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ABSTRACT
Large-scale cluster-based Internet services often host partitioned
datasets to provide incremental scalability. The aggregation of re-
sults produced from multiple partitions is a fundamental building
block for the delivery of these services. This paper presents the
design and implementation of a programming primitive – Data Ag-
gregation Call (DAC) – to exploit partition parallelism for cluster-
based Internet services. A DAC request specifies a local processing
operator and a global reduction operator, and it aggregates the lo-
cal processing results from participating nodes through the global
reduction operator. Applications may allow a DAC request to re-
turn partial aggregation results as a tradeoff between quality and
availability. Our architecture design aims at improving interactive
responses with sustained throughput for typical cluster environ-
ments where platform heterogeneity and software/hardware fail-
ures are common. At the cluster level, our load-adaptive reduc-
tion tree construction algorithm balances processing and aggrega-
tion load across servers while exploiting partition parallelism. In-
side each node, we employ an event-driven thread pool design that
prevents slow nodes from adversely affecting system throughput
under highly concurrent workload. We further devise a staged time-
out scheme that eagerly prunes slow or unresponsive servers from
the reduction tree to meet soft deadlines. We have used the DAC
primitive to implement several applications: a search engine docu-
ment retriever, a parallel protein sequence matcher, and an online
parallel facial recognizer. Our experimental and simulation results
validate the effectiveness of the proposed optimization techniques
for (1) reducing response time, (2) improving throughput, and (3)
gracefully handling server unresponsiveness. We also demonstrate
the (4) ease-of-use of the DAC primitive and (5) the scalability of
our architecture design.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—concurrent programming struc-
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tures; H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—search process

General Terms
Algorithms, Design, Experimentation, Performance, Reliability
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1. INTRODUCTION
Computer clusters are widely deployed to deliver highly scal-

able and available online services [2, 6, 13, 15]. Well-known Web
sites such as Yahoo and MSN employ service clusters with thou-
sands of machines. The persistent data for cluster-based Internet
services are often partitioned and the aggregation of data produced
from multiple partitions is a commonly requested operation. For in-
stance, an online discussion group service may partition data based
on discussion topics. To serve a client request looking for articles
posted by a particular author, the service cluster needs to perform
searches on all data partitions and aggregate the results before re-
plying back to the client. Similar examples that require parallel
service invocation and result aggregation can be found in an on-
line auction service where auction items may be partitioned based
on categories; or in an Internet search engine where data may be
partitioned based on their URL domains.

Supporting efficient data aggregation is not straightforward. Sev-
eral previous research projects on cluster-based service program-
ming rely on a fixed node to aggregate results [6, 19], which could
quickly run into scalability problems when a large number of par-
titions are involved. On the other hand, it is desirable to provide
a high-level data aggregation primitive to aid service programming
and hide the implementation details behind an easy-to-use inter-
face. A good implementation not only needs to optimize both re-
sponse time and system throughput, it also needs to consider plat-
form heterogeneity caused by hardware difference, varying net-
work conditions, and non-uniform application data partitions. Fur-
thermore, it needs to handle node failures and unresponsiveness
caused by hardware faults, software bugs, and configuration errors.

This paper studies the programming support and architecture de-
sign of scalable data aggregation operations for cluster-based Inter-
net services. We propose a service programming primitive called
Data Aggregation Call or DAC to merge data from multiple parti-
tions. Additionally, the DAC provides two options for online ser-
vices to specify soft deadline guarantee and aggregation quality
guarantee when a DAC invocation can return partially aggregated
results [5]. The objective of our architecture design is to improve
response time with sustained system throughput. Additionally, our



design targets large-scale service clusters where platform hetero-
geneity and node failures are common. In this paper, we propose
three techniques to achieve our goal. (1) At the cluster level, we
use a load-adaptive tree formation algorithm that balances load
across servers. (2) Inside each cluster node, we use a highly con-
current event-driven request scheduling scheme that prevents slow
responding nodes from blocking working threads and adversely af-
fecting system throughput. (3) To avoid slow or failed nodes from
delaying the completion of DAC requests, we introduce a staged
timeout scheme that eagerly prunes out slow or failed servers from
a reduction tree.

The work described in this paper is a critical building block
in Neptune, a middleware system that provides replication sup-
port [19], and quality-aware resource management [17, 18] for scal-
able cluster-based network services. We have applied the DAC
primitive in the implementation and deployment of several appli-
cations: a search engine document retriever, a parallel protein se-
quence matcher, and an online parallel facial recognizer.

The rest of this paper is organized as follows. Section 2 gives a
brief overview of the Neptune clustering middleware. Section 3 de-
scribes the semantics of the DAC primitive. Section 4 discusses our
runtime support techniques for DAC. Section 5 presents the evalua-
tion of the proposed DAC primitive and individual techniques used
in the DAC implementation. Section 6 discusses related work and
Section 7 concludes the paper.

2. NEPTUNE: CLUSTERING SUPPORT
FOR SCALABLE INTERNET SERVICES

The work described in this paper is part of the Neptune frame-
work – programming and runtime support for building cluster-based
Internet services [19]. This section presents a brief background
overview of the Neptune clustering architecture and its program-
ming environment.

2.1 Clustering Architecture
Neptune targets cluster-based network services accessible to In-

ternet users. Requests issued by remote clients enter service clus-
ters through protocol gateways such as Web servers or XML gate-
ways. Inside the service cluster, services are typically composed
of several service components. Persistent data for service compo-
nents are usually partitioned and replicated for incremental scala-
bility and high availability. We use the term Service Instance to
denote a server entity that runs on a cluster node and manages a
data partition belonging to a service component. Neptune employs
a functionally symmetric and decentralized clustering design. Each
service instance can elect to provide services (when it is called ser-
vice provider) and it can also acquire services exported by other
service instances (when it is called service consumer). This model
allows multi-tier or nested service architecture to be easily con-
structed.

Figure 1 illustrates the architecture of a prototype document search
service supported by the Neptune middleware. In this example, the
service cluster delivers a search service to Internet users and busi-
ness partners through Web servers and XML gateways. Inside the
cluster, the main search task is decomposed into two parts and dis-
tributed to index servers and document servers. The data for both
components is partitioned and replicated. In Figure 1, there are two
index server partitions and three document server partitions. Each
partition has three replicas. The arcs labeled with 1
– 4
 in Fig-
ure 1 show a simplified work flow of serving a client request. 1

A search query arrives at one of the protocol gateways. 2
 The
protocol gateway contacts the index server partitions to retrieve the
identifications of documents relevant to the search query. 3
 The
protocol gateway contacts the document server partitions which
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Figure 1: A prototype search engine service supported by Neptune

translate the list of document identifications to human understand-
able descriptions. 4
 Finally, the protocol gateway compiles the
final results in HTML or XML format and returns them back to
the client. In the above work flow, the protocol gateway contacts
the service instances through the Neptune consumer module. On
the service provider side, the requests are received by the Neptune
provider module, which subsequently invokes the service-specific
handlers to process the requests.

Neptune provides many reusable functionalities in the middle-
ware layer to ease the service construction. (1) Naming, service
location, and load balancing: Service component partitions are
addressed through location-transparent names (service name, parti-
tion ID). The Neptune consumer module automatically routes each
request to an appropriate node based on the service availability and
runtime workload. (2) Replication consistency: Neptune provides
several levels of consistency guarantees for consumer requests in-
volving data updates, and an application can choose the desired
level based on its service semantics. (3) Fault isolation and fail-
ure recovery: The Neptune provider module at each node peri-
odically announces a service availability, or heartbeat, message to
other nodes. Faulty nodes will be automatically detected by the
discontinuance of heartbeat messages. When a failed node recov-
ers, Neptune automatically performs data consistency maintenance
if necessary [19].

2.2 Neptune Programming Support
Neptune allows service programmers to concentrate on the func-

tional design of service components without being concerned with
the details of the underlying clustering architecture. The Neptune
service call interface hides the complexity of request routing and
network communication management behind a set of easy-to-use
function call interfaces. We briefly discuss how to implement an
online service in Neptune.

As mentioned before, each service provider exports certain func-
tionalities to service consumers through request/response sessions.
Inside each service provider, Neptune maintains a request queue
and a thread pool to handle requests concurrently, and application
programmers only need to specify a set of service-specific request
handlers. These handlers are compiled into a dynamic library mod-
ule and they are loaded into the Neptune runtime system when
needed. The Neptune provider modules process requests by call-
ing the corresponding request handlers.

When a service instance seeks certain functionality from another
service instance, it uses the Neptune consumer module's service
call interface to communicate with an appropriate service instance
acting as a service provider. Neptune supports two styles of inter-
actions between service consumers and service providers. In the



message-based scheme, a service consumer specifies the request
and response buffers in one function call, which bears some simi-
larity with RPC (Remote Procedure Call). This scheme is suitable
for interactions involving small amount of data. The stream-based
scheme requires a service consumer to first establish a stream con-
nection between the service consumer and provider, and then in-
teracts with the service provider through the bidirectional channel.
This scheme allows the exchange of large amount of data without
pre-allocating buffering space.

A number of applications have been deployed on the Neptune
platform, including an online auction service, an online forum ser-
vice, and a persistent cache utility. Our experience with Neptune as
a service programming platform has been very positive and most of
these deployments were completed within a few days. In particular,
Neptune has been successfully used as the clustering middleware
at the Web search engine sites Teoma and Ask Jeeves since 2000.
As of Fall 2002, the system grows to over 900 multiprocessor ma-
chines.

3. DAC SEMANTICS AND
PROGRAMMING INTERFACE

In this section, we will first present the semantic design of the
Data Aggregation Call (DAC) primitive, followed by a description
of its programming interface. In the end, we will compare it with
the MPI reduction primitive.

3.1 The Basic DAC Semantics
A generic data aggregation operation over a set of partitions

can be viewed as a composition of two types of basic operations.
First, a local processing operation (called a �LOCAL operator) is per-
formed on every participating partition, which processes the dataset
of that partition and produces an output dataset. Secondly, the
output datasets produced from all participating partitions are ag-
gregated into one output dataset through repeated invocations of a
global reduction operation (called a �REDUCE operator). A �REDUCE

operator takes in two source datasets and produces one output dataset.
For example, in Figure 1, the retrieval of matching document iden-
tifications from all partitions (the arcs labeled with 2
) is a data
aggregation operation. The �LOCAL operator in this aggregation op-
eration selects a list of document identifications related to a search
query from a local partition. The �REDUCE operator sorts two lists
of document identifications (based on their relevancy to the query)
and merges them into one list. Notice that we use term reduction
instead of aggregation when an operation is binary.

Figure 2 specifies the basic semantics of the DAC primitive through
a sequential algorithm, which reflects the idea of the generic data
aggregation operation described in the previous paragraph. Note
that the sequential algorithm shown in Figure 2 is only meant to
specify the desired outcome of a DAC invocation while a differ-
ent algorithm (possibly a parallel algorithm) could be used for the
actual implementation.

The two operators for the DAC primitive, �LOCAL and �REDUCE ,
deserve some further discussion. There is no formal restriction for
�LOCAL and it can be any operations performed on a single parti-
tion. Typically, the �LOCAL operator involves the selection of a sub-
dataset from a data partition followed by a transformation that pro-
duces the output data from the selected sub-dataset. On the other
hand, we do assume the �REDUCE operator to be both commutative
and associative, which is generally the case in practice [4, 11, 16,
20]. As will be shown in later sections, requiring the �REDUCE opera-
tor to be commutative and associative allows us to perform parallel
reduction with limited synchronization.

Algorithm 3.1: DAC(P; �LOCAL ; �REDUCE ; ILOCAL; IREDUCE )

Input: P = fp1; p2; :::; png: The set of n participating partitions.
Input: �LOCAL : The local processing operator.
Input: �REDUCE : The global reduction operator.
Input: ILOCAL : The input parameters for �LOCAL .
Input: IREDUCE : The input parameters for �REDUCE .
Returns: r: The result dataset of the data aggregation call.

// First, we apply the local processing operation on all partitions.
for i 1 to n

do ri  �LOCAL(pi; ILOCAL)

// Second, we aggregate the output datasets fr1; r2; :::; rng
// to the final result r through the global reduction operation.
r r1
for i 2 to n

do r  �REDUCE(r; ri; IREDUCE)

return (r)

Figure 2: Specification of the basic DAC semantics.

3.2 Adding Quality Control to DAC
The specification in Figure 2 assumes that there is no cluster

node failures and the request demand is below the system capacity.
However, in a real operational environment, cluster nodes could be
unavailable due to software or hardware problems. Additionally,
client request demand level could fluctuate dramatically and it may
exceed system capacity. It is critical to provide prompt responses
for client requests under those situations.

The DAC primitive provides two additional input parameters to
allow service programmers to control the behavior of a data aggre-
gation operation in the event of node failures and system overload.

(1) Aggregation quality guarantee: For many online services,
partial aggregation results may still be useful. We define the qual-
ity of a partial aggregation result as the percentage of partitions
that have contributed to the partial result. Service programmers can
specify an aggregation quality guarantee (a percentage threshold),
and a partial aggregation result is only acceptable when its quality
exceeds the threshold. For a service that cannot tolerate any parti-
tion loss in an aggregation operation, we can specify the threshold
to be 100%. An aggregation quality guarantee below 100% allows
the system to trade the quality of aggregation results for availability
(i.e., the number of successfully fulfilled requests), which is impor-
tant for large-scale network services [5].

(2) Soft deadline guarantee: Online service users typically de-
mand interactive responses. As a result, we allow service program-
mers specify a service-specific soft deadline guarantee in a data
aggregation call. The deadline guarantee provides guidance for the
system to balance between the aggregation quality and the prompt-
ness of request responses. It also allows the system to eagerly
abort requests that stand a low chance of meeting the deadline.
This avoids wasting resources for serving these requests, which are
likely to be discarded by online users anyway. The deadline guar-
antee is soft in the sense that the DAC may return with a response
time slightly over the specified deadline.

The aggregation quality and soft deadline guarantees essentially
make the semantics of the DAC primitive non-deterministic. Fig-
ure 3 shows the complete semantics of the DAC primitive, whose
non-determinacy is manifested in two places – the two possible ex-
ecution paths, and the non-deterministic subset of the contributing
partitions.



Algorithm 3.2: DAC(P;�LOCAL ; �REDUCE ; ILOCAL ; IREDUCE ; �; T )

Input: P = fp1; p2; :::; png: The set of n participating partitions.
Input: �LOCAL : The local processing operator.
Input: �REDUCE : The global reduction operator.
Input: ILOCAL: The input parameters for �LOCAL .
Input: IREDUCE : The input parameters for �REDUCE .
Input: �: The aggregation quality guarantee (0 < � � 1).
Input: T : The soft deadline guarantee.
Returns: hs;Q; ri: The status s ( success or fail ), contributing par-
titions Q, and aggregation result r.

Execution path 1.

(
// Request cannot be fulfilled due to node failures
// or resource constraint.
return (h fail ;nil ;nil i)

Execution path 2.

8>>>>>>>><
>>>>>>>>:

// Request fulfilled within or close to the deadline T .
Q a subset of P with m (m � �� n) partitions
for i 1 to m

do ri  �LOCAL(qi; ILOCAL)
r  r1
for i 2 to m

do r �REDUCE(r; ri; IREDUCE)
return (h success ; Q; ri)

Figure 3: The complete DAC semantics. The non-determinacy of the
semantics is manifested in two places. (1) the two execution paths;
(2) the non-deterministic subset Q.

3.3 DAC Programming Interface
The DAC programming interface consists of two parts. On the

service consumer side, it specifies how to invoke a DAC request.
On the service provider side, it specifies how to write service han-
dlers (callback functions) that will be used by the Neptune run-time
system to fulfill DAC requests.

The C++ interface for DAC invocation is shown in Figure 4 (a
variation for stream-based calls is not presented due to the space
constraint). The first argument is an opaque Neptune client handle
which links to the states of a Neptune client (service consumer).
This handle is obtained during the instantiation of a Neptune client.
The class NeptuneCall specifies a registered request handler on
a Neptune service provider (such as the name and version of the
handler). The class NeptuneData maintains structured and typed
data in a platform-independent manner.

bool NeptuneDAC(
// Input parameters:
NeptuneCltHandle & h, // Neptune client handle
char * svc_name, // service name
set<int> & partitions, // participating partitions
NeptuneCall & local, // local processing operator
NeptuneCall & reduce, // global reduction operator
NeptuneData & prm_local, // parameters for local
NeptuneData & prm_reduce, // parameters for reduce
double aqg, // aggreg. quality guarantee
double deadline, // soft deadline guarantee
// Output parameters:
NeptuneData & result, // aggregation results
set<int> & ctrb_parts // contributing partitions

);

Figure 4: The C++ interface for the DAC primitive.

On the service provider side, a service library provides the imple-
mentation of two callback functions corresponding to the two oper-
ators specified in the DAC interface. The functions are required to

take the typedef interfaces shown in Figure 5. For both interfaces,
the first parameter is an opaque Neptune service handle which links
to the states of a Neptune service instance. Note that the interfaces
shown in Figure 5 pass input and output data in a message-based
style through the NeptuneData objects.

// local processing operator interface definition
typedef bool op local(

// Input parameters:
NeptuneSvcHandle & h, // Neptune service handle
int part_id, // partition ID
NeptuneData & parameters, // request parameters
// Output parameters:
NeptuneData & result // local processing result

);

// global reduction operator interface definition
typedef bool op reduce(

// Input parameters:
NeptuneSvcHandle & h, // Neptune service handle
NeptuneData & src1, // reduction input source 1
NeptuneData & src2, // reduction input source 2
NeptuneData & parameters, // request parameters
// Output parameters:
NeptuneData & result // reduction output

);

Figure 5: The C++ typedef interfaces for operator callback func-
tions. A local processing operator is required to have the type
op local, and a global reduction operator is required to have the
type op reduce.

3.4 Comparing DAC with MPI Reduce
Conceptually, DAC is similar to the MPI reduce primitive which

aggregates data from participating MPI nodes to a root node through
a reduction operator. To a certain degree, the design of the DAC
programming interface has been influenced by the MPI reduce prim-
itive [8, 20]. However, our work differs from prior work for sup-
porting MPI reduce primitives in significant ways. First, MPI re-
duce does not tolerate node failures, so the MPI reduce operation
would fail if any of the participating MPI node fails. Second, MPI
programs are less restrictive on interactive responses and MPI re-
duce does not require deadline guarantee. Finally, MPI relies on
a procedure programming model while Neptune uses a stateless
request-driven model. As a result, service programmers must spec-
ify an additional local processing operator in a DAC invocation.

4. RUNTIME SUPPORT
There are two objectives in the runtime system design for DAC.

The first objective is to minimize the service response time with
sustained throughput in both homogeneous and heterogeneous en-
vironments. Our second goal is to minimize the impact of node
failures and unresponsiveness. Figure 6 shows the overall system
architecture for DAC. Upon receiving a DAC invocation, the DAC
client module constructs a reduction tree and assigns participating
service instances to tree nodes. It then multicasts this information
with the actual request to all participating providers. All service
providers then perform the local processing operation, and coop-
erate together to aggregate data from the bottom of the tree to the
root. Specifically, each provider aggregates the local processing
results with datasets returned from its children. Once it finishes ag-
gregating data from all its children (or if it does not have any child,
or the request times out), it then sends the local aggregation results
to its parent (or sends back the final result to the original service



consumer if it is the root). This process continues until the final
result reaches the service consumer.
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Figure 6: Overall system architecture for DAC.

On top of this architecture, our runtime system design targets two
issues: (1) How to build a global reduction tree to exploit partition-
level parallelism? (2) How to efficiently and reliably serve highly
concurrent service requests on each provider? We address the first
issue in Sections 4.1 and 4.2. The second issue will be studied in
Sections 4.3 and 4.4. Section 4.5 discusses several other implemen-
tation issues.

4.1 Reduction Tree Formation Schemes
In this section, we present three reduction tree formation schemes,

as illustrated in Figure 7.
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Figure 7: Tree formation schemes: (a) Base (b) Flat (c) Hierarchical.

(1) The baseline scheme (Base): The first scheme is the base-
line scheme that performs data aggregation when there is no special
support from the runtime system. As shown in Figure 7 (a), in the
Base scheme, a service consumer initiates invocations on all partic-
ipating partitions, collects results from these partitions, and aggre-
gates these results. The main problem of this approach is that the
service consumer is responsible for all aggregation work and may
quickly become the bottleneck when request demand increases.

(2) Flat tree with delegated roots (Flat): In the second scheme,
as shown in Figure 7 (b), a service consumer delegates the aggre-
gation work to a service provider, and chooses different delegated
roots for different DAC requests. This allows the system to handle
high request demand without saturating either the service consumer
or any of the service providers. However, the response time of this
Flat scheme is not satisfactory because the aggregation work is se-
rialized on a root node.

(3) Hierarchical tree with delegated roots (Hierarchical): As
shown in Figure 7 (c), the third scheme improves from the Flat

Tree Formation Scheme Response Time Throughput

Base � �

Flat � X

Hierarchical X X

Figure 8: A qualitative comparison of the three schemes.

scheme by replacing the flat reduction tree with a hierarchical tree.
A balanced hierarchical tree with appropriate width and depth can
improve response time by parallelizing the aggregation work on all
non-leaf nodes. This is inspired by the tree-based reduction designs
used in MPI [3, 8]. We further extend the previous work by inves-
tigating the dynamic formation of a reduction tree for each service
call. The tree formation must be load-aware so that the total amount
of work for local computation and aggregation is evenly distributed.
This allows the response time to be minimized while maintaining
sustained throughput. We present the details in the next section.

Figure 8 summarizes the performance differences of the above
three tree formation schemes. A check mark “X” means the method
performs well for achieving the specified objective while a “�” rep-
resents the opposite. The Hierarchical scheme performs best both
in terms of response times and throughput, while the Base scheme
performs worst.

To illustrate the quantitative performance differences of these
three schemes, we consider the following special case with sim-
plified assumptions. Suppose all servers are homogeneous while
the local processing cost and the binary reduction cost are s and
r respectively at each server1. Also assume the number of parti-
tions in every DAC request is n. The optimal throughput for the
Flat and Hierarchical schemes is estimated as n

ns+(n�1)r
. This is

achieved when all nodes are kept busy all the time. In compari-
son, the optimal throughput for the Base scheme is estimated as
min

�
1
nr
; 1
s

	
. In this case, the consumer becomes the bottleneck

when the total aggregation work outweighs its local service work,
i.e., nr > s. In terms of minimum service response time, the Base
and Flat schemes are in the order of O(n) while the Hierarchical
scheme is in the order of O(log n).

4.2 Load-Adaptive Tree (LAT) Formation
The goal of our hierarchical tree formation scheme is to mini-

mize the response time with sustained throughput. Load balance is
important in a concurrent execution environment since the response
time is always dependent on the slowest node. Thus, our goal can
be broken down into two parts: (1) reducing load imbalance when
there is high load variation on different nodes; (2) minimizing the
response time when load is well balanced. To achieve the above
objectives, we design a hierarchical reduction tree by considering
the tree shape and the mapping of servers (service providers) to tree
nodes.

Tree shape: We want to control the tree shape for two reasons:
(1) The outgoing degree of a node reflects the aggregation work
assigned to the node. Thus, it can be leveraged to balance load and
indirectly affect the response time. (2) The tree height indicates
the critical path length, which directly affects the response time.
Therefore, deep tree should be avoided to improve the response
time, especially when load is balanced.

Node mapping: Once the shape of a reduction tree is deter-
mined, the next step is to map the actual servers to the tree nodes.

1We use a uniform cost metric in this calculation even though real costs contain several
factors including CPU processing, network and disk I/O. Our definition of operation
costs is the consumption of the most critical resource measured in time, e.g., the CPU
processing time for a CPU-intensive operation (divided by the number of processors
for multi-processor servers).



We introduce a load-aware node placement method in which busy
service providers will be mapped to tree nodes with few children
nodes. Compared with a baseline random approach in which nodes
are mapped randomly, the load-aware approach has two advan-
tages. First, it can be more effective in balancing workload among
service providers, especially in a heterogeneous environment. Sec-
ond, unresponsive or slow servers can be placed at the leaf nodes
and they can be discarded if necessary (as will be discussed in Sec-
tion 4.4).

The load-adaptive tree algorithm: Based on the above discus-
sion, we use two heuristics to guide our algorithm design. (1) The
leaf nodes in a reduction tree do not perform aggregation, and thus
servers with heavy workload are placed in leaf nodes. On the other
hand, partitions with less workload will be placed in interior nodes.
In particular, the reduction tree root will be placed at the server with
the lightest workload since it does the most amount of aggregation
work. (2) When all servers are similarly loaded, the response time
is normally determined by the longest path. So longer path should
be assigned to partitions with relatively less load.

Our load-adaptive tree formation algorithm dynamically
constructs a reduction tree for each DAC request based on the run-
time load information on all nodes. It consists of four steps:

(1) Runtime information collection: First, we collect the cur-
rent load on each server, and estimate the costs of the binary aggre-
gation and service operation on each server. These information are
used in subsequent steps.

(2) Assigning reduction operations to nodes: There are n� 1
reduction operations to be distributed among n nodes. The assign-
ment is done in a way that less loaded servers will do more aggre-
gation (larger outgoing degree). This can be accomplished step by
step by assigning a reduction operation to the least-loaded server.
Figure 10 (a) illustrates this process with an example that assigns 7
reduction operations to 8 servers. Numbers on the reduction boxes
represent the algorithm steps. For example, at the first step, one
reduction is assigned to server A. In the end, server A is assigned
four reduction operations.

(3) Tree construction: Then we build a load-adaptive tree in the
lexicographical breadth-first order. The server that is assigned the
most reduction operations is placed to the root and this placement
determines the outgoing degree of the root (i.e., a set of unmapped
child nodes for the root). Then the following steps are repeated:
the server with the most reduction operations among the remain-
ing unplaced servers is placed to the unmapped tree node with the
smallest depth. A tie is broken by first placing a server with the
higher estimated load. Figure 10 (b) illustrates a LAT derived from
Figure 10 (a).

(4) Final adjustment: A final step is employed to ensure that
the tree height is controlled by log n. We check all subtrees in a
breadth-first order and if a subtree is a linked list, i.e., the outgoing
degree of each non-leaf node is one, we replace this subtree with
a load-aware binomial tree. This tree is built as follows: (1) Sort
tree nodes in the descending order of their outgoing degrees, and
break ties by using the increasing order of node depths (the root
has depth 0). (2) Sort servers based on their workload in ascending
order. (3) Match servers with the tree nodes one by one following
the above sorted order.

The complete algorithm is summarized in Figure 9. Its time com-
plexity is O(n log n), which can be achieved using a heap.

The above load-adaptive tree construction ensures the following
two properties2: (1) If node A is less loaded than node B, then
node A will be assigned more children than node B. (2) If node A
and node B are of the same depth from the root, and node A is less

2In the following discussion, we use the term node to denote both a certain node in
the reduction tree and the server assigned to that node.

1. Collect the current load on each server. Then estimate the costs of
a binary reduction operation and service operation on each server.

2. For n nodes, there are n� 1 reduction operations. We assign them
one by one to n servers by repeating the follow steps n� 1 times.

� Find the least-loaded server with one additional reduction
assigned.

� Assign one reduction operation to this server and adjust the
load estimation on this server.

3. Map servers to tree nodes and form a tree shape based on the above
assignment:

(a) First, we map the server with the most reduction operations
as the root and setup its unmapped child nodes.

(b) Repeat the following steps n-1 times until all servers are
mapped.

� Pick up an unmapped server with the largest aggrega-
tion work. If there is a tie, pick up one with the largest
total workload.

� Map this server to an unmapped tree node with the
smallest tree depth.

4. Scan all nodes in the tree to ensure the tree height is controlled by
log n: Examine each subtree and if it is a linked list, replace this
subtree with a load-aware binomial tree.

Figure 9: LAT: Load-adaptive tree formation algorithm.

loaded than node B, then the depth of the subtree rooted from A
is larger than the depth of the subtree rooted from node B. That
means the algorithm tries to assign less loaded nodes to a longer
path.
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Figure 10: Constructing an 8-node load-adaptive tree: (a) Assign 7
reduction operations to 8 servers (white boxes - the current workload;
stripe boxes - service operation costs; gray boxes - reduction operation
costs; numbers show the order of assignments). (b) The result load-
adaptive tree.

4.3 Node-level Concurrency Management
Our initial design allocates one thread to execute the local pro-

cessing operation and then block waiting for results from other par-
titions for reduction. When all threads in the fixed-size thread pool
are blocked, no further requests can be served even if the system is
not busy at all. This situation could be alleviated by increasing the
thread pool size. However, a large number of concurrent threads
could also degrade system performance substantially [25].

Motivated by previous studies on event-driven concurrency man-
agement for Web and network services [14, 25], our solution is to
introduce an event driven mechanism for data aggregation support.
When a thread needs to wait for results from child nodes, the sys-
tem registers its interested events and releases this thread. Figure 11
shows the state machine of our event-driven design. The states are
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Local processing is done

A new request is received

A C

A result is received from a child node

No child node

All results are
aggregated

Time
out

Figure 11: State machine of event-driven aggregation: (A) Local pro-
cess initiated. (B) Request partially processed. (C) Results ready to be
sent to the parent.

defined as follows: (1) State A: A new request is received and the
local processing is initiated. (2) State B: The request is partially
processed and is pending for results from its children to be aggre-
gated. (3) State C: The request is completed locally (i.e., it has ag-
gregated results from all its children), or is timed out; and is ready
to be sent to the parent.

Figure 12 shows the node-level architecture for aggregation. It
also shows the stages corresponding to the states in Figure 11.
When a request comes in, it is placed in a request queue. When it
gets its turn to be served, the service function is located in the ser-
vice library and a thread or a thread-attached process3 is launched
to serve the request. The thread also establishes connections to
child nodes based on its position in the reduction tree.

When the service operation is done, the local result from the ser-
vice operation along with the interested socket events of established
connections are placed into an aggregation pool. There is a dedi-
cated thread in the aggregation pool watching on all the registered
events. When an event occurs, it will be placed into an event queue
along with the partial result. There is also a thread pool associated
with the event queue. Events are served in the similar manner as
requests. If not all results are received from the child nodes, the
partial result is again placed back into the aggregation pool for fur-
ther processing. Otherwise, the aggregated result will be delivered
to the parent node.

Notice that we assign higher priorities to threads serving the
event queue than those serving the request queue. This technique
improves the mean response time following the shortest job first
heuristic.

Event
Queue

Service
Thread Pool

Aggregation
Thread Pool

Request
Queue

State A State B

Incoming
requests

Local partitions

Partial Results

System Area Network

State C

Figure 12: Node-level aggregation architecture.

The above procedure is completely transparent to service pro-
grammers. A service programmer only needs to provide a ser-
vice function and aggregation function as stated in Section 3. This
achieves the efficiency of the event-driven model while maintaining
the simplicity of the thread programming model.

3A thread-attached process is a process paired with a thread. The process executes
the request while the thread collects the result from the process. This achieves fault
isolation without modification of the service library.

4.4 Handling Unresponsiveness and Failures
This section discusses methods to exclude faulty or unresponsive

nodes in data aggregation. If a hardware or software component
stops working completely, the loss of continuous heartbeat mes-
sages allows each node quickly aware of failures. Subsequent DAC
invocations will exclude these faulty nodes gracefully from the re-
duction tree. When services are replicated, failed partitions can
be excluded while replicas can be used to achieve fault tolerance.
On the other hand, unresponsive nodes may appear normal with
periodic heartbeats. When unresponsive nodes are included in a re-
duction tree, they will not only prolong the overall response time,
they could also become the bottleneck and significantly reduce the
system throughput.

Our load-adaptive reduction tree design and event-driven request
processing is able to alleviate the problems caused by node un-
responsiveness to a certain degree. The load-adaptive tree places
unresponsive servers in the leaf nodes since they often have the
highest observed workload, and thus limit the scope of their ad-
verse effects. The event-driven concurrency management helps the
handling of unresponsive nodes by releasing thread resources from
being blocked by unresponsive nodes. Therefore, an aggregation
node can continue serve other requests although the previous re-
quests are blocked by unresponsive nodes.

We now present another technique called Staged Timeout which
imposes different soft deadlines on different aggregation nodes to
further minimize the impact of unresponsive nodes. We assign a
shorter deadline for a node that is closer to the bottom of the tree.
In this way, when a node is timed out, its parent still has ample
time to pass the partial aggregation results (excluding the results
from the failed child) back to the root. The deadline assignment
is done in a recursive fashion and can be calculated from the root
to the bottom of the tree. Initially, the root of the reduction tree is
assigned the same deadline as specified in the DAC request. The
deadline for node x with parent y can be recursively calculated as
Dx = Dy � aRx � �, where Dy is the deadline of node y, and
Rx is the rank of node x among its siblings. We rank all siblings of
a common parent based on the sizes of subtrees rooted from these
sibling nodes (in ascending order). In the formula, � is a constant
to cover various overheads.

In the staged timeout scheme, when there are k unresponsive
nodes, we will lose exactly k partitions in the final aggregation re-
sults. On the contrary, in the uniform timeout scheme where all
nodes have the same deadline as the root, k unresponsive nodes

will cause min
n
2dlog ke+1 � 1; n� 1

o
partition losses. When k

is small, the amount of partition loss under the uniform timeout
scheme is about twice as much as that under the staged timeout
approach.

4.5 Other Implementation Issues
(1) Determining Server Workload: Several previous studies

use the request queue length on each node as the load index [26].
We extend it to consider the aggregation work associated with each
request. We calculate the load for each request in the queue asLi =
s+��a, where s is the mean service time, a is the mean aggregation
time and � is the number of reduction operations associated with
this request. The summation of request cost (Li) represents the
load index of this server. In terms of aggregation and local service
cost, we approximate it using CPU consumption acquired through
the Linux /proc file system.

(2) Dealing with Staled Workload Information: Workload in-
formation is disseminated periodically through multicast. Multicast
at a high frequency is prohibitively expensive while low frequency
multicast results in stale load information [18]. Using staled load



information could lead to flocking effect, i.e., all service requests
tend to be directed to the least loaded server between consecutive
workload announcements. In our implementation, we use a con-
trolled random correction method for load prediction. First, each
node still collects the load information from the multicast chan-
nel. Second, the Neptune consumer module randomly polls load
information from a few nodes for every service invocation. For
other nodes, we take the multicast load information as the base and
apply a random correction to it. The deviation of the randomness
increases along with the staleness of the multicast load information.

(3) Reducing Network Overhead: In our implementation, a
service consumer uses multicast to disseminate the reduction tree
information along with the actual request to the service providers.
We implement a reliable multicast using the reduction tree as the
acknowledgment tree. We also use a TCP connection cache to
avoid frequent expensive TCP connection set-ups and tear-downs.

5. EVALUATION
The DAC primitive and the runtime support techniques proposed

in this paper have been fully integrated in Neptune. Subsequently,
we have implemented or optimized several online services using
the DAC primitive. We will describe these applications and our
evaluation settings in Section 5.1.

Our system evaluation seeks to answer three questions. (1) How
easy is it to use DAC to program services (Section 5.2)? (2) How
effective is the proposed architecture to reduce response time with
sustained throughput? In particular, we assess the system's abil-
ity to handle heterogeneous cluster environments, node failures or
unresponsiveness (Section 5.3 to Section 5.5). (3) Is the system
scalable (Section 5.6)?

5.1 Evaluation Settings
The majority of the evaluation is done through experiments ex-

cept for the evaluation of system scalability, in which we use sim-
ulations for large-scale settings beyond the actual hardware config-
uration. We describe the (I) applications, (II) hardware platform,
(III) workload settings, (IV) simulation model, and (V) evaluation
metrics for our evaluation as follows:

(I) Applications: (1) Search engine document retriever (RET).
The RET service is a prototype document index searching com-
ponent for a search engine (as we discussed in Section 3.1). It
scans through a number of document index partitions and returns
an aggregated list of document identifications that are relevant to a
certain query. (2) BLAST protein sequence matcher (BLAST). The
BLAST service is based on NCBI's BLAST [1] protein sequence
matching package. The DAC primitive helps this application to
speed up the lengthy matching process over a partitioned protein
database. (3) Online facial recognizer (FACE). The FACE ser-
vice reassembles the case where cameras at airport security check-
points take pictures of passengers, and compare them at real time
against an image database of wanted criminals. The similarity be-
tween two facial images is calculated using the eigenface algo-
rithm [22]. The image database is partitioned and we use DAC to
facilitate fast response, which is very critical to avoid delaying pas-
sengers. (4) Microbenchmark (MICRO). In addition to the above
three applications, we also implemented a microbenchmark appli-
cation, in which we use CPU spinning with different lengths for
local processing and global reduction operations. An advantage of
using this microbenchmark is that we can control service granular-
ities and isolate application-specific artifacts.

(II) Hardware platform: All the experimental evaluations were
conducted on a rack-mounted Linux cluster with 30 dual 400 Mhz
Pentium II nodes (with 512MB memory) and 4 quad 500 Mhz Pen-
tium II nodes (with 1GB memory). Each node runs RedHat Linux

(kernel version 2.4.18), and has two Fast Ethernet interfaces. All
nodes are connected by a Lucent P550 Ethernet switch with 22 Gb/s
backplane bandwidth.

(III) Workload settings: Due to space constraint, our experi-
mental evaluation mainly focuses on two of the four applications –
RET and MICRO. Our extended study showed that results obtained
from these two applications are quite representative. For RET, the
service data are divided into 28 partitions (24 on dual-CPU nodes
and 4 on quad-CPU nodes), each of which is between 1GB to
1.2GB (and cannot be completely fit in memory). The evaluation
is driven by a trace obtained from http://www.ask.com/,
which contains query terms and timestamps4. The trace contains
only uncached queries and exhibits little temporal locality. We pro-
portionally adjust request arrival intervals to generate desired re-
quest demand. The RET service is fairly coarse grained and the
observed maximum throughput of RET is below 20 req/sec on a
dual-CPU node. Therefore, we choose the settings of MICRO to
represent a fine-grain service. The spin times for the local process-
ing operation and global reduction operation follow the exponential
distribution, with their means being 25ms and 5ms respectively.
We also model the request arrival as a Poisson process for MICRO.
The soft deadline guarantees for both services are set to be 2 sec-
onds.

(IV) Simulation model: Our simulator is in fact a by-product of
our architecture design and has been extensively used to aid choices
of various design alternatives (such as reduction tree schemes or
staged timeout policies). The simulation model closely reassem-
bles the real situation of the MICRO service. Request arrival is
modeled as a Poisson process. Each service node is modeled as a
multi-processor node with two non-preemptive FIFO task queues
(one for reduction operations and one for local processing opera-
tions). In the following simulations, all servers have been config-
ured with two processors. The service and reduction time follow
exponential distributions. The TCP and UDP packet delays in our
simulation are 170�s and 145�s respectively, following real mea-
surement results.

(V) Evaluation metrics: Two performance metrics are used in
our evaluation. (1) Response time. This is the average response
time of successful requests – requests that are completed within
the specified deadlines and meet the service quality requirements.
(2) Throughput. We use both the conventional throughput met-
ric and an enhanced quality-aware throughput in our performance
study. The quality-aware throughput is introduced to measure the
system performance under node failures or unresponsiveness and it
will be described in Section 5.5 in more detail.

5.2 Ease of Use
We evaluate the usability of DAC through the amount of pro-

gramming effort on the data aggregation parts of the four applica-
tions we have implemented. For this purpose, we first implemented
(or ported) the four applications under Neptune and used a client-
side loop to perform data aggregation over a set of partitions. We
then let a graduate student, who has moderate familiarity with Nep-
tune but has never used the DAC primitive before, optimize the data
aggregation loop using DAC. We report the code size change after
the optimization, and the amount of time spent on the optimization
(including the debugging time). The results are shown in Figure 13,
in which we also list the original code sizes of the applications. As
we can see, little effort is required to optimize data aggregation
operations using DAG. Specifically, the code size increase ranges
from 70 to 300 lines, and it takes at most two days to learn the DAC
primitive, revise the code, and debug them. These results demon-
strate that DAC is easy to learn and use.

4IP addresses are filtered out for privacy reasons.



Service Code Size Code Size Change Programming Effort

RET 2384 lines 142 lines 1.5 days
BLAST 1060K lines 307 lines 2 days
FACE 4306 lines 190 lines 1 day

MICRO 400 lines 77 lines 3 hours

Figure 13: Ease-of-use of the DAC primitive.

5.3 Tree Formation Schemes
In this section, we compare the impact of different tree formation

schemes on system performance. Particularly, we demonstrate that
the load-adaptive tree formation scheme performs the best to reduce
response time with sustained throughput, for both homogeneous
and heterogeneous environments.

We compare among four tree formation schemes. (1) Base: the
baseline scheme where data aggregation is performed by the ser-
vice consumer. (2) Flat: all participating nodes form a flat tree
whose root is randomly picked. (3) Binomial: all participating
nodes form a binomial tree and they are assigned to tree nodes ran-
domly. (4) LAT: our load-adaptive tree formation scheme.

We first show the results under a homogeneous setting with 24
dual-CPU nodes. Figure 14 and Figure 15 show the system through-
put and response time respectively as functions of the incoming
request rate. Each figure contains two graphs corresponding to the
MICRO and RET services respectively. As we can see, for both ser-
vices, Base performs the worst because all requests flow through
the same root which overwhelms the root node. As a result, the
throughput of Base quickly drops to close to zero and the response
time increases to the deadline. For the remaining three schemes,
they perform similarly when the request demand is low; and when
the request demand is high, Flat performs the worst and LAT per-
forms the best for both throughput and response time. Additionally,
the advantage of LAT is more evident in terms of response time
over the other two schemes. Specifically, for MICRO, the response
time of LAT is up to 38:7% better than Binomial and 39:8% better
than Flat; for RET, the response time of LAT is up to 16:3% better
than Binomial and 39:0% better than Flat. These results confirm
that our load-adaptive tree shape design is effective to reduce re-
sponse time with sustained throughput.
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Figure 14: System throughput under different tree formation schemes
in a homogeneous environment.

We further compare the tree formation schemes in a heteroge-
neous setting with 20 dual-CPU nodes and 4 quad-CPU nodes.
The goal of this experiment is to show that LAT is even more ef-
fective to balance load and reduce response time in heterogeneous
environments. We did not show the results for Base, which per-
forms too poor to make it relevant to this study. The results are
shown in Figure 16 (throughput) and Figure 17 (response time).
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Figure 15: Response time under different tree formation schemes in a
homogeneous environment.

As we can see, LAT again outperforms Binomial and Flat for both
throughput and response time. Particularly, the throughput differ-
ences between LAT and the other two schemes become more evi-
dent than the results in a homogeneous setting (Figure 14). This is
due to the fact that LAT is able to make use of the extra process-
ing power in the quad-CPU nodes by assigning more workload to
those nodes. Specifically, for MICRO, the throughput of LAT is
up to 22:5% better than Binomial and 29:3% better than Flat; for
RET, the throughput of LAT is up to 21:0% better than Binomial
and 29:9% better than Flat. Additionally, the response time differ-
ences between LAT and the other two schemes are also enlarged.
This is because LAT is more effective to balance load on all nodes,
and thus reduces the latency of the critical path in a reduction tree,
which is determined by the most loaded node. Specifically, for
MICRO, the response time of LAT is up to 55:1% better than Bi-
nomial and 62:3% better than Flat; for RET, the response time of
LAT is up to 25:3% better than Binomial and 54:8% better than
Flat. These results confirm that our load-adaptive tree shape design
is even more effective in a heterogeneous setting.
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Figure 16: System throughput under different tree formation schemes
in a heterogeneous environment.

In summary, our LAT tree formation scheme is effective to min-
imize response time with sustained throughput. And its advantage
becomes more evident in a heterogeneous environment.

5.4 Event-driven Aggregation
In this section, we evaluate the effectiveness of the event-driven

aggregation mechanism. We compare our system (ED) with a mod-
ified scheme in which worker threads are blocked while waiting for
results from their children. We call the second scheme NoED. We
run the MICRO service on 24 dual-CPU nodes. The results are
shown in Figure 18 (throughput) and Figure 19 (response time).
As we can see from Figure 18, when the incoming request rate is
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Figure 17: Response time under different tree formation schemes in a
heterogeneous environment.

low, both ED and NoED performs similarly. However, when the re-
quest rate grows beyond a certain point, the throughput for NoED
plunges. This is because it takes longer to serve each DAC re-
quest when the request demand increases, which will cause worker
threads on each node to be blocked for a longer time. When the re-
quest demand grows beyond a certain point, some nodes might even
become idle because all threads are blocked waiting for responses
from their children. This further reduces the system's capacity
to process DAC requests, and could eventually lead to deadlock.
Deadlocks are not released until the 2-second deadline is reached.
Additionally, from Figure 19, we can see that the response time
under NoED also increases dramatically after the plunging point.
These results demonstrate that the event-driven aggregation design
improves the system concurrency and is critical to maintain system
throughput under heavy load.
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Figure 18: System throughput with/without event-driven aggregation.
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Figure 19: Response time with/without event-driven aggregation.

5.5 Handling Node Unresponsiveness
The goal of this experiment is to show that our proposed archi-

tecture design is effective to handle node unresponsiveness. The
techniques employed in the architecture design can be broken down
into two categories according to their roles in the handling of node
unresponsiveness. The first category consists of the load-adaptive
tree formation scheme and the staged timeout policy. The load-
adaptive tree formation scheme assigns unresponsive servers to leaf
nodes. In addition to that, the staged timeout policy causes these
unresponsive leaf nodes to be timed out earlier and thus excludes
them from the reduction tree. Overall, the combination of these
two techniques eagerly prunes the unresponsive nodes from the re-
duction tree, thus we call it Eager-Pruning or EP. Without EP, an
unresponsive node could cause multiple node timeouts as discussed
in Section 4.4. The second category consists of the event-driven re-
quest processing scheme. Event-driven design prevents threads on
healthy nodes from being blocked by its slow or unresponsive chil-
dren. We call the second category Event-Driven or ED. Without
ED, an unresponsive node would block a worker thread on its an-
cestor nodes until the timeout period expires.

We evaluate the effectiveness of these techniques by comparing
four schemes: (1) No Eager-Pruning and no Event-Driven (None).
(2) Eager-Pruning without Event-Driven (EP only). (3) Event-
Driven without Eager-Pruning (ED only). (4) Eager-Pruning and
Event-Driven (EP+ED). Note that EP+ED corresponds to the real
implementation. In schemes with no Eager-Pruning, we use the bi-
nomial tree scheme with random node assignment, and all nodes in
a reduction tree have the same timeout value.

Different schemes may exhibit different capability to retain ag-
gregation qualities in the event of node unresponsiveness (i.e., to
minimize the partition losses from the final results). To reflect this
fact, we use the metric of quality-aware throughput instead of the
plain throughput metric. The quality-aware throughput is defined
as a weighed throughput where the weight is the aggregation qual-
ity for each request. For example, a request that returns the aggre-
gation result of 90% of the total partitions will be counted as 0:9
toward the quality-aware throughput.

We run the MICRO service with 24 dual-CPU nodes, and mea-
sure the quality-aware throughput over a period of 60 seconds.
Each data point is measured as the quality-aware throughput over
the past two seconds. During the whole period, two nodes become
unresponsive and then recover. The first node becomes unrespon-
sive at second 10 and recovers at second 30; and the second node
becomes unresponsive at second 20 and recovers at second 40. The
effect of node unresponsiveness is emulated by increasing the pro-
cessing time or reduction time of each request by 5 folds. The
incoming request rate is at 45 req/sec, which corresponds to 75%
system capacity level.
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The experimental results are shown in Figure 20. As we can see,
all schemes perform similarly when there is no node failure (be-
fore second 10). Right after the first node failure, the quality aware
throughput of all schemes plunges (second 12). This is caused by
the transient effect that all nodes are waiting for results from the
unresponsive node until the 2-second timeout period expires. After
second 12, None performs the worst among the four schemes be-
cause it suffers a high percentage of partition losses in each request
and exhibits low concurrency without using either EP or ED. EP
only improves from None during the period when only one node is
unresponsive (second 14 to 24), this is because EP places the only
unresponsive node as the direct child of the root node, and thus
limits the adverse effect of the unresponsive node (i.e., it blocks
only one worker thread on the root node). When the second node
fails, the unresponsive nodes quickly cause more working threads
to be blocked and lead to very low concurrency. On the other hand,
both ED only and EP+ED maintains high concurrency through
event-driven request processing, and thus can achieve much better
throughput even when two nodes become unresponsive. EP+ED
outperforms ED only by limiting the losses to only the unrespon-
sive nodes and thus improving the quality of processed requests.

The four schemes also exhibit different behaviors when both
nodes recover. ED only and EP+ED has a throughput surge due
to the residual effect that all old requests pending for timeout now
suddenly complete. On the other hand, the quality-aware through-
put of None and EP only remain at a low level. This is caused by
the fact that during the node unresponsiveness, the task queues in
both healthy nodes and unresponsive nodes grow excessively long;
and it takes a long time to clean up these already expired requests.

In conclusion, our architecture design is effective to handle node
unresponsiveness by eagerly pruning unresponsive nodes and using
event-driven request processing to avoid unresponsive nodes from
blocking worker threads.

5.6 Scalability Study
In this section, we verify the scalability of our architecture de-

sign. We first compare the experimental results with simulation re-
sults under small-scale settings and show that the simulation results
closely conform to the experimental results. Then we use simula-
tion to access the scalability of our architecture design under large-
scale settings.

Figure 21 shows the simulation results and experimental results
for the MICRO service for small-scale settings with 4 to 24 parti-
tions. We measure the system throughput and response time with
the request rate at 30 req/sec (corresponding to 50% system capac-
ity level). As we can see, the predicted throughput closely matches
the experimental results; and the predicted response time differs
from the experimental results by only a small constant. The latter
is mainly due to the fact that the simulator does not cover all sys-
tem overhead. This provides us with high confidence for relying on
simulations to predict the scalability of our architecture design.

Figure 22 shows the large-scale simulation results. We vary the
number of nodes from 4 to 512. We measure the system through-
put, and the response times under 50%, 60%, 70%, 80% and 90%
demand levels. As we can see, the maximum throughput varies lit-
tle when the number of nodes increases, and is very close to the
ideal throughput5 Additionally, the response time grows logarith-
mically with the increase of the number of nodes. These results
show that our architecture is scalable to a large number of nodes.

5The ideal throughput P can be calculated by nk

ns+(n�1)r
, where n is the number

of partitions, k the number of processors per node, and s and r the service times for
the local processing operation and the global reduction operation respectively.
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5.7 Evaluation Summary
In summary, our evaluation finds out: (1) The DAC primitive is

easy to use for implementing data aggregation operations. (2) The
LAT tree formation scheme is able to deliver low response time and
high throughput in both homogeneous and heterogeneous environ-
ments, in comparison with other tree formation schemes. (3) The
event-driven request processing is effective in maintaining accept-
able throughput under system overload. (4) The combination of
load-aware tree formation, event-driven request processing, and
staged timeout policy is able to gracefully handle node unrespon-
siveness. (5) Our architecture design is scalable to maintain system
throughput with logarithmic increase of response time for data ag-
gregation over a large number of partitions.

6. RELATED WORK
This work is a continuation of our previous research on Neptune:

a cluster-based software infrastructure for aggregating and replicat-
ing partition-able network services [17, 19]. It is closely related to
a group of studies on building cluster-based network services, such
as TACC [6], MultiSpace [7], and Ninja [24]. For instance, TACC
supports the transformation, aggregation, caching, and customiza-
tion for the construction of scalable Internet services [6]. The de-
sign of Neptune coincides with these systems in several aspects in-
cluding the single program multiple connection model and implicit
concurrency principle. Our work described in this paper comple-
ments these systems with efficient programming and runtime sup-
port for data aggregation operations. Although such support is cur-
rently built as part of the Neptune middleware system, the tech-
niques are equally applicable to other software infrastructures for
supporting cluster-based Internet services.

A number of message or stream-based service programming
paradigms are supported in the Tuxedo system [23]. However,



Tuxedo does not provide direct programming or runtime support
for data aggregate operations. Event-driven request processing has
been studied in Flash [14] and SEDA [25]. Flash specifically tar-
gets the construction of efficient Web servers and SEDA requires
application developers to explicitly program in an event-driven
model. In either case, significant additional effort may be needed
for supporting new applications. Our design takes advantage of
the semantics of the DAC primitive and encapsulates the state ma-
chine transition design inside the infrastructure. Thus our DAC
primitive exposes an easy-to-use interface and at the same time it
can achieve the efficiency offered by the event-driven concurrency
management.

MPI [20] also supports data reduction operations and several pre-
vious works have studied tree-based MPI reductions [8, 9, 10, 21].
Our DAC primitive targets service programming with different con-
cerns. MPI reduction does not concern about throughput optimiza-
tion, node failure, and deadline guarantees. Also previous tree-
based MPI reduction studies mainly focus on static tree shapes.
In contrast, our load-adaptive tree formation scheme dynamically
constructs the reduction tree using runtime load information.

Internet search services such as Google, Inktomi, and Teoma/Ask
Jeeves have implemented their customized data aggregation. While
there is no publication on these efforts, our goal is to provide a
more general framework for scalable data aggregation. Data aggre-
gation has also been studied in distributed database research [16]
and recently for wireless ad-hoc sensor networks [11]. These stud-
ies focus on SQL-based data aggregations while our DAC primitive
targets more general aggregation operations. Previous studies have
proposed and evaluated various load balancing policies for cluster-
based distributed systems [12, 18, 26]. These studies target load
balancing for service accesses each of which can be fulfilled at a
single node or a single data partition. These results can not be di-
rectly used for supporting data aggregation operations that involve
significant inter-node communication and synchronizations.

7. CONCLUDING REMARKS
This paper presents the design and implementation of the Data

Aggregation Call (DAC) primitive to exploit partition-based par-
allelism in Internet services to support scalable data aggregation
operations. Our architecture design leverages load information and
hierarchical tree shapes to improve response time with sustained
throughput in both homogeneous and heterogeneous environments.
Furthermore, several techniques are developed to handle unrespon-
sive nodes. We have successfully implemented several real appli-
cations with the DAC primitive. Our experimental and simulation
results demonstrate the ease-of-use of the DAC primitive, the effec-
tiveness of proposed techniques, and the scalability of our architec-
ture design.
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