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Abstract

The growth of the Internet and of various intranets has
spawned a wealth of online services, most of which are
implemented on local-area clusters using remote invoca
tion (e.g., RPC/RMI) among manually placed application
components. The placement problem can be a significant
challenge for large scale services, particularly when appli-
cation resource needs are workload dependent. This paper
describes our initial work on automatic component place-
ment, with the goal of maximizing overall system through-
put. The key idea behind our approach is to construct
(off-line) a mapping between input workload and individ-
ual component resource consumption. Such mappings,
called component profiles, are then employed to support
high-performance placement. We describe the basic design
framework and present preliminary results on a J2EE-based
online auction benchmark. Our results suggest that profile-
driven tools can indeed identify placements that achieve
near-optimal overall throughput.

1 Introduction

Recent years have witnessed significant growthin online
services, including Web search engines, digital libraries,
and electronic commerce. These services are most often
deployed on clusters [8, 14] of commodity machines in
order to achieve high availability, incremental scalability,
and cost effectiveness in the face of rapid service evolu-
tion and increases in user demand. Their software architec-
ture typically comprises many components, some reflect-
ing intentionally modular design, others developed inde-
pendently and subsequently assembled into a larger appli-
cation, e.g., to handle data from independent sources. A
typical service might contain components responsible for
data management, for business logic, and for presentation
of resultsin HTML or XML. The placement of these com-
ponents on cluster nodesis challenging for several reasons.
First, there can be substantial heterogeneity both in com-
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ponent resource needs and in available resources at differ-
ent nodes. Second, maintaining reasonable quality of ser-
vice (e.g., response time) is imperative for interactive net-
work clients. Third, the ideal placement may be a func-
tion not only of static application characteristics, but of
various runtime factors as well, including bursty user de-
mand, machine failures, and system upgrades. Our goal is
to develop the software infrastructure needed for efficient
dynamic component placement in cluster-based online ser-
vices.

Our basic approach (shown in Figure 1) is to build per-
component resource consumption profiles as a function of
input workload characteristics. The currently considered
resources are CPU, network bandwidth, and memory us-
age, each of which we characterizein terms of average and
peak resource requirements. Component placement deci-
sions are then made based on component profiles, available
system resources, and runtimeworkload characteristics, us-
ing low-complexity optimization techniques when exhaus-
tive search of resource to requirement mappings becomes
infeasible. Placement decisions can be made at a central-
ized executive server or they can be made in a fully dis-
tributed fashion. They can also be made dynamically for
runtime component migration by monitoring input work-
load characteristics. Compared with existing component
mobility management techniques, our key contributionis a
parameterization based on input workload characteristics,
which enables inexpensive monitoring and accurate predic-
tion based on the component profiles.

Our work is related to a number of prior studies on dis-
tributed component placement. Coign [10] examines the
optimization problem of minimizing communication time
for two-machine client-server applications. ABACUS [2]
focuses on the placement of 1/O-specific functions for
cluster-based data-intensive applications. Addistant [19]
and J-Orchestra [20] support partitioning and distributing
execution of “legacy” Java applications through byte code
rewriting. DVM [15] further adds security to such sup-
port. Other than Coign, these projects focus on mecha-
nisms for transparent remote execution, leaving placement
decisions largely to users. lvan et al. examine the auto-
matic deployment of component-based software over the
Internet subjected to throughput requirements[11]. In their
approach, the resource requirements for each component
must be specified by application developers. Urgaonkar
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Figure 1. Profile-driven component placement.

et al. study the benefit of allowing applications to over-
book CPU and network resources in shared hosting plat-
forms[21]. Their work is limited to the placement of mul-
tiple single-component server applications that do not in-
teract with one ancther. The Aura [16] and Chroma [4]
projects propose that system-level mobility information be
exported to user-level agents, which can then make strate-
gic decisions (including component placement) based on
their model of user activity and intent. User-level involve-
ment in placement systems seems particularly valuable for
“intelligent” applications, in which user intent is central
and closely tied to mobility. For online services, however,
we emphasi ze transparent system-level management.

The rest of this paper is organized as follows. Section 2
presents a design framework for profile-driven component
placement. Section 3 describes a prototype implementa
tion, together with experimental results on a J2EE-based
online auction benchmark. Section 4 presents conclusions
along with a summary of future directions.

2 Design Framework

This section describes the 3 main features of our com-
ponent placement system. First, we examine offline
measurement and modeling mechanisms for building per-
component resource consumption profiles. Second, we de-
scribe profile-driven performance projection and an auto-
matic component placement strategy optimized for high
system throughput. Third, we consider design issues for
runtime workload monitoring and dynamic component mi-
gration.

2.1 Building Component Profiles

Our component profile specifies component resource
needs as functions of input workload specifications. For
resources such as CPU and network /O, we use an aver-
age rate p and a peak rate ¢ to capture the resource con-
sumption specification for each resource type. \We measure

and accumulate resource consumption statistics at periodic
intervals. The peak rate is the maximum or a high (e.g.,
90) percentile value of such periodic resource consumption
statistics. The average and peak resource needs allow usto
estimate upper and lower bounds on throughput. In terms
of memory usage, variability in available memory size of-
ten has a severe impact on application performance. In par-
ticular, amemory deficit during onetimeinterval cannot be
simply compensated by a memory surplusin the next time
interval. Thereforewe use the maximum requirement ¢ mem
aone for specifying memory requirements in the compo-
nent profile.

The input workload specifications in component pro-
files can be parameterized with an average request arrival
rate Aworkioad @nd other workload characteristics (denoted
by dworkicag) Such as the composition of different request
types (or request mix). The request mix is relevant be-
cause different request types may not consume the same
resources. For example, a workload comprised entirely
of Web page retrievals and one comprised entirely of new
user registrationsconsumevery different resources. Putting
these altogether, the resource consumption profile for a
distributed application component specifies the following

mapping £ ():

f ()\workloada (sworkload) — (Pcpu: ¢cpu; Prnetwork » ¢network, ¢mem)

Many of the functiona relationshipsin f() are expected to
follow simple expressible forms. For instance, pcpu, Pcpus
Pretwork, aNd dnework are likely to be linear in Aworkioad-
Severa techniques are available to measure system re-
source utilization by application components under vari-
ous workloads. One such technique utilizes OS-provided
interfaces to acquire resource consumption statistics. For
instance, the SY SSTAT toolkit [18] provides CPU, mem-
ory, and 1/O resource consumption statistics through ac-
cessto the Linux /proc interface. One drawback of such
an approach is that the measurement accuracy is limited
by the frequency of statistics reporting from the OS. An-
other technique, represented by the Linux Trace Toolkit



(LTT) [22], directly instruments the OS kernel to report re-
source consumption statistics. LTT can provide accurate
system statistics, but it requires significant kernel changes.

Many recent studies have addressed application resource
consumption profiling. Urgaonkar et al. use application re-
source usage profiling to guide application placement in
shared hosting platforms [21]. Amza et al. provide bot-
tleneck resource analysis for three dynamic online service
benchmarks [3]. Gu and Nahrstedt examine QoS-aware
multimedia service partitioning and placement based on
service dependency graphs [9]. While their application
profiling efforts are similar to our proposed work to a cer-
tain extent, our component profiles provide a more de-
tailed characterization of the mapping between input re-
quest rate and application resource consumption. Such in-
formation is critical to making high-throughput placement
decisions when resource needs are workload dependent. A
recent study by Doyle et al. models the service response
time reduction with increased memory cache size for Web
servers[7]. However, such modeling is only feasible with
intimate knowledge about application memory usage be-
havior. It does not share our goal of maintaining general
applicability on awide range of applications.

2.2 High Throughput Component Placement

Based on component resource consumption profiles,
we seek to automatically place components where they
will yield high overal throughput. The key to our opti-
mized component placement is the ability to project system
throughput under each placement strategy. Such ability is
made possible by athree-step process.

1. The mapping between the input request rate
Aworkioad @nd component runtime resource de-
mands (Pcpu;¢cpu;,0network;¢network,¢mem) can be
learned with the knowledge of the component profile
and input workload characteristics.

2. Given acomponent placement strategy, we can derive
the maximum input request rate that can saturate the
CPU, network 1/0 bandwidth, or memory resources
at each server. For CPU and network bandwidth, we
can use either the average component resource needs
or the peak needs in deriving the rate. Let Tcpy averages
TCPU peak s Tnetwork averages Tnetwork peak s and Tmemory denote
such saturation rates at a server. When components
are collocated on the same server, they must share
the host CPU and memory resources while the intra-
server component communication can take advantage
of high bandwidth IPC mechanisms.

3. Finally, the system throughput can be estimated as
the lowest saturation rate for all resource types at all
servers. Using the average resource needs, we can de-
rive an optimistic throughput estimate:

min

TCPU average; Tnetwork average; Tmemor
for al servers{ e e y}

Using the peak resource needs, we can derive a pes-
simistic throughput estimate:
or aI\IIIlgrlvers{TCPU peak; Tnetwork peak Tmemory}

With the ability to project system throughput under
any placement strategy, we can discover a high through-
put component placement through exhaustive search. The
search space for all possible placement strategies can
be very large for applications with a substantial number
of components over a large number of servers. Low-
complexity optimization algorithms need to be devised
when exhaustive search becomes computationally infea-
sible.  Previous studies aready proposed such ago-
rithms for certain constrained cases (e.g., Coign [10] and
Chromal4]).

We should also point out that business logic constraints
may impact the placement policy. In this case, we sim-
ply remove invalid placement candidates from the search
space, and select the high throughput choice from the re-
maining candidates.

2.3 Runtime Component Migration

In addition to supporting static component placement,
we examine design issues for dynamic runtime compo-
nent migration. Equipped with component resource con-
sumption profiles, we a so heed knowledge of run-time dy-
namic workload characteristics in order to estimate run-
time component resource needs. Such information is fed
into the component placement executive to assist dynamic
placement decisions. Some component middleware sys-
tems can be instrumented to trace inter-component mes-
sages [6, 17]. Less intrusive monitoring can be performed
through network-level packet sniffing.

Recent work by Aguileraet al. [1] proposed performance
debugging for multi-component online applications based
on messagetraces. Their maintechniqueisto analyzeinter-
component causal message paths and then derive the corre-
sponding component response time. However, their study
used pre-collected message traces and they did not explic-
itly address the acquisition of runtime workload character-
istics. Odyssey [12] trades application resource demands
for service quality, or fidelity, using a history-based predi-
cation of resource demands. In comparison, the availabil-
ity of component profiles allows us to only monitor the in-
put workload characteristics at runtime, which can be per-
formed more cheaply and accurately than directly predict-
ing runtime resource demands.

In addition to performance optimization, runtime com-
ponent migration must consider several additional issues:

e In order to achieve a high level of scalability and
fault-tolerance, the component placement executive
can be constructed with a decentralized or even peer-
to-peer architecture. For instance, servers can share
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Figure 2: Linear fitting for the Bid component.

runtime workload characteristics and resource con-
sumption profiles of components with their peers.
Component migration decisions could then be made
independently when they are considered beneficial by
participating servers.

e System stability is important for runtime component
migration, especially when migration decisions are
made in a decentralized fashion. A certain level of
system stability can be achieved by employing acom-
ponent migration threshold such that prospective mi-
grationsthat do not produce over-the-threshol d benefit
are not performed. A careful balance must be main-
tained between responsiveness and system stability.

3 Préiminary Results

We present some preliminary results to illustrate the
effectiveness of our profile-driven component placement.
We only provide results for static placement in this sec-
tion. Dynamic component migration will be investigated
in the future. Our experiments are based on the RUBIS
benchmark [5, 13], an auction site prototype modeled af-
ter eBay.com. RUBIS implements the core functionality
of an auction site: selling, browsing, and bidding. It fol-
lows the three-tier Web service model containing a front-
end Web server, nine movable business logic components,
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Figure 3: Linear fitting for the Web server.

and a back-end database. Various versions of RUBIS have
been implemented [5], we use the Enterprise Java Beans
version with bean-managed persistence (BMP).

Profiling and experiments were conducted on a Linux
cluster connected by a 100Mbps Ethernet switch. Each
server is equipped with dua 1.26GHz Pentium |11 proces-
sors and 2GB memory. The RUBIS EJB components are
hosted on a JBoss 3.2.3 Application server with an embed-
ded Tomcat 5.0 servlet container. The database server runs
MySQL 4.0. The dataset is sized according to database
dumps published on RUBiS's Web site [13]. The total
dataset sizeis around 1GB.

3.1 Component Profiling

RUBIS contains 11 components:. a Web server, a
database, and nine EJB componentsimplementing the auc-
tion service logic (Bid, BuyNow, Category, Comment,
Item, Query, Region, User, and UserTransaction).
During our profiling runs, each component runs on a dedi-
cated server and we measure the component resource con-
sumption at a number of input request rates (1 reg/sec,
2 reqg/sec, ..., 11 reqs/sec). We use a request mix simi-
lar to one in [5] (15% read-write requests and 85% read-
only requests). We use a modified SY SSTAT toolkit [18]
in the measurement. Peak CPU and network usage are de-
termined as 90 percentile values for measured rates at 1-



Component CPU usage (in percentage) Network usage (in Mbps)
average | peak average peak

Web server 0.707 - Aworkioad + 1.101 | 0.925 - A\yworkioad + 1.488 | 0.144 - Aworkioad + 0.175 | 0.156 - Aworkioad + 0.297
Database 0.012 - Aworkioad + 0.875 | 0.061 - Aworkioad + 0.778 | 0.008 - Aworkioad + 0.063 | 0.009 - Aworkicad + 0.218
Bid 0.456 - Aworkioad + 0.594 | 0.752 - Aworkioad + 0.967 | 0.074 - Aworkioad + 0.053 | 0.100 - Aworkioad + 0.216
BuyNow 0.006 - Aworkioad + 0.494 | 0.033 - Aworkioad + 0.775 | 0.000 - Aworkioad + 0.049 | 0.000 - Aworkicad + 0.213
Category 0.000 - Aworkioad +0.912 | 0.000 - Aworkioad + 1.093 | 0.000 - Aworkioad + 0.072 | 0.000 - Aworkicad + 0.217
Comment 0.004 - Aworkioad +0.817 | 0.000 - Aworkioad + 0.898 | 0.000 - Aworkioad + 0.049 | 0.000 - Aworkicad + 0.214
Item 0.306 - Aworkioad + 1.605 | 0.528 - Aworkioad + 1.949 | 0.074 - Aworkioad + 0.151 | 0.088 - Aworkioad + 0.259
Query 0.000 - Aworkioad +0.898 | 0.000 - Aworkioad + 0.987 | 0.000 - Aworkioad + 0.055 | 0.000 - Aworkicad + 0.214
Region 0.104 - Aworkioad + 1.023 | 0.266 - Aworkioad + 1.065 | 0.041 - Aworkioad + 0.053 | 0.052 - Aworkioad + 0.219
User 0.091 - Aworkioad + 1.040 | 0.221 - Aworkioad + 1.130 | 0.036 - Aworkioad + 0.045 | 0.046 - Aworkioad + 0.206
UserTransaction || 0.000 - Aworkioad + 0.803 | 0.000 - Aworkioad + 0.903 | 0.000 - Aworkioad + 0.048 | 0.000 - Aworkioad + 0.213

Table 1: Component resource profiles for RUBIS (based on linear fitting of measured resource usage at 11 input request
rates). Aworkioad iS the average request arrival rate (in requests/second).
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Figure 4: Performance of different component placement
strategies for RUBIS.

second intervals.

After acquiring the component resource consumption at
the measured input rates, we derive general functional map-
pings using linear fitting. Figures 2 and 3 show such a
derivation for the Bid component and the Web server re-
spectively. The complete profiling results for all 11 RU-
BiS components are listed in Table 1. We do not show the
memory profiling results because we are not able to pre-
cisely measure the component memory consumption using
SY SSTAT. This does not affect the component placement
decisions for this experiment since the server memory is
not the bottleneck resource under any placement.

3.2 High Throughput Component Placement

We examine the component placement problem of
RUBIS on two servers. We place a restriction on collo-
cation of the Web server and the database — they are never
collocated on one server. Since each of the remaining
nine components can be placed either on the Web server
or on the database server, there are 512 possible compo-
nent configurations in this setup. Following the scheme
described in Section 2.2, we project the optimistic and

Il Pessimistic estimation
[ Measurement result
[_] Optimistic estimation M

120

100
80
60

40

Throughput (requests/second)

20

All-Web  All-DB Writers—Web Profiler

Figure 5: Accuracy of throughput estimations.

pessimistic system throughput for each of the 512 con-
figurations. We choose the placement with the best pes-
simistic performance (called profiler’s choice). In this
placement, Query, Region, and User are collocated with
the Web server while the other EJB components are collo-
cated with the database. We compare this placement with
three other strategies based on common heuristics. Specif-
ically, the first two strategies place al EJB components
with the Web server or with the database, respectively. In
the third strategy, we place all read-write components (i.e.,
Bid, BuyNow, Comment, Item, and UserTransaction)
with the Web server and the read-only components with
the database. We call this placement writers with Web. The
intuition behind this strategy is that read-only components
tend to interact more with the database.

Figure 4 shows the RUBIS throughput under different
levels of input workload. In our experiments, a request is
counted as successful only if it returns within 8 seconds.
We define the throughput of a placement as the highest
throughput achieved at any input request rate. The results
show that profiler’s choice outperformsall other placement
strategies by over 30%. Performance degrades slightly af -
ter the maximum throughput is attained. This is because
some requests exceed the timeout limit of 8 seconds de-



spite being partially completed.

Figure 5 illustrates the accuracy of pessimistic and opti-
mistic throughput estimations for the four placement strate-
gies. On average, the pessimistic estimation is 39% smaller
than the optimistic estimation. We observe that the mea-
surement results almost always fall between the two esti-
mations. We believe component profiles constructed us-
ing more fine-grain resource usage measurements (e.g.,
LTT [22]) should improve the accuracy of the throughput
estimations. Taking consideration of other factors, such as
component context switch and remote invocation overhead,
may also improve accuracy. We planto investigatetheseis-
sues in the future.

4 Conclusion

This paper describes our work on profile-driven compo-
nent placement for cluster-based online services. With the
assistance of offline derived component profiles parameter-
ized using the input request rate, our placement framework
can identify high throughput component placements on
commaodity clusters. Our preliminary experimenta stud-
ies with RUBIS, a J2EE-based online auction benchmark,
suggest that profile-driven component placement can in-
deed achieve improved throughput. Future work will pro-
ceed on two principa fronts. 1) heuristic placement for
heterogeneous systems with large numbers of components
and nodes, and 2) runtime workload monitoring and dy-
namic online component migration to handle changing in-
put workload characteristics.
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