fault tolerance and overload con-
trol. (3) Applications and clustering middleware can take
advantage of dependency capsules without any change.

The rest of the paper is organized as follows. Section II
describes the related work. Section III discusses the char-
acteristics of multi-tier services and describes the problem
statement. Section IV presents the architecture, design, and
application interface of the dependency capsule. Section V
illustrates implementation details. Section VI evaluates our
approach using four applications on two different clustering
middleware platforms, and Section VII concludes this paper.

II. RELATED WORK

Infrastructural software for cluster-based Internet services
has been studied in TACC [11], MultiSpace [12], Ninja [13],
and Neptune [14], [15]. These systems provide programming
and runtime support on replication management, failure recov-
ery and service differentiation. Our system can be incorporated
into the above clustering middleware for supporting highly
available thread-based services.

System availability is an important issue for large-scale
cluster-based systems, which has been addressed extensively
in the literature [16], [11], [12], [15], [13]. Typical metrics
for measuring the overall system reliability are MTTR (mean
time to failure) and MTTR (mean time to recovery). It often
takes a long period of time to measure these metrics. Recently,
the fault injection has been proposed as an effective but less
time-consuming means to assess the system availability [17],
[10].

Identifying blocked I/O routines and processing them with
helper processes/threads are addressed in an earlier work
of Flash Web server project [2]. SEDA divides applications
into stages connected by events and a stage is executed by
a bounded thread pool [3]. SEDA also studies the use of
asynchronous IO to reduce the chance of thread blocking.
A comparison of thread and event-driven programming was
provided in [5] and the conclusion is that event-driven pro-
gramming may provide better scalability; however it is often
very difficult to maintain event-driven software in practice.

Recent Capriccio work by von Behren et al. argues that
thread-based systems can achieve similar performance com-
pared with event-based systems [18] through compile-time
stack usage analysis and runtime optimization. While Capric-
cio can support hundreds of thousands of user-level threads,
it may not work well under certain contexts (e.g., on SMP
servers). Traditional kernel thread pool with a bounded size
may continue to be used in practice. Our work focuses on
improving availability of multi-tier services when the number
of threads per node is bounded and inter-node dependency
causes cascading performance degradation or failures.

Two-level thread management in dependency capsules is
based on ideas from the previous work such as [19], [20]. Our
management layer is built on top of the OS, targeting dedicated
Internet service clusters with highly concurrent workload.

Resource accounting and scheduling are studied in [21],
[22], [23], focusing on providing proportional resource al-
location for different services or service classes. While our
focus is to improve service availability and throughput during
failure, their idea of resource usage separation influenced our
dependency capsule design.

Goal-oriented programming analyzes component depen-
dency specification to automatically extract parallelism [24].
Our goal is to improve service availability by managing
component dependencies in dependency capsules.

III. BACKGROUND

An Internet service cluster hosts applications handling con-
current client requests on a set of machines connected by
a high speed network. A number of earlier studies have
addressed providing middleware-level support for service clus-
tering, load balancing, and replication management [15], [11],
[13]. In these systems, a service component can invoke RPC-
like service calls or obtain communication channels to other
components in the cluster. A complex Internet service cluster
often has multiple tiers and service components depend on
each other through service calls.

For example, Figure 1 shows the architecture of a three-tier
search engine. This service contains five components: query
handling frontends, result cache servers, tier-1 index servers,
tier-2 index servers, and document servers. When a request
arrives, one of the query frontends parses the request and then
contacts the query caches to see if the result is already cached.
If not, index servers are accessed to search for matching
documents. Note that the index servers are divided into two
tiers. Search is normally conducted in the first tier while the
second tier database is searched only if the first tier index
servers do not contain sufficient matching answers. Finally, the
frontend contacts the document servers to fetch a summary for
each relevant document. There can be multiple partitions for
cache servers, index servers, and document servers. A frontend
server needs to aggregate results from multiple partitions to
complete the search.

Different component dependencies can be found in a multi-
tier service cluster. We describe the following three classes of
dependency relationships as examples. (1) Replication depen-
dency. This category covers service invocation to replicas. For
example, in Figure 1, the query handling frontends can call any
of the document servers with replicated content. (2) Bypass-
able dependency. In this category, a next-tier service com-
ponent can be bypassed without affecting the correctness of
the service. For example, in Figure 1, the query handling
frontends may bypass the cache server if needed. (3) Ag-
gregation dependency. A service in this category accesses
multiple supporting components and aggregates the results.
For example, in Figure 1, a request requires an aggregation
of results from multiple tier-2 partitions. Some applications

Query
c a c h e

D o c
s erv er

Query
f ro n t en d

Query
f ro n t en d

Query
f ro n t en d

Query
c a c h eQuery
c a c h e

T i er- 1
i n d exT i er- 1
i n d exT i er- 1
i n d ex

D o c
s erv erD o c
s erv er

E x t ern a l
s ea rc h
q ueri es

T i er- 2
i n d ex

P a rt i t i o n 1
T i er- 2
i n d ex

P a rt i t i o n 1
T i er- 2
i n d ex

P a rt i t i o n 1

T i er- 2
i n d ex

P a rt i t i o n 2
T i er- 2
i n d ex

P a rt i t i o n 2
T i er- 2
i n d ex

P a rt i t i o n 2

Fig. 1. A three-tier keyword-based document search service.

allow a subset of the supporting components to be used
for service fulfillment though fewer components yield lower
service quality [25], [26].

It is necessary to isolate these dependencies and manage
them separately so that a failure in one component will not
propagate to other components through the dependency hierar-
chy. In a thread-based system, bounded-size thread pooling is a
common practice [6], [7], [8], [9]. When a component becomes
unresponsive, all working threads of the calling component can
gradually get blocked when waiting for the unresponsive com-
ponent. Then the calling component may fail altogether when
no working thread is available for servicing new requests.
This effect can gradually propagate to other components in
the service cluster. The problem can be somewhat mitigated
with unbounded-size thread pooling, in which new threads
are always created if all existing threads are blocked. Without
bounding the thread pool size, a large number of threads can
be accumulated during the failure of a supporting component.
When such a failure recovers, blocked threads would simulta-
neously wake up and compete for resource, resulting in many
requests timed out. The cause of the above unsatisfied results
is that traditional thread programming model does not have a
mechanism to recognize and manage these dependencies. To
fill this gap, we propose dependency capsules to automatically
recognize and manage these dependencies in thread-based
programming model. Additionally, dependency capsules can
also provide other features through per-dependency control
such as feedback-based failure management.

IV. DEPENDENCY CAPSULES

Motivated by the need of isolating the impact of unrespon-
sive components, we propose a new thread management mech-
anism called dependency capsule that monitors and manages
the blocking states of a thread based on service dependency.
The basic idea is to consider the life cycle of a request at
each node as going through a number of states in accessing
network services offered within a cluster or local I/O devices.
The main objectives of this work are summarized as follows.

Dependency-aware concurrency management. The tradi-
tional multithreading does not differentiate running threads and

those that block on service calls to remote components or local
devices. Our goal is to differentiate these states and handle
them separately with appropriate concurrency management for
each type of dependency.

Automatic recognition and classification of resource
dependencies. The system should automatically recognize re-
source dependencies that may cause thread blocking. The sys-
tem should also be able to automatically classify each blocking
thread into a dependency capsule according to application-
specified rules.

Dependency-specific feedback for better availability and
performance. By identifying and managing service depen-
dency, the system is able to maintain performance history for
each type of dependency and provide this feedback informa-
tion to application programs for service-specific control.

A. The Architecture

We view each request handler at a service node as going
through a set of states following service calling dependencies.
The connectivity among these states is a star topology from
the main working thread pool as illustrated in Figure 2. Each
state is managed by a dependency capsule. A request is first
processed by a user-level thread in the main working thread
pool. Every time it performs a blocking operation, this thread
enters the corresponding dependency capsule and returns back
to the main thread pool at the completion of the blocking
operation. Section IV-B discusses how our system assists
application developers to specify necessary capsules through
classification rules. Developers may choose not to specify
dependency capsules for certain service invocation to reduce
overhead.

�������������

���	
��

������

�������

���	
��

������

�������

���	
��

������

�������

����

�������

�����

�������

����

�
�����

������

�

�

Fig. 2. Topology of dependency capsules at a service node.

A capsule is composed of the following four parts: (1)
request handlers, (2) kernel threads, (3) scheduling policy,
and (4) statistics. Request handlers directly run on user-level
threads, which are scheduled on a pool of kernel threads.
Each capsule can specify the upper bound on the kernel
thread pool size, user-level thread pool size, the scheduling
policy on how to prioritize user-level threads, and the timeout
for the longest service waiting and processing time within
this capsule. The timeout value can also be set according

to the service level agreement to minimize the impact of
false positives. The statistics module keeps track of resource
consumption information. The statistics data are used by the
capsule management and they are also provided as feedbacks
to applications.

We briefly describe how a user-level thread (executing a
service request) migrates among dependency capsules on a
cluster node. Figure 3 shows the migration and state transition
of a user-level thread between the main thread pool and
a service capsule. When a user-level thread is created for
processing an incoming request, it is first placed into the main
working thread pool. All user-level threads in the main thread
pool are scheduled by a set of kernel threads. If the user-level
thread executes a blocking operation that should be managed
in a dependency capsule, it will migrate to the appropriate
capsule. Once the service completes, the corresponding user-
level thread migrates back to the main thread pool. This
procedure continues until the user-level thread completes the
request processing.

R
e

so
urce

C
a

psule
R

esou
rce

C
ap

sule
Running

ReadyNew

Done
D

ependency
C

apsuleMain Working
Thread Pool

Fig. 3. State transition and capsule migration of a user-level thread.

There is a small cost for transferring a user-level thread
from the main thread pool to a dependency capsule and then
transferring back. The round-trip cost during code execution
involves two kernel-level context switches. We do not transfer
a user-level thread together with a kernel thread because we
need to control the number of kernel threads in a capsule. Our
experiment shows the migration cost is 40µs on a 450MHz
PC and 16.5µs on a 2.4GHz PC. This cost is insignificant
compared to the overhead of invoking a service on a remote
service component.

B. Capsule Types and Classification Rules

Currently we support two types of dependency capsules.
Network service capsules. A network capsule manages

requests that block on network service calls to a particular
remote component. Network communication such as remote
procedure call or service connection, sending or receiving
messages can be blocking. In our implementation, we intercept
system calls that may result in blocking network operations
and replace them with asynchronous calls. A monitoring thread
watches on all sockets and checks if a user-level thread
receives a network event. This mechanism takes advantage
of the efficiency of event-driven style request processing in
dealing with a large number of concurrent network service
connections.

Internal device capsules. Service threads can also block
on disk I/O or other internal device operations. We use helper
threads in disk capsules to handle blocking I/O operations.
The idea of using helper threads to provide asynchronous IO
can also be found in Flash [2] and SEDA [3].

Each dependency capsule is associated with a set of clas-
sification rules, which determine what kind of operations the
capsule handles so that a user-level thread can migrate to the
capsule to carry out these operations. The capsule classification
rules are listed as follows.

(1) A network service capsule can be classified based on
the peer address. In addition to the support for typical Internet
domain names or IP addresses, we also allow virtual service
names to be specified as the peer addresses. A virtual service
name will be dynamically translated into a real IP address
when a service call is issued. We maintain a default network
capsule to support network operations that do not match any
specified classification rules.

(2) A disk capsule can be classified based on device names
(with typical path wildcard support). For example, a classifi-
cation rule “/dev/sd[ab]” will bind a disk capsule to two
SCSI disks /dev/sda/ and /dev/sdb/. All disk accesses to
these devices will be handled by that capsule.

It is possible that an operation may be classified into
multiple capsules. To prevent any ambiguity, we organize the
capsules as a stack and an operation will be “trapped” by the
top-most capsule that meets the following two criteria: (1) the
operation’s type matches the capsule’s resource type; (2) the
operation’s parameters pass the capsule’s classification rules.

C. Use of Capsules in Load Throttling and Failure Manage-
ment

Each network service capsule collects and maintains the per-
formance statistics concerning the remote service component
it handles. The performance statistics includes the number of
blocking requests, their elapsed waiting time, and the recent
average request response time. Capsule statistics can be used
in the following ways.

Caller-side Load Throttling. Admission control is often
employed on service components to handle overload. With the
help of capsule statistics, admission control or load throttling
can also be applied on the caller side. More specifically, we
compare the number of blocking requests with a predefined
threshold to determine if a request should be dropped at the
caller-side.

Caller-side load throttling works better than server-side
control in certain cases. For example, when a request needs
to get service from multiple next-tier partitions, the server
side admission control may make uncoordinated decisions
on different partitions. This results in a waste of resource
if the request cannot tolerate partition loss. In comparison,
if a request drop decision is made at the caller side (e.g.,
when a component overload is detected), next-tier partitions
will not waste resource on this request. An additional benefit
of caller-side load throttling is that it eliminates the cost
of network communication and server-side management for

requests that would be eventually dropped. This saving is
especially important for fine-grain services that have relatively
large request management overhead.

Feedback-based Failure Management. Another use of the
capsule statistics is to provide feedback information to upper
layer middleware or applications. For example, partition loss
can often be tolerated with a degraded service quality in search
applications [25]. Thus, when a partition encounters difficulty,
service callers can bypass the problematic component to
complete with degraded quality. Additionally, a component
can be bypassed according to the service semantics. For
instance, cache servers can often be skipped if they respond
slowly. A service application can poll the number of queries
accumulated in a cache capsule. If the cache server has too
many queued requests, we can gradually decrease the timeout
limit to phase out calls to the problematic cache server. This
technique, we call feedback-based timeout reduction, protects
the calling component from being affected by the unresponsive
component while allowing it to quickly recover. We introduce
a low watermark (α) and a high watermark (β). Assume the
original timeout value is t. When the number of accumulated
queries n is larger than α, we calculate the actual timeout value
as max{0, t× (β−n)/(β−α)}. If this value is too small, the
problematic component is bypassed. Our purpose of presenting
this simple technique is to illustrate that dependency capsules
can be utilized for failure management. More sophisticated
techniques for quick detection of failures can be found in
recent researches [27], [28].

D. Application Interfaces

Application developers can define capsules through either
configuration files or the capsule API interface. In either case,
each capsule is uniquely identified by its name and resource
category. Additionally, we can set various parameters, such as:
(1) the number of kernel threads that are bound to the capsule,
(2) the maximum number of user-level threads that can reside
in the capsule, (3) the scheduling policy, and (4) the timeout
value.

The maximum number of user-level threads of a capsule
reflects the capacity of the next-tier component that the capsule
depends on. It can be set to the same value as the maximum
request queue length at the next-tier component. When the
number of user-level threads exceeds the maximum value, an
additional migration operation will fail and the application will
be notified.

We provide several standard scheduling policies, such as
FIFO and round-robin. Additionally, programmers have the
flexibility to specify customized policies by providing a plug-
in scheduling module (a dynamically linked library). The
module defines several callback functions implementing the
scheduling policy.

Configuration files provide a method for applications to
specify capsules without recompilation. A capsule can be spec-
ified by its classification rules and various parameters men-
tioned earlier. For example, destination = inet:192.168.1.0/24
specifies a network capsule that controls the communication to

subnet 192.168.1.0/24. A configuration file can specify many
dependency capsules. If there is no capsule corresponding to a
certain type of resources, all operations belonging to that type
will be executed in the main working thread pool.

In addition to configuration files, we also provide a set of
functions that let an application dynamically create, monitor,
control, and destroy capsules. This mechanism is necessary
when machine names and capsule settings are not known a
priori.

V. IMPLEMENTATION

We have implemented dependency capsules on Linux Red-
hat 7.3 with GLIBC 2.2.5. Figure 4 depicts the architecture
layout of the main system components. The capsule man-
agement component is responsible for the following tasks:
(1) classifying threads into appropriate dependency capsules
when they block; (2) migrating threads between dependency
capsules and the main working thread pool according to the
classification rules; and (3) maintaining performance statistics
concerning the remote service component and providing caller-
side load throttling and feedback-based failure management.

In addition to the capsule management, we also introduce
a two-level thread management and a thread state transi-
tion capturing mechanism. Our two-level thread management,
called SBThreads, allows threads migrate into and out of
dependency capsules at the user-level. Through interposing
system calls at the LIBC level and managing all network
operations asynchronously, we can capture threads moving
between blocking and non-blocking states without OS kernel
support. Capturing such thread state transition is important
for promptly trigger necessary capsule migrations. The rest of
this section describes the implementation of the above three
modules in detail.

���������	��
��
����� ��� ���	����������
 �

�������

����

��!"
�����#%$&��'(�)��*��

���������� �,+	�
���"*"�
-.�&�/�

0 �/���1
2�����"� ��*
�)3��/���
-4'��
 �.���15 0 6 �

�������"�" �
'� �����"� 78� '��(�9� �
�

+:� *

2���8� �
�
-	�
���"*"�
-;�1�/�

�������"�� �
�����(�9� ���8� '/�

5�� ����<���!�
 ����#��

� 6 �=!"
�����#��

Fig. 4. Software layers of dependency capsule.

A. SBThreads: A Two-level Thread Package

Our thread package uses an m-to-n approach, i.e., multiple
user-level threads are scheduled by multiple kernel threads.
The purpose of our user-level thread package is to provide
explicit control over user-level threads (such as inter-capsule
migrations) rather than to improve the performance. The
following issues are worth noting.

a) Interface Design.: So far we have implemented 22
core POSIX thread functions for thread life control (cre-
ation, exit, and join), synchronization mechanisms (mutex and
conditional variables), thread specific data, sleep and yield,
and some other commonly used functions. We preserve the
original semantics of these thread functions to achieve binary
compatibility of existing programs.

b) The Main Working Thread Pool.: A request is first
placed to a user-level thread and placed into the main working
thread pool. The number of kernel threads in the pool should
be properly configured. Too many working kernel threads
can result in high context switch overhead and poor cache
utilization. Typically application developers profile service
modules to determine the bound based on the number of CPUs
and application cache footprint. In terms of the scheduling
policy, FIFO scheduling that follows the arrival order of user-
level threads can be used to achieve fairness. Other policies
(e.g., giving a higher priority to threads that are in later stages
of request handling [29]) can also be used.

B. Inter-Capsule Migration Management

Each migration stops the current running user-level thread
and places it to the destination capsule. The function involves
the following steps: (1) find the current user-level thread;
(2) save the current error number (errno) into the user-level
thread control block; (3) set the stack frame of the current
running kernel thread to that of the kernel scheduling thread;
(4) switch to the kernel scheduling thread; (5) remember the
stack pointer of the user-level thread; and (6) enqueue the
user-level thread to the destination capsule.

C. State Transition Capture

Inter-capsule thread migrations occur when threads move
between blocking and non-blocking states, which are usually
triggered by certain system calls. There are a number of
ways to capture these system calls such as software wrappers,
modifying kernel system call table, or dynamic interposition.
Our approach exploits the fact that a system call always first
goes through a wrapper function in LIBC. We modify the
wrapper function in LIBC so that it will intercept the system
call if needed. The total number of lines modified in the
GLIBC 2.25 source code is less than 30 lines. Compared
with kernel-based state transition capture approaches such as
scheduler activations [19], our LIBC-based approach saves
one kernel entrance for each interception.

When an application issues a system call such as a read

or a write, we can tell whether it accesses a local device or
a network object through the fstat facility. One drawback
with this method is that it would incur too much overhead.
Instead, we maintain a mapping table when a file handle is
first created. Each entry in the table contains a pointer to the
appropriate capsule. A file handle is treated as an index to the
table. The actual handling of disk reads and writes is similar
to the Flash Web server [2], where a number of kernel helper
threads are dedicated for disk I/O operations.

Network system calls can be blocked indefinitely. If they are
not carefully handled, it can lead to deadlocks when all kernel
threads are blocked. To solve this problem, we first set all
synchronous sockets as asynchronous. There is a master kernel
thread in each network capsule to poll events on intercepted
sockets. It also listens to a communication pipe to detect if
there is a user-level thread entering the capsule. If there is an
event, the corresponding user-level thread is set to be ready so
a working kernel thread in the network capsule can execute
them. The scheduling policy will be applied if several user-
level threads are ready. If there is an incoming user-level
thread, the master kernel thread registers the socket along with
the user-level thread and continues its polling on the socket
pool.

VI. EVALUATION

We experimented with our dependency capsule imple-
mentation on a Linux cluster. Services in our experiments
are evaluated on two different clustering platforms for load
balancing and replication management: (1) Neptune cluster-
ing middleware [15]; (2) JBoss J2EE-based platform [30].
Neptune, originating from an academic research prototype,
is a clustering framework that supports service replication,
location-transparent service invocation, failure detection and
recovery, load balancing and resource management. It has
been successfully used as the clustering middleware manag-
ing thousands of machines at the Web search engine sites
Teoma and Ask Jeeves since 2000. JBoss is an open source
implementation of the popular J2EE platform. It has 27%
market share as a Java application server in IT production. For
the JBoss platform, we provide dependency capsules through
configuration files. No change is made in the JBoss platform.
For Neptune, we support dependency capsules through both
configuration files and API functions. In order to use the API
functions, there is a small code change in Neptune so that the
middleware load balancing and replication management does
not interfere with our capsule management. There is no code
change or recompilation needed for service applications except
when applications desire explicit dependency-specific failure
management as described in Section IV-C.

Our evaluation has the following objectives:

• Study the overhead of introducing dependency capsules
in executing a network service application. In particular,
we examine the migration overhead between the main
thread pool and a service capsule.

• Demonstrate the improved availability by comparing the
traditional multithreading with dependency capsules dur-
ing a failure.

• Compare the availability and throughput of the traditional
multithreading with dependency capsules when a failed
component has replicas.

• Demonstrate the effectiveness of dependency-specific
feedback in improving service availability and through-
put.

Web
Server

Cache
Server

1
Cache
Server

2

Database
Server

0.5
0.5

1
0.32

(B)

Auction
Service

Replica
1

Replica
2

Replica
3

1 1

(C)

Tier-1
Index

Server

Partition
1

Partition
2

Partition
3

Tier-2
Index

Servers

1

1

1

1

(A)

Fig. 5. Service dependency graphs for four benchmarks: (A) RET with Aggregation dependency; (B) BBS with Bypass-able dependency; (C) AUC and
RUBiS with Replication dependency.

A. Evaluation Settings

Hardware. Unless stated otherwise, experiments in this
paper were conducted on a rack-mounted Linux cluster with 30
dual 400 MHz Pentium II nodes (each with 512 MB memory).
Each node runs Redhat Linux with kernel version 2.4.18. All
nodes are connected by a Lucent P550 Ethernet switch with
22 Gb/s backplane bandwidth.

Application benchmarks and workloads. We have used
dependency capsules to support four applications.

1. Search engine document retrieval service (RET). The
RET service emulates the document index searching com-
ponent for a large-scale multi-tier keyword search engine.
It scans through a number of document index partitions
and returns an aggregated list of document identifications
that are most relevant to the input query. In our experi-
ment, indexed data are divided into three partitions. The
service has a tier-1 index server which searches its own local
database, and then collects additional results from three tier-2
index servers. The tier-1 index server sets a timeout value
for each request. If the timer expires, it returns whatever
it has collected from the three partitions. Since the result
may not be complete, we introduce the notion of quality-
weighed throughput, which indicates the throughput weighed
by the quality of results. The quality weight of a result
is defined as number of partitions returned divided by
total number of partitions. When there is no partition
loss, the weight is 1 and quality-weighed throughput becomes
ordinary throughput. Figure 5(A) shows the service depen-
dency graph of this prototype. The number on an edge in a
service dependency graph indicates the probability of a request
being forwarded from one service component to the other. In
RET, all edges are labeled 1 because all three partitions will be
searched for every request. Each partition is around 700 MB.
The evaluation is driven by an uncached query trace obtained
from the search engine www.ask.com. We proportionally adjust
request arrival intervals to generate desired request demand.

2. Bulletin board service (BBS). The BBS service is an
online discussion forum composed of four components: a Web
server frontend, two partitioned document cache servers and
a MySQL document database server. Requests in an online
forum usually follow a Zipf distribution, e.g., hot or recent
topics tend to get more hits. Pages are equally distributed in

these two cache servers based on their URL addresses. If there
is a cache hit, the requested page is directly returned from
the cache server. Otherwise, the page is generated from the
database. Figure 5(B) shows the service dependency graph
of this prototype. Following an earlier study [31], the cache
hit ratio is set as 68%, thus a 32% accessing probability is
labeled for the database server. Each query will be checked
against cache. Since there are two cache partitions, the access-
ing probability for each cache server is 50%. We populated
the document database with ten thousand articles before the
experiment. We use a trace from the online discussion forum
www.melissavirus.com dated on April 3, 1999.

3. Online auction (AUC). The AUC service is a prototype
online auction service. Auction items are classified by a
number of categories. The system allows users to list all
items in one category, check the current bidding status of each
item, place a bid on an item or add a new auction item for
bidding. The service data that hosted in the MySQL database
are replicated at three replicas. We use primary-secondary
consistency for write operations [15]. Figure 5(C) shows the
service dependency graph of this prototype. We use a synthetic
trace described in [31] for this benchmark. About 5% requests
involve writes. Item popularity, i.e. the number of bids each
item receives, follows a Zipf distribution.

4. Rice University Bidding System (RUBiS). RUBiS is an
auction service similar to AUC with the same dependency
graph shown in Figure 5(C). Different versions of RUBiS
are implemented using PHP, Java servlets and Enterprise Java
Bean(EJB) [32]. We investigate the EJB version with bean-
managed persistence(BMP) in this paper. The first tier is an
Apache web server with a load balancing module, mod jk,
which distributes JSP and servlet requests to multiple Tomcat
servers with session affinity. The second tier includes three
replicated RUBiS servers running in JBoss All RUBiS servers
contact a MySQL database server. The database is based on
an SQL dump dated Jan. 23, 2004. We use the RUBiS client
to produce a synthesized service workload.

The above four benchmarks represent three kinds of ap-
plications in terms of the component calling dependencies.
The RET service represents the kind of services in which a
request incurs an aggregation of results from multiple next-
tier partitions (Aggregation dependency defined in Section III).

The BBS service belongs to the kind of services that allow
some components to be be bypassed without affecting the ser-
vice correctness (Bypass-able dependency). AUC and RUBiS
represent services with replicated components (Replication de-
pendency). These three types of applications are very common
in Internet services. In our evaluation, we show dependency
capsules can improve availability or performance for all these
kinds of services.

Availability evaluation setup. Unless otherwise stated, we
use a client request arrival rate representing about 70% of
the backend server capability. For all tests, a request returned
within two seconds is considered acceptable, or timeout oth-
erwise (except that BBS uses 0.5 second as the timeout for its
cache server). In addition to timeout, we apply an admission
control policy so that no request will be directed to a server
with at least 40 waiting requests.

Abbreviations. Here is a list of the abbreviations that we
will use in the rest of this section: (1) BTP - traditional
multithreading with a bounded-size thread pool (2) UTP -
traditional multithreading with an unbounded-size thread pool
(3) DC - basic dependency capsule mechanism (4) DC+LT
- dependency capsules with load throttling (5) DC+FB -
dependency capsules with feedback

B. Overhead of Dependency Capsule

We investigate the overhead of dependency capsules, pri-
marily on the cost of thread migration among capsules. We
design a micro-benchmark to measure the migration cost from
the main thread pool to a dependency capsule. This benchmark
opens /dev/null and then writes one byte to it. We measure
the time for each write operation. Note that a capsule migration
involves two kernel thread context switches: one for migration
from the main thread pool to the device capsule and the other
for migration back. We measure the average cost for 100,000
migrations. Excluding the write system call cost, the round-
trip migration cost is 40.1µs on a PIII-450MHz machine and
16.5µs on a PIV-2.4GHz machine.

Table I lists application benchmark performance executed
using the traditional multithreading and dependency capsules.
Introducing the dependency capsule results in a small increase
(up to 5.8%) in response time, and little difference in terms
of throughput.

Thrput (req/s) RespTime (ms)
App. BTP DC Overhead BTP DC Overhead

RET 38.20 38.76 -1.5% 136.6 141.3 3.5%
BBS 68.87 68.87 0.0% 58.7 61.4 4.6%
AUC 33.82 34.14 -1.0% 144.2 151.9 5.3%

RUBiS 79.96 79.90 0.1% 36.3 38.4 5.8%

TABLE I

APPLICATION PERFORMANCE WITH AND WITHOUT DEPENDENCY

CAPSULES ON A PC CLUSTER.

Figure 6 shows the performance of the AUC benchmark
with and without dependency capsules under different request
arrival rates and the performance difference remains small.

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Arrival Rate (requests/sec)

T
hr

ou
gh

pu
t (

re
qu

es
ts

/s
ec

)

5 10 15 20 25 30 35 40
0

50

100

150

200

250

Arrival Rate (requests/sec)

R
es

po
ns

e
T

im
e

(m
s)

BTP
DC

BTP
DC

Fig. 6. AUC with/without dependency capsules under various request arrival
rates.

C. Effectiveness of Dependency Capsule for Improved Avail-
ability

In this experiment, we drive the RET service at 40 requests
per second. We run the experiment for 30 seconds. At second
10, we inject a failure to partition 1 which then becomes
unresponsive. It recovers at second 20.

Figure 7 shows the quality-weighed throughput (defined
in Section VI-A) of three systems during the 30-second run
time. When there is no failure, all systems work well. When
partition 1 fails at second 10, the throughput of the system with
bounded-size thread pooling quickly drops to zero because
all threads in the thread pool of the aggregator server are
blocked waiting for responses from partition 1. The problem is
mitigated with unbounded-size thread pooling and dependency
capsules. For the unbounded thread pool, new threads are
created if all existing threads are blocked. Gradually, the
aggregator accumulates a large number of threads. When par-
tition 1 recovers, blocked threads wake up and simultaneously
compete for CPU, resulting in many requests timed out. This is
the reason that service throughput drops to almost zero shortly
after partition 1 recovers. Besides this problem, unbounded
thread pool can perform poorly under overloaded situation as
demonstrated in SEDA [3].

For dependency capsules, threads blocked for contacting
partition 1 are localized in a network service capsule while
the main thread pool is not affected. During the failure, the
throughput remains at about 2/3 of the throughput before
failure because the quality weight becomes 2/3 after partition 1
fails. After partition 1 recovers, the contention is also avoided
since the number of kernel threads remains the same in the
main thread pool before and during the failure period. The
system throughput quickly returns to a normal level. Notice
that there is a throughput drop during the first a few seconds
after partition 1 fails, this is because all requests wait for
responses from partition 1 until the deadline expires.

Table II shows the average response time and loss ratio
during the above experiment. The average response times are
similar for all schemes since all requests are delayed until
the timeout. However, the loss ratio is much smaller in DC.
Replication, aggressive timeout, and admission control can be
used if the service site demands higher availability during a
failure.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

50

60

Elapsed Time (sec)

Q
ua

lit
y−

w
ei

gh
ed

 T
hr

ou
gh

pu
t (

re
q/

se
c)

←Partition #1 becomes unresponsive
←Partition #1 recovers

Retrieval Service (Quality−weighed Throughput)

DC
BTP
UTP
Request Rate

Fig. 7. Throughput of RET with multithreading or dependency capsules
before/during/after a failure.

Approach Failure RespTime Thrput Loss Ratio
(ms) (req/s)

BTP Failure 280.6 39.5 0%
Recovery 1938.7 1.3 96.8%

UTP Failure 278.3 39.0 0%
Recovery 1452.0 16.6 58.5%

DC Failure 293.0 39.2 0%
Recovery 1488.3 27.9 30.3%

TABLE II

AVERAGE RESPONSE TIMES AND LOSS RATIOS FOR RET.

D. Availability with Component Replication

In this experiment, we use the AUC service to evaluate the
effectiveness of dependency capsules for improving service
availability. We drive the system at 30 requests per second.
As shown in Figure 8, at second 7, we disconnect one of the
replicated back-end MySQL servers from the switch by taking
away its Ethernet cable. The failure detection module of the
Neptune clustering middleware running at the first tier server
does not recognize this failure until five seconds later.

During this five second detection period, the bounded-size
thread pooling gradually loses the capability to respond be-
cause threads are blocked gradually while requests are still sent
to this disconnected machine. With the dependency capsule
mechanism, the majority of requests (about 2/3) are processed
smoothly during this five-second period since blocked threads
are localized in the corresponding network service capsule.
With two replicas, the system can still respond to most
requests. The loss ratio shown in Table III also reflects this.
Notice that there is a small percentage of requests involving
writes; but the weak consistency model of the AUC service
does not affect the throughput during this failure.

Additionally, we check the effectiveness of the dependency
capsules in RUBiS when one of the replicated EJB server
becomes unresponsive. We inject the failure by suspending
the execution of an EJB server for 10 seconds. Figure 9
shows the throughput of RUBiS using the bounded-size thread
pooling quickly drop to 0 during the failure. With the help of
dependency capsules, 2/3 of the requests can still be served
during the failure. Table IV shows the response time and loss
ratio during the failure. The above experiment is done without
any change in either the Apache server or the RUBiS source

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

10

20

30

40

50

Elapsed Time (sec)

T
hr

ou
gh

pu
t (

re
q/

se
c)

←Replica #1 disconnected

←Failure detected

Online Auction Service (Throughput)

DC
BTP
Request Rate

Fig. 8. Throughputs of AUC with and without dependency capsules under
a lost network connection.

Approach Failure RespTime Thrput Loss Ratio
(ms) (req/s)

BTP Before 145.3 25.1 0%
Detection 553.4 5.0 83.3%

DC Before 142.7 25.8 0%
Detection 241.3 19.4 35.3%

TABLE III

RESPONSE TIMES AND LOSS RATIOS OF AUC UNDER A LOST NETWORK

CONNECTION.

codes. The dependency capsules are activated using an external
configuration file.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

20

40

60

80

100

Elapsed Time (sec)

T
hr

ou
gh

pu
t (

re
q/

se
c)

←Replica #1 becomes unresponsive
←Replica #1 recovers

RUBiS (Throughput)

DC
BTP
Request Rate

Fig. 9. Throughput of RUBiS (EJB version) with and without dependency
capsules before/during/after a failure.

E. Effectiveness of Capsules in Load Throttling and Failure
Management

In this section, we evaluate the effectiveness of caller-side
load throttling and feedback-based failure management using
capsule statistics. We first test the effectiveness of applying
caller-side load throttling based on runtime statistics collected
from dependency capsules. We conduct the experiment on an
aggregated retrieval service. In this experiment, we require
that all partitioned data are available for each request to be
successful, which is desirable for services that demand strong
accuracy. We compare two schemes: (1) one with caller-side
load throttling (DC+LT), and (2) the other with server-side
admission control (DC). For both schemes, we fix the request
arrival rate at 50 requests per second, which is roughly 125%
of the system capacity. We run the experiments for 30 seconds.
Figure 10 shows the result after the warm-up period. We can

Approach Failure RespTime Thrput Loss Ratio
(ms) (req/s)

BTP Before 29.4 80.3 0%
During 1291.8 29.9 62.6%

DC Before 28.9 79.8 0%
During 666.7 54.5 31.9%

TABLE IV

RESPONSE TIMES AND LOSS RATIOS OF RUBIS BEFORE/DURING/AFTER A

FAILURE.

see the scheme with caller-side load throttling performs much
better than the other. It outperforms the server-side scheme
by 40% on average. This is because each partition makes
uncoordinated decision on which requests are to be dropped
in the server-side scheme. When a request is dropped by
one partition, other partitions may still process the request.
Thus, resource is wasted when the application does not allow
partition loss in the aggregated result. On the other hand, the
caller-side load throttling can avoid this situation since the
admission control happens on the client-side. It also avoids
overhead in sending requests that will be eventually dropped
on the server side.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

50

60

Elapsed Time (sec)

T
hr

ou
gh

pu
t (

re
q/

se
c)

Retrieval Service (Throughput)

DC+LT
DC
Request Rate
Mean Throughput

Fig. 10. Effectiveness of caller-side load throttling.

We evaluate the effectiveness of feedback-based failure
management using the BBS service and the RET service.

BBS service. In this experiment, we examine the effective-
ness of feedback mechanisms in improving service availability
during a failure. We use the BBS service for this experiment.
Request arrival rate of the system is set to be 70 requests per
second. We run the experiment for 30 seconds. At second 10,
cache server #1 becomes unresponsive. It recovers at second
20. We measure both the system throughput and response
time for three schemes: (1) BTP; (2) DC, where we use
500 milliseconds as a timeout limit for the cache server;
(3) DC+FB, where we apply the mechanism discussed in
Section IV-C to contain the negative impact of a problematic
cache server.

Figure 11 shows that the service throughput drops to almost
zero for bounded-size thread pooling during the failure. It
helps to a certain degree by setting a short timeout for cache
(500 milliseconds). With dependency capsules, the system can
deliver service for almost half of the requests that do not hit the

failed cache server. For feedback-based failure management,
the service is able to bypass the failed cache server and
directly retrieves articles from the back-end database. Table V
shows the average response times and loss ratios for three
schemes. The average response time for feedback-based failure
management is higher because a complete search operation is
needed when the cache is not used.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

20

40

60

80

100

Elapsed Time (sec)

T
hr

ou
gh

pu
t (

re
q/

se
c)

←Cache #1 becomes unresponsive ←Cache #1 recovers

BBS Service (Throughput)

DC+FB
DC
BTP
Request Rate

Fig. 11. Throughput of BBS using the traditional multithreading, de-
pendency capsules without feedback or dependency capsules with feedback
before/during/after a failure.

Approach Failure RespTime Thrput Loss Ratio
(ms) (req/s)

BTP Before 61.7 68.9 0%
During 965.0 8.0 87.8%

DC Before 60.2 68.9 0%
During 100.1 34.8 48.8%

DC+FB Before 61.8 68.9 0%
During 430.9 66.4 0.4%

TABLE V

RESPONSE TIMES AND LOSS RATIOS FOR BBS.

RET service. In this experiment, we compare two schemes:
the dependency capsule with feedback mechanism (DC+FB)
and the basic dependency capsule mechanism (DC). DC+FB
bypasses the partition 1 when the number of outstanding
requests to the problematic partition exceeds a threshold.
Figure 12 shows that throughputs for both schemes are similar.
However when we compare the response time in Figure 13,
we find the response time of DC+FB is much shorter than DC
since subsequent requests in DC+FB do not need to contact
the unresponsive partition when there are already a number
of requests blocked on that partition. Thus, the feedback
mechanism helps to reduce the response time of the RET
service in this case.

VII. CONCLUDING REMARKS

This paper presents the architecture, design, and evaluation
of a new thread management mechanism called dependency
capsule. Our primary goal is to improve the availability of
multi-tier Internet services with complex component depen-
dencies. Our design achieves three objectives: dependency-
aware concurrency management, automatic recognition and
classification of resource dependencies, and dependency-
specific feedback for better availability. There is a small

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

50

60

Elapsed Time (sec)

Q
ua

lit
y−

aw
ar

e
T

hr
ou

gh
pu

t (
re

q/
se

c) ←Partition #1 becomes unresponsive
←Partition #1 recovers

Retrieval Service (Quality−weighed Throughput)

DC
DC+FB
Request Rate

Fig. 12. Throughput of RET using dependency capsules without feedback
and dependency capsules with feedback before/during/after a failure.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

500

1000

1500

2000

Elapsed Time (sec)

R
es

po
ns

e
tim

e
(m

s)

←Partition #1 becomes unresponsive ←Partition #1 recovers

Retrieval Service (Reponse Time)

DC
DC+FB

Fig. 13. Response time of RET using dependency capsules without feedback
and dependency capsules with feedback before/during/after a failure.

overhead in executing network services with dependency
capsules while the proposed techniques can greatly improve
availability and throughput during component failures. We
should emphasize that dependency isolation is still desirable
at the presence of replication because the system may not be
able to quickly identify the failure of a replica.

ACKNOWLEDGMENT

We would like to thank the anonymous referees for their
valuable comments and help.

REFERENCES

[1] R. Morris, E. Kohler, J. Jannotti, and M. Frans Kaashoek, “The Click
modular router,” in Proceedings of the 17th ACM Symposium on
Operating Systems Principles (SOSP ’99), Kiawah Island, SC, December
1999, pp. 217–231.

[2] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An Efficient and
Portable Web Server,” in Proc. of 1999 Annual USENIX Technical Conf.,
Monterey, CA, June 1999.

[3] M. Welsh, D. Culler, and E. Brewer, “SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services,” in Proc. of the 18th ACM
Symposium on Operating Systems Principles, Banff, Canada, Oct. 2001.

[4] “Zeus Web Server,” http://www.zeus.co.uk/products/ws/.
[5] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur,

“Cooperative Task Management without Manual Stack Management,”
in Proc. of 2002 USENIX Annual Technical Conf., 2002.

[6] “The Apache Web Server,” http://www.apache.org.
[7] “BEA WebLogic,” http://www.beasys.com/ products/ weblogic/.
[8] “IIS 5.0 Overview,” http://www.microsoft.com/ windows2000/ techinfo/

howitworks/ iis/ iis5techoverview.asp.
[9] “Netscape Enterprise Server,” http://home.netscape.com/ enterprise/

v3.6/index.html.

[10] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do Internet
services fail, and what can be done about it?,” in Proc. of the 4th
USENIX Symposium on Internet Technologies and Systems (USITS ’03),
Seattle, WA, Mar. 2003.

[11] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier,
“Cluster-Based Scalable Network Services,” in Proc. of the 16th ACM
Symposium on Operating System Principles, Saint Malo, Oct. 1997.

[12] S. D. Gribble, M. Welsh, E. A. Brewer, and D. Culler, “The MultiSpace:
An Evolutionary Platform for Infrastructural Services,” in Proc. of 1999
USENIX Annual Technical Conf., Monterey, CA, June 1999.

[13] J. Robert von Behren, E. A. Brewer, N. Borisov, M. Chen, M. Welsh,
J. MacDonald, J. Lau, S. Gribble, and D. Culler, “Ninja: A Framework
for Network Services,” in Proc. of 2002 Annual USENIX Technical
Conf., Monterey, CA, June 2002.

[14] K. Shen, H. Tang, T. Yang, and L. Chu, “Integrated Resource Manage-
ment for Cluster-based Internet Services,” in Proc. of the 5th USENIX
Symposium on Operating Systems Design and Implementation, Boston,
MA, Dec. 2002.

[15] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner, and
H. Zhu, “Neptune: Scalable Replication Management and Programming
Support for Cluster-based Network Services,” in Proc. of 3rd USENIX
Symposium on Internet Technologies and Systems, San Francisco, CA,
Mar. 2001.

[16] E. A. Brewer, “Lessons from Giant-Scale Services,” IEEE Internet
Computing, vol. 5, no. 4, pp. 46–55, 2001.

[17] K. Nagaraja, X. Li, B. Zhang, R. Bianchini, R. Martin, and T. D.
Nguyen, “Using Fault Injection and Modeling to Evaluate the Per-
formability of Cluster-Based Services,” in Proc. of the 4th USENIX
Symposium on Internet Technologies and Systems (USITS ’03), Seattle,
WA, Mar. 2003.

[18] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer,
“Capriccio: Scalable Threads for Internet Services,” in Proc. of the
19th ACM Symposium on Operating Systems Principles, 2003.

[19] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levey, “Sched-
uler Activations: Effective Kernel Support for User-level Management
of Parallelism,” ACM Trans. on Computer Systems, vol. 10, no. 1, pp.
53–79, Feb. 1992.

[20] K. K. Yue and D. J. Lilja, “Dynamic Processor Allocation with the
Solaris Operating System,” in Proc. of the Intl. Parallel Processing
Symposium, Orlando, Florida, Apr. 1998.

[21] G. Banga, P. Druschel, and J. C. Mogul, “Resource Containers: A
New Facility for Resource Management in Server Systems,” in Proc.
of the 3rd USENIX Symposium on Operating Systems Design and
Implementation, New Orleans, LA, Feb. 1999, pp. 45–58.

[22] D. G. Sullivan and M. I. Seltzer, “Isolation with Flexibility: A Resource
Management Framework for Central Servers,” in Proc. of the 2000
USENIX Annual Technical Conf., San Diego, CA, June 2000.

[23] B. Verghese, A. Gupta, and M. Rosenblum, “Performance Isolation:
Sharing and Isolation in Shared-Memory Multiprocessors,” in Proc.
of the ACM 8th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, Oct. 1998.

[24] R. van Renesse, “Goal-oriented programming, or composition using
events, or threads considered harmful,” in 8th ACM SIGOPS European
workshop on Support for composing distributed applications, Sintra,
Portugal, Sept. 1998.

[25] L. Chu, H. Tang, T. Yang, and K. Shen, “Optimizing data aggregation
for cluster-based Internet services,” in Proc. of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, San
Diego, California, June 2003.

[26] A. Fox and E. A. Brewer, “Harvest, Yield, and Scalable Tolerant
Systems,” in Proc. of HotOS-VII, Rio Rico, AZ, Mar. 1999.

[27] M. Y. Chen, A. Accardi, E. Kiciman, D. Patterson, A. Fox, and
E. Brewer, “Path-Based Failure and Evolution Management,” in Proc. of
the 1st Symposium on Networked Systems Design and Implementation.,
San Francisco, CA, Mar. 2004.

[28] M. Welsh and D. Culler, “Adaptive Overload Control for Busy
Internet Servers,” in Proc. of the 4th USENIX Symposium on Internet
Technologies and Systems (USITS ’03), Seattle, WA, Mar. 2003.

[29] J. C. Mogul and K. K. Ramakrishnan, “Eliminating Receive Livelock
in an Interrupt-driven Kernel,” in Proc. of USENIX Annual Technical
Conf., San Diego, CA, Jan. 1996.

[30] “JBoss,” http://www.jboss.org/.
[31] H. Zhu and T. Yang, “Class-based Cache Management for Dynamic

Web Contents,” in Proc. of IEEE INFOCOM’2001, Anchorage, AK,
Apr. 2001.

[32] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance and
Scalability of EJB Applications,” in Proc. of the 17th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications., Seattle, WA, Nov. 2002.

