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Abstract

MPI is a message-passing standard widely used for de-
veloping high-performance parallel applications. Be-
cause of the restriction in the MPI computation model,
conventional implementations on shared memory ma-
chines map each MPI node to an OS process, which suf-
fers serious performance degradation in the presence of
multiprogramming, especially when a space/time shar-
ing policy is employed in OS job scheduling. In this
paper, we study compile-time and run-time support for
MPI by using threads and demonstrate our optimiza-
tion techniques for executing a large class of MPI pro-
grams written in C. The compile-time transformation
adopts thread-specific data structures to eliminate the
use of global and static variables in C code. The run-
time support includes an efficient point-to-point com-
munication protocol based on a novel lock-free queue
management scheme. Our experiments on an SGI Ori-
gin 2000 show that our MPI prototype called TMPT us-
ing the proposed techniques is competitive with SGI’s
native MPI implementation in a dedicated environment,
and it has significant performance advantages with up
to a 23-fold improvement in a multiprogrammed envi-
ronment.

1 Introduction

MPI is a message-passing standard [3] widely used for
developing high-performance parallel applications. There
are a number of reasons that people use MPI on shared
memory machines (SMMs). First, new applications may
be required to integrate with existing MPI programs.
Second, code using MPI is portable to any parallel ma-
chine without platform restriction. This is especially
important for future computing infrastructures such as
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information power grids [1, 13], where resource avail-
ability, including platforms, dynamically changes for
running submitted jobs. Third, even though shared
memory programming is easier for developing a pro-
totype of parallel applications, it is hard to fully ex-
ploit the underlying architecture without careful con-
sideration of data placement and synchronization pro-
tocols. On the other hand, performance tuning for
SPMD-based MPI code on large SMMs is normally eas-
ier since partitioned code and data exhibit good data
locality.

MPICH [17] is a portable implementation of MPI
that delivers good performance across a wide range of
architectures. For SMMs, either a vendor has its own
implementation or uses MPICH. Efficient execution of
MPI code on an SMM is not easy since the MPI pro-
gramming model does not take advantages of the under-
lying architecture. MPI uses the process concept and
global variables in an MPI program are non-sharable
among MPI nodes. As a result, a conventional MPI
implementation has to use heavy-weight processes for
code execution and synchronization. There are two
reasons that process-based MPI implementations suffer
severe performance degradation on multiprogrammed
SMMs. First, it has been widely acknowledged in the
OS community that space/time sharing which dynami-
cally partitions processors among applications is prefer-
able [10, 20, 32, 34]. The modern operating systems
such as Solaris 2.6 and IRIX 6.5 have adopted such a
policy in parallel job scheduling. Therefore, the num-
ber of processors allocated to an MPI job can be smaller
than requested. In some cases, the number of assigned
processors may change dynamically. Thus, multipro-
gramming imposes great disadvantages for MPI jobs
because process context switch and synchronization are
expensive. Secondly, without sharing space among pro-
cesses, message passing between two MPI nodes must go
through the system buffer and buffer copying degrades
the communication efficiency of MPT code !.

1 An earlier version of SGI MPI enforced that the address space of
each MPI process is shared with every other. However, SGI eventually



In this paper, we propose compile-time and run-time
techniques that allow a large class of MPI C code to be
executed as threads on SMMs. The compile-time code
preprocessing eliminates global and static variables us-
ing thread-specific data structures, which results in safe
execution of MPI code. The run-time techniques pro-
posed in this paper are focused on efficient lock-free
point-to-point communication.

We assume that readers are familiar with the MPI
standard and will not present its definitions. Section 2
describes our current assumptions and related work.
Section 3 discusses compile-time preprocessing that pro-
duces thread-safe MPI code. Section 4 discusses the
run-time support for multi-threaded execution. Sec-
tion 5 presents our lock-free management for point-to-
point communication. Section 6 presents the experi-
mental results on the SGI Origin 2000. Section 7 con-
cludes the paper.

2 Assumptions and Related Work

Our first goal is to convert an MPI program (called
source program later on) to be “thread-safe” so that
the new program (called target program later on) will
yield the same result as the source program when it is
executed by multiple threads. To avoid confusion, the
term “MPI node” is used to refer to an MPI running
unit and the term “MPI process” is only used when
we want to emphasize that an MPI node is actually
a process. In the current work, we have made several
assumptions. 1) The total memory used by all the nodes
can fit in the address space of a process. 2) The total
number of files opened by all the nodes can fit in one
process’s open file table. 3) The source program does
not involve low-level system calls which are not thread-
safe such as signals. 4) Each MPI node does not spawn
new threads. Most programs written in MPI, however,
should meet our assumptions and we found no exception
in any of the MPI test programs we collected.

We assume that basic synchronization primitives such
as read-modify-write and compare-and-swap [18] are avail-
able and we use them for lock-free synchronization man-
agement. Actually, all modern microprocessors either
directly support these primitives or provide LL/SC [18]
for software implementation.

The importance of integrating multi-threading and
communication on distributed memory systems has been
identified in previous work such as the Nexus project [14].
Earlier attempts to run message-passing code on shared-
memory machines include the LPVM [35] and TPVM [12]
projects. Both projects do not address how a PVM pro-
gram can be executed in a multi-threaded environment
without changing the programming interface. Most of

gave up this design due to insufficient address space and software
incompatibility [27].

previous MPI research is focused on distributed mem-
ory machines or workstation clusters, e.g. [9]. The MPI-
SIM project [6, 7] has used multi-threading to simulate
MPI execution on distributed memory machines as we
will discuss in Section 3.1. Thread safety is addressed
in [3, 26, 29]. However, their concern is how multiple
threads can be invoked in each MPI node, but not how
to execute each MPI node as a thread. These studies
are useful for us to relax our assumptions in the future.

Previous work has also illustrated the importance
of lock-free management for reducing synchronization
contention and unnecessary delay due to locks [4, 5, 18,
21, 22]. Lock-free synchronization has also been used in
the process-based SGI implementation [17]. Theoreti-
cally speaking, some concepts of SGI’s design could be
applied to our case after considerations for thread-based
execution. However, as a proprietary implementation,
SGI's MPI design is not documented and its source code
is not available to public. The SGI design uses undoc-
umented low-level functions and hardware support spe-
cific to the SGI architecture, which may not be general
or suitable for other machines. Also, their design uses
busy-waiting when a process is waiting for events [27],
which is not desirable for multiprogrammed environ-
ments [19, 24]. Lock-free studies in [4, 5, 18, 21, 22]
either restrict their queue model to be FIFO or FILO,
which are not sufficient for MPI point-to-point commu-
nication, or are too general with unnecessary overhead
for MPI. A lock-free study for MPICH is conducted in
a version for the NEC shared-memory vector machines
and Cray T3D [16, 8, 2], using single-slotted buffers
for the ADI-layer communication. Their studies are
still process-based and use the layered communication
management which is a portable solution with overhead
higher than our scheme. In terms of lock-free manage-
ment, our scheme is more sophisticated with greater
concurrency and better efficiency since our queues can
be of arbitrary lengths and allow concurrent access by
a sender and a receiver.

Our study is leveraged by previous research in OS job
scheduling on multiprogrammed SMMs [10, 20, 32, 34,
33]. These studies show that multiprogramming makes
efficient use of system resources and space/time shar-
ing is the most viable solution, outperforming other al-
ternatives such as time sharing and co-scheduling [24],
for achieving high throughputs. The current version
of OS in both SGI and SUN multiprocessors support
space/time sharing policies.

3 Compile-time Support

The basic transformation needed to make the execution
thread-safe for MPI C code is elimination of global and
static variables. In an MPI program, each node can
keep a copy of its own permanent variables — variables



allocated statically in a heap, such as global variables
and local static variables. If such a program is exe-
cuted by multiple threads without any transformation,
then all threads will access the same copy of permanent
variables. To preserve the semantics of a source MPI
program, it is necessary to make a “private” copy of
each permanent variable for each thread.

3.1 Possible Solutions

Below we discuss three possible solutions and exam-
ples for each of them are illustrated in Figure 1. The
main () routine of a source program listed in Column 1 is
converted into a new routine called usrMain() and an-
other routine called thr_main() is created, which does
certain initialization work and then calls userMain().
This routine thr main () is used by the run-time system
to spawn threads based on the number of MPI nodes
requested by the user. We discuss and compare these
solutions in details as follows.

The first solution illustrated in the second column
of Figure 1 is called parameter passing. The basic idea
is that all permanent variables in the source program
are dynamically allocated and initialized by each thread
before it executes the user’s main program. Pointers
to those variables are passed to functions that need to
access them. There is no overhead other than parameter
passing, which can usually be done quite efficiently. The
problem is that such an approach is not general and the
transformation could fail for some cases.

The second solution, which is used in [7], is called ar-
ray replication. The preprocessor re-declares each per-
manent variable with an additional dimension, whose
size is equal to the total number of threads. There are
several problems with this approach. First, the number
of threads cannot be determined in advance at compile
time. MPI-SIM [7] uses an upper limit to allocate space
and thus the space cost may be excessive. Second, even
though the space of global variables could be allocated
dynamically, the initialization of static and global vari-
ables must be conducted before thread spawning. As
a result, function- or block-specific static variables and
related type definitions must be moved out from their
original lexical scopes, which violates the C program-
ming semantics. It is possible to provide a complicated
renaming scheme to eliminate type and variable name
conflicts, but the target program would be very difficult
to read. Finally, false sharing may occur in this scheme
when the size of a permanent variable is small or not
aligned to cache line size [25, 11].

Because of the above considerations, we have used
the third approach based on thread-specific data (TDS),
a mechanism available in POSIX threads [23]. Briefly
speaking, TSD allows each thread to associate a pri-
vate value with a common key which is a small integer.
Given the same key value, TSD can store/retrieve a

thread’s own copy of data. In our scheme, each perma-
nent variable is replaced with a permanent key of the
same lexical scope. Each thread dynamically allocates
space for all permanent variables, initializes those vari-
ables for only once, and associates the reference of those
variables with their corresponding keys. For each func-
tion that refers a permanent variable, this reference is
changed to a call that retrieves the value of this variable
using the corresponding key. Such a transformation is
general and its correctness not difficult to prove. There
will be no false sharing problem even for keys, because
keys are never altered after initialization. Notice that
certain thread systems such as SGI’s SPROC thread li-
brary do not provide the TSD capability; however, it
is still relatively easy to implement such a mechanism.
In fact, we wrote TSD functions for the SGI’s SPROC
library. In the example of Figure 1, two TSD functions
are used. Function setval(int key, void #*val) as-
sociates value “val” to a key marked as “key” and func-
tion void *getval(int key) gets the value associated
with “key”. In this example, a key is allocated stati-
cally. In our implementation, keys are dynamically al-
located.

3.2 TSD-based Transformation

We have implemented a preprocessor for ANSI C (1989)
to perform the TSD-based transformation. The actual
transformation uses dynamic key allocation and is more
complex than the example in Figure 1 since interaction
among multiple files needs to be considered and type
definitions and permanent variable definitions could ap-
pear in any place including the body of functions and
loops. We briefly discuss three cases in handling trans-
formation.

e Case 1: Global permanent variables. If a
variable is defined/declared as a global variable
(not within any function), then it will be replaced
by a corresponding key declaration. The key is
seen by all threads and is used to access the mem-
ory associated with the key. This key is initialized
before threads are spawned. In the thr_main()
routine, a proper amount of space for this variable
is allocated, initialized and then attached to this
thread-specific key. Notice that thrmain() is the
entry function spawned by the run-time system in
creating multiple MPI threads; thus the space al-
located for this variable is thread-specific.

e Case 2: Static variables local to a control
block. A control block in C is a sequence of code
delimited by “{” and “}”. Static variables must be
initialized (if specified) at the first time when the
corresponding control block is invoked and the lex-
ical scope of those static variables should be within



Source Program | Parameter passing Array Replication TSD
typedef int KEY;
static int i=1; static int Vi[Nproc]; static KEY key_i=1;
int thr_main() int thr_main(int tid) int thr_main()
{ { {
int *pi=malloc(sizeof(int)); int *pi=malloc(sizeof(int));
*pi=1; Vil[tid]l=1; *pi=1;
setval(key_i, pi);
usrMain(pi); usrMain(tid); usrMain();
} } }
int main() int usrMain(int *pi) int usrMain(int myid) int usrMain()
{ { { {
int *pi=getval(key_i);
it+; (*pi)++; Vi[myid]++; (*pi)++;
return i; return (*pi); return Vilmyid]; return (*pi);
} } } }

Figure 1: An example of code transformation. Column 1 is the original code. Columns 2 to 4 are target code

generated by three preprocessing techniques, respectively.

if (key_V==0) {
int new_key=key_create();
compare_and_swap(&key_V, 0, new_key);

}

if (getval(key_V)==NULL) {
T tmp=I;
void *m=malloc(sizeof (tmp));
memcpy (m, &tmp, sizeof (tmp));
setval(key_V, m);

}

Figure 2: Target code generated for a static variable
definition “static T V = I;”.

this block. The procedure of key initialization and
space allocation is similar to Case 1; however, the
key has to be initialized by the first thread that ex-
ecutes the control block. The corresponding space
has to be allocated and initialized by each thread
when they reach the control block for the first
time. Multiple threads may access the same con-
trol block during key creation and space initializa-
tion, so an atomic operation compare_and_swap is
needed. More specifically, consider a statement for
defining a static variable, static T V = I; where
T is a type, V is the variable name, and I is an
initialization phrase. This statement is replaced
with “static int key_V=0;” and Figure 2 lists
pseudo-code inserted at the beginning of a control
block where this static variable is effective. Note
that in the code, function key_create() generates
a new key and the initial value associated with a
new key is always NULL.

e Case 3: Locally-declared permanent vari-
ables. For a global variable declared locally within
a control block using extern, the mapping is rather

easy. The corresponding key is declared as extern
in the same location.

For all three cases, the reference to a permanent vari-
able in source MPI code is transformed in the same
way. First, a pointer of proper type is declared and dy-
namically initialized to the reference of the permanent
variable at the beginning of the control block where the
variable is in effect. Then the reference to this variable
in an expression is replaced with the dereference expres-
sion of that pointer, as illustrated in Figure 1, Column
4. The overhead of such indirect permanent variable
access is insignificant in practice. For the experiments
described in Section 6, the overhead of such indirection
is no more than 0.1% of total execution time.

4 Run-time Support for Threaded Execution

The intrinsic difference between the thread model and
the process model has a big impact on the design of run-
time support. An obvious advantage of multi-threaded
execution is the low context switch cost. Besides, inter-
thread communication can be made faster by directly
accessing threads’ buffers between a sender and a re-
ceiver. Memory sharing among processes is usually re-
stricted to a small address space, which is not flexible or
cost-effective to satisfy MPI communication semantics.
Advanced OS features may be used to force sharing of
a large address space among processes; however, such
an implementation becomes problematic, especially be-
cause it may not be portable even after OS or architec-
ture upgrading [27]. As a result, process-based imple-
mentation requires that inter-process communication go
through an intermediate system buffer as illustrated in
Figure 3(a). Thus a thread-based run-time system can
potentially reduce the number of some memory copy
operations.
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Figure 3: Illustration of inter-process message passing.

Notice that in our implementation, if message send is
posted earlier than the receive operation, we choose not
to let the sender block and wait for the receiver, in or-
der to yield more concurrency. This choice affects when
memory copying can be saved. We list three typical sit-
uations in which copy saving can take effect. 1) Mes-
sage send is posted later than message receive.
In this case, a thread-based system can directly copy
data from the sender’s user buffer to the receiver’s user
buffer. 2) Buffered send operations. MPI allows a
program to specify a piece of user memory as the mes-
sage buffer. In buffered send operation (MPI_Bsend()),
if send is posted earlier than receive, the sender’s mes-
sage will be temporarily copied to the user-allocated
buffer area before it is finally copied to the destina-
tion’s buffer. For process-based execution, since the
user-allocated message buffer is not accessible to other
processes, an intermediate copy from the user-allocated
buffer to the shared system buffer is still necessary. 3)
System buffer overflow. If the message size exceeds
the size of free space in system buffer, then the send
operation must block and wait for the corresponding
receive operation. In thread-based execution, a receiver
can directly copy data from a sender’s buffer. But in
the process-based environment, the source buffer has to
be copied in fragments to fit in the system buffer and
then to the destination buffer. Figure 3(b) illustrates
that copying needs to be done twice because the size of
a message is twice as large as the buffer size.

The thread model also allows us the flexibility in
design of a lock-free communication protocol to fur-
ther expedite message passing. A key design goal is to
minimize the use of atomic compare-and-swap or read-
modify-write instructions in achieving lock-free synchro-
nization. This is because those operations are much
more expensive than plain memory operations, espe-
cially on RISC machines in which memory bus is stalled
during an atomic operation. For example, on the Origin
2000 our measurement shows that plain memory access
is 20 times faster than compare-and-swap and 17 times
faster than read-modify-write. Our broadcasting queue
management is based on previous lock-free FIFO queue

studies [18, 22].

Finally, in our design and implementation, we adopt
a spin-block strategy [19, 24] when a thread needs to
wait for certain events.

In next section, we will discuss our point-to-point
communication protocol which is specifically designed
for threaded MPT execution.

5 Lock-free Management for Point-to-point Com-
munication

Previous lock-free techniques [5, 18, 21, 22] are normally
designed for FIFO or FILO queues, which are too re-
strictive to be applied for MPI point-to-point commu-
nication. MPI provides a very rich set of functions for
message passing. An MPI node can select messages to
receive by specifying a tag. For messages of the same
tag, they must be received in a FIFO order. A receive
operation can also specify a wildcard tag MPT_ANY_TAG
or source node MPI_ANY_SOURCE in message matching.
All send and receive primitives have both blocked and
non-blocked versions. For a send operation, there are
four send modes: standard, buffered, synchronized and
ready. A detailed specification of these primitives can
be found in [3, 30]. Such a specification calls for a more
generic queue model. On the other hand, as will be
shown later, by keeping the lock free queue model spe-
cific to MPI, a simple, efficient but correct implemen-
tation is still possible.
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Figure 4: The communication architecture.

Let N be the number of MPI nodes. Our point-to-
point communication layer consists of N X N channels.
Each channel is designated for one sender-receiver pair
and the channel from node P; to P; is different from
the channel from P; to P;. Each channel contains a
send queue and a receive queue. There are also ad-
ditional N queues for handling receive requests with
MPI_ANY_SOURCE as source nodes because those requests
do not belong to any channel. We call these queues
Any-Source queues (ASqueue). The entire communica-
tion architecture is depicted in Figure 4.

We define a send request issued by node s to be
matchable with a receive request issued by node r if: 1)
the destination node in the send request is r; and 2) the
source node in the receive request is s or MPT_ANY_SOURCE;
and 3) the tag in the send request matches the tag in



the receive request or the tag in the receive request is
MPI_ANY_TAG. In the simplest case of a send/receive op-
eration, if the sender comes first, it will post the request
handle? in the send queue, and later the receiver will
match the request. If a receive request is posted first,
the corresponding receive handle is inserted in a proper
receive queue.

Our design is quite different from the layered design
in MPICH. For the shared memory implementation of
MPICH [17, 16], N x N single-slotted buffers are used
for message passing in a lower layer. In a high layer,
each process has three queues: one for send, one for re-
ceive, and one for unexpected messages. Thus messages
from a sender with different destinations are placed in
one send queue, similarly receive handles for obtain-
ing messages from different sources are posted in the
same receive queue. This design is portable for both
SMMs and distributed memory machines. However, it
may suffer high multiplexing cost when there are many
queued messages with different destinations or sources.

The rest of this section is organized as follows. Sec-
tion 5.1 presents the underlying lock-free queue model.
Section 5.2 gives the protocol itself. Section 5.3 dis-
cusses the correctness of this protocol.

5.1 A Lock-free Queue Model

As we mentioned above, our point-to-point communica-
tion design contains 2N2+N queues. Each queue is rep-
resented by a doubly-linked list. There are three types
of operations performed on each queue: 1) put a handle
into the end of a queue; 2) remove a handle from a queue
(the position can be in any place.); 3) search (probe) a
handle for matching a message. Previous lock-free re-
search [18, 21, 22] usually assumes multiple-writers and
multiple-readers for a queue, which complicates lock-
free management. We have simplified the access model
in our case to one-writer and multiple-readers, which
gives us flexibility in queue management for better effi-
ciency.

In our design, each queue has a master (or owner)
and the structure of a queue can only be modified by
its master. Thus a master performs the first two types
of operations mentioned above. A thread other than
the owner, when visiting a queue, is called a slave of
this queue. A slave can only perform the third type
of the operations (probe). In a channel from P; to P,
the send queue is owned by P; and the receive queue is
owned by P;. Each ASqueue is owned by the MPI node
which buffers its receive requests with the any-source
wildcard.

Read/write contention can still occur when a master
is trying to remove a handle while a slave is travers-
ing the queue. Removing an interior handle by a mas-

2A handle is a small data structure carrying the description of the
send/receive request such as message tag and size.

ter needs careful design because some slaves may still
hold a reference and can result in invalid memory refer-
ences. Herlihy [18] proposed a solution to such a prob-
lem by using accurate reference counting for each han-
dle. Namely, each handle in a queue keeps the number
of slaves that hold references to this handle. A handle
will not be unlinked from the queue if its reference count
is not zero. Then when a slave scans through a queue,
it needs to decrease or increase the reference count of a
handle using an atomic operation. Such an atomic oper-
ation requires at least one two-word compare-and-swap
and two atomic additions [22], which is apparently too
expensive. Another solution is to use a two-pass algo-
rithm [22] which marks a handle as dead in the first pass
and then removes it in the second pass. This approach
is still not efficient because of multiple passes. We intro-
duce the conservative reference counting (CRC) method
that uses the total number of slaves which are travers-
ing the queue to approximate the number of live refer-
ences to each handle. Using such a conservative approx-
imation, we only need to maintain one global reference
counter and perform one atomic operation when a slave
starts or finishes a probe operation. This conservative
approximation works well with small overhead if the
contention is not very intensive, which is actually true
for most computation-intensive MPI applications.
Another optimization strategy called semi-removal
is used in our scheme during handle deletion. Its goal
is to minimize the chance of visiting a deleted handle
by future traversers and thus reduce searching cost. If
a handle to be removed is still referenced by some tra-
verser, this handle has to be “garbage-collected” at a
later time, which means other traversers may still visit
this handle. To eliminate such false visits, we introduce
three states for a handle: alive when it is linked in the
queue, dead when it is not, and semi-alive when a handle
is referenced by some traverser but will not be visited
for future traversers. While the CRC of a queue is not
zero, a handle to be removed is marked as semi-alive
by only updating links from its neighboring handles. In
this way, this handle is bypassed in the doubly-link list
and is not visible to the future traversers. Note that this
handle still keeps its link fields to its neighboring han-
dles in the queue. All semi-alive items will eventually
be declared as dead once the master finds that the CRC
drops to zero. This method is called “semi-removal” in
contrast to “safe-removal” in which the removal of a
handle is deferred until removing is completely safe.
Figure 5 illustrates steps of our CRC method with
semi-removal (Column 2) and those of the accurate ref-
erence counting method with safe-removal (Column 3).
In this example, initially the queue contains four han-
dles a, b, ¢, and d, and the master wants to remove b
and ¢ while at the same time a slave comes to probe the
queue. Note that the reference counting in column 3 is
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the reference count is also shown within each handle.

marked within each handle, next to the handle name.
For this figure, we can see that the average queue length
(over all steps) in Column 2 is smaller than Column 3,
which demonstrates the advantages of our method.

We have examined the effectiveness of our method by
using several micro-benchmarks which involve intensive
queue operations. Our method outperforms the accu-
rate reference counting with safe removal by 10-20% in
terms of average queue access times.

5.2 A Lock-free Point-to-point Communication Pro-
tocol

Our point-to-point communication protocol is best de-
scribed as “enqueue-and-probe”. The execution flow of
a send or receive operation is described in Figure 6. For
each operation with request R1, it enqueues R1 into an
appropriate queue. Then it probes the corresponding
queues for a matchable request. If it finds a matchable
request R2, it marks R2 as MATCHED and then proceeds
with the message passing. Notice that a flag is set by
atomic subroutine compare_and_swap() to ensure that
only one request operation can succeed in matching the
same handle. For systems that do not support sequen-
tial consistency, a memory barrier is needed between
enqueuing and probing to make sure that enqueuing
completes execution before probing. Otherwise, out-of-
order memory access and weak memory consistency in
a modern multiprocessor system can cause a problem
and the basic properties of our protocol studied in Sec-
tion 5.3 may not be valid.

send or receive request R1

enqueue(R1)

1

memory barrier|
(if necessary)

find matching request R2 find nothing
probe

match(R2)

|

O

Figure 6: Execution flow of a send or receive operation.

Both send and receive operations have the same ex-
ecution flow depicted in Figure 6 and their enqueue and
probe procedures are described as follows.

¢ Enqueue in receive operation: If a receive re-
quest has a specific source node, the receiver adds
the receive handle to the end of the receive queue.
If the receive request uses the any-source wildcard,
the receiver adds this handle to the ASqueue it
owns. Notice that an enqueued handle is attached
with a timestamp which is used to ensure the FIFO
receive order.

e Probe in receive operation: If the receive re-



quest specifies a source node, the receiver probes
the send queue in the corresponding channel to
find the first matchable handle in that queue. If
the receive request uses the any-source wildcard,
the receiver probes all NV send queues destined to
this receiver in a random order (to ensure fair-
ness). Notice that probing succeeds when the first
matchable handle is found because no order is de-
fined in MPI for send requests issued from different
senders.

¢ Enqueue in send operation: The sender adds
a send handle to the end of the send queue in the
corresponding channel.

e Probe in send operation: The sender probes
the receive queue in the corresponding channel and
the ASqueue owned by the receiver to find the first
matchable receive handle. If it succeeds in only
one of those two queues, it returns the request han-
dle it finds. If it finds matchable requests in both
queues, it will use their timestamps to select the
earlier request.

Since a flag is used to ensure that concurrent prob-
ings to the same handle cannot succeed simultaneously,
it is impossible that several sender-probe operations
match the same receive handle in a queue. It is however
possible that when probing of a send operation finds a
matchable receive handle in a queue, the probing of
this receive request has found another send handle. To
avoid this mismatch, the probing of a send operation
must check the probing result of this matchable receive
request and it may give up this receive handle if there is
a conflict. Similarly, a conflict can arise when a receiver-
probe operation finds a send handle while the probing
of this send handle finds another receive handle. Thus
the probing of a receive operation must wait until this
matchable send request completes its probing and check
the consistency. We call the above strategy mismatch
detection. Finally, there is another case which needs
special handling. If both the sender and the receiver
find each other matchable at the same time, we only
allow the receiver to proceed with message passing and
make the sender yield as if it did not find the matchable
receive request.

5.3 Correctness Studies

Our point-to-point message passing primitives such as
blocking or non-blocking communication are built on
the top of the above protocol. In [31], we have proven
that our protocol satisfies the following three basic prop-
erties. One can use these properties to ensure the cor-
rectness of higher level communication primitives.

e No double matching. One send (receive) re-
quest can only successfully match one receive (send)

request.

e No message loss. There exists no case such that
two matchable send-receive requests are pending
in their queues forever.

e No message reordering. There exists no case
such that the execution order of send requests is-
sued in one MPI node is different from the execu-
tion order of receive operations that are issued in
another MPI node and match these messages.

6 Experimental Studies

The purpose of the experiments is to study if the thread-
based execution can gain great performance advantages
in non-dedicated environments and be competitive with
the process-based MPI execution in dedicated environ-
ments. By “dedicated”, we mean that the load of a
machine is light and an MPT job can run on a requested
number of processors without preemption. Being com-
petitive in dedicated situations is important since a ma-
chine may swing dynamically between non-dedicated
and dedicated states. Another purpose of our experi-
ments is to examine the effectiveness of address-sharing
through multi-threading for reducing memory copy and
the lock-free communication management. All the ex-
periments are conducted on an SGI Origin 2000 at UCSB
with 32 195MHz MIPS R10000 processors and 2GB
memory.

We have implemented a prototype called TMPI on
SGI machines to demonstrate the effectiveness of our
techniques. The architecture of the run-time system is
shown in Figure 7. It contains three layers. The lowest
layer provides support for several common facilities such
as buffer and synchronization management, the middle
layer is the implementation of various basic communi-
cation primitives and the top layer translates the MPI
interface to the internal format.

Message Passing Interface
Pgmt-tot-lpomt Communicator
perations . Management
Collective
Operations
Message
Queues
System Buffer Synchronization
Management Management

Figure 7: Run-time system architecture of TMPI.

We use the IRIX SPROC library because the perfor-
mance of IRIX Pthreads is not competitive with SPROC.



The current prototype includes 27 MPI functions (MPI
1.1 Standard) for point-to-point and collective commu-
nications, which are listed in the appendix of this paper.
We have focused on optimization and performance tun-
ing for the point-to-point communication. Currently
the broadcast and reduction functions are implemented
using lock-free central data structures, and the bar-
rier function is implemented directly using a lower-level
IRIX barrier function. We have not fully optimized
those collective functions. This should not affect the
results we obtained through the experiments. We com-
pare the performance of our prototype with the SGI’s
native implementation and the MPICH. Note that both
SGI MPI and MPICH have implemented all MPT 1.1
functions; however those additional functions are inde-
pendent and integrating them into TMPI should not
effect our experimental results.

6.1 A Performance Comparison in Dedicated Envi-
ronments

The characteristics of the four test benchmarks we have
used are listed in Table 1. Two of them are kernel
benchmarks written in C for dense matrix multiplica-
tion using Canon’s method and a linear equation solver
using Gaussian Elimination. Two of them (Sweep3D
and Heat) are from the ASCI application benchmark
collection at Lawrence Livermore and Los Alamos Na-
tional Labs. HEAT is written in Fortran and we use
utility f2¢ to produce a C version for our test. Sweep3D
also uses Fortran. However, f2c cannot convert it be-
cause it uses an automatic array feature. We have man-
ually modified its communication layer to call C MPI
functions and eliminated one global variable used in its
Fortran code. Thus, our code transformation is applied
only to the C portion of this code.

Figure 8 depicts the overall performance of TMPI,
SGI and MPICH in a dedicated environment measured
by the wall clock time. We run the experiments multi-
ple times and report the average, when every MPI node
has exclusive access to a physical processor without in-
terfered by other users. We do not have experimental
results for 32 nodes because the Origin 2000 machine at
UCSB has always been busy. For MM, GE and HEAT,
we list megaflop numbers achieved since this informa-
tion is reported by the programs. For Sweep3D, we
list the parallel time speedup compared to single-node
performance.

From the result shown in Figure 8, we can see that
TMPI is competitive with SGI MPI. The reason is that
a process-based implementation does not suffer process
context switching overhead if each MPI node has ex-
clusive access to its physical processor. For the MM
benchmark, TMPI outperforms SGI by around 100%.
We use the SGI SpeedShop tool to study the execution
time breakdown of MM and the results are listed in

(A) Matrix Multiplication (B) Gaussian Elimination
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Figure 8: Overall performance in dedicated environ-
ments.

Table 2. We can see that TMPI spends half as much
memory copy time as SGI MPI because most of the
communication operations in MM are buffered send and
fewer copying is needed in TMPI as explained in Sec-
tion 4. Memory copying alone still cannot explain the
large performance difference and so we have further iso-
lated the synchronization cost, which is the time spent
waiting for matching messages. We observe a large
difference in synchronization cost between TMPI and
MPICH. Synchronization cost for SGI MPI is unavail-
able due to lack of access to its source code. One rea-
son for such a large difference is the message multiplex-
ing/demultiplexing overhead in MPICH as explained in
Section 5. The other reason is that communication vol-
ume in MM is large and system buffer can overflow dur-
ing computation. For a process based implementation,
data has to be fragmented to fit into the system buffer
and copied to the receiver several times; while in TMPI,
a sender blocks until a receiver copies the entire mes-
sage. For the HEAT benchmark, SGI can outperform
TMPI by around 25% when the number of processors
becomes large. This is because the SGI version is highly
optimized and can take advantages of more low-level
OS/hardware support for which we do not have access.
For the GE and Sweep3D, SGI and TMPI are about
the same.

6.2 A Performance Comparison in Non-dedicated
Environments

In a non-dedicated environment, the number of proces-
sors allocated to an MPI job can be smaller than the re-
quested amount and can vary from time to time. Since
we do not have control over the OS scheduler, we can-
not fairly compare different MPI systems without fixing
processor resources. Our evaluation methodology is to



Benchmark | Function Code size | #permanent variables | MPI operations
GE Gaussian Elimination 324 lines 11 | mostly MPI_Bcast
MM Matrix multiplication 233 lines 14 | mostly MPI_Bsend
Sweep3D 3D Neutron transport 2247 lines 7 | mixed, mostly recv/send
HEAT 3D Diffusion PDE solver | 4189 lines 274 | mixed, mostly recv/send
Table 1: Characteristics of the tested benchmarks.
Kernel computation | Memory copy Other cost Synchronization
(including synchronization)
TMPI 11.14 sec 0.82 sec 1.50 sec 0.09 sec
SGI MPI 11.29 sec 1.79 sec 7.30 sec -
MPICH 11.21 sec 1.24 sec 7.01 sec 4.96 sec

Table 2: Execution time breakdown for 1152x 1152 Matrix Multiplication on 4 processors.

due to lack of access to SGI MPI source code.

create a repeatable non-dedicated setting on dedicated
processors so that the MPICH and SGI versions can be
compared with TMPI. What we did was to manually as-
sign a fixed number of MPI nodes to each idle physical
processor®, then vary this number to check performance
sensitivity.
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Figure 9: Performance degradation of TMPI in non-
dedicated environments.

Figure 9 shows the performance degradation of TMPI
when the number of MPI nodes on each processor in-
creases. We can see that the degradation is fairly small
when running no more than 4 processors. When the
number of physical processors is increased to 8, TMPI
can still sustain reasonable performance even though
more communication is needed with more MPI nodes.
MPICH and SGI MPI however, exhibit fairly poor per-
formance when multiple MPI nodes share one processor.
Tables 3 lists the performance ratio of TMPI to SGI
MPI, which is the megaflop or speedup number of the
TMPI code divided by that of the SGI MPI. Tables 4
lists the performance ratio of TMPI to MPICH. We do
not report the data for MM and HEAT because the
performance of MPICH and SGI deteriorates too fast
when the number of MPI nodes per processor exceeds
1, which makes the comparison meaningless.

We can see that the performance ratios stay around

# of MPI nodes _ 1, which indicates that
# of processors

all three implementations have similar performance in

one when

3IRIX allows an SPROC thread be bound to a processor.

10

» N

means data unavailable

Benchmarks GE Sweep3D

of M PInodes
ﬁo]}processors 1 2 3 1 2 3
2 processors 097 3.02 7.00 | 0.97 1.87 2.53
4 processors 1.01 5.00 11.93 | 0.97 3.12 5.19
6 processors 1.04 590 16.90 | 0.99 3.08 7.91
8 processors 1.04 7.23 2356 | 0.99 3.99 8.36

Table 3: Performance ratio of TMPI to SGI MPI in a
non-dedicated environment.

Benchmarks GE Sweep3D

of M PInodes
e | 1 2 3 1 2 3
2 processors 0.99 2.06 4.22 | 098 1.21 1.58
4 processors 1.01 3.06 6.94 | 0.99 1.55 2.29
6 processors 1.05 4.15 9.21 | 1.02 2.55 5.90
8 processors 1.06 3.31 10.07 | 1.03 2.64 5.25

Table 4: Performance ratios of TMPI to MPICH in a
non-dedicated environment.

dedicated execution environments. When this node-
per-processor ratio is increased to 2 or 3, TMPI can be
10-fold faster than MPICH and 23-fold faster than SGI
MPI. This great performance gain is due to threads’ low
context switch cost and our less aggressive spin-block
synchronization strategy. The SGI MPI has the poorest
performance. It seems that the busy-waiting synchro-
nization strategy in SGI MPI is more aggressive than
MPICH, which leads to more contention when there are
multiple nodes running on the same processor. Busy
waiting, however, can deliver favorable performance in
a dedicated environment.

6.3 Benefits of Address-sharing and Lock-free Man-
agement

Impact of data copying on point-to-point com-
munication. We compare TMPI with SGI MPI and
MPICH for point-to-point communication and exam-
ine the benefits of data copying due to address-sharing
in TMPI. To isolate the performance gain due to the



reduction in memory copying, we also compare TMPI
with another version of TMPI (called TMPI_mem) which
emulates the process-based communication strategy, i.e.,
double copying between user buffers and the system
buffer. The micro-benchmark program we use does the
“ping-pong” communication (MPI_SEND() ), which sends
the same data (using the same user data buffer) between
two processors for over 2000 times. In order to avoid
favoring our TMPI, we use standard send operations
instead of buffered send.

(A) Short message performance (B) Long message performance
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Figure 10: Communication performance of a ping-pong
test program.

Figure 10 depicts the results for short and long mes-
sages. We use the single-trip operation time to measure
short message performance and data transfer rate to
measure long message performance because the message
size does not play a dominant role in the overall perfor-
mance for short messages. It is easy to observe that
TMPI_mem shares a very similar performance curve
with SGI MPT and the difference between them is rela-
tively small, which reveals that the major performance
difference between TMPI and SGI MPI is caused by
saving on memory copy. And on average, TMPI is 16%
faster than SGI MPI. TMPI is also 46% faster than
MPICH, which is due to both saving on memory copy
and our lock-free communication management. SGI
MPI is slightly better than TMPI_mem, which shows
that communication performance of SGI MPI is good
in general if the advantage of address space sharing is
taken away. Another interesting point in Figure 10(B)
is that all three implementations except TMPI have a
similar surge when message size is around 10K. This is
because they have similar caching behavior. TMPI has
a different memory access pattern since some memory
copy operations are eliminated.

Effectiveness of the lock-free communication
management. We assess the gain due to the introduc-
tion of lock-free message queue management by compar-
ing it with a lock-based message queue implementation,
called TMPI lock. In the lock-based implementation,
each channel has its own lock. The message sender first
acquires the lock, then checks the corresponding receive
queue. If it finds the matching handle, it releases the
lock and processes the message passing; otherwise it en-
queues itself into the send queue and then releases the
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lock. The receiver proceeds in a similar way. We use
the same “ping-pong” benchmark in this experiment.

(A) Short message performance (B) Long message performance
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Figure 11: Effectiveness of lock-free management in
point-to-point communication.

Figure 11 shows the experimental results for short
and long messages. We can see that TMPI cost is con-
stantly smaller than TMPI lock by 5 — 6us for short
messages, which is a 35% overhead reduction. For long
messages, its impact on data transfer rate will become
smaller as the message size becomes very large. This is
expected because the memory copy operations count for
most of the overhead for long messages in this micro-
benchmark.

7 Concluding Remarks

The main contribution of our work is the development
of compile-time and run-time techniques for optimiz-
ing the execution of MPI code using threads. These
include TSD-based transformation and an efficient and
provably-correct, point-to-point communication proto-
col with a novel lock-free queuing scheme. These tech-
niques are applicable to most of MPI applications, con-
sidering that MPI is mainly used in the scientific com-
puting and engineering community.

The experiments indicate that our thread-based im-
plementation TMPI using the proposed techniques can
obtain large performance gains in a multiprogrammed
environment with up to a 23-fold improvement com-
pared to SGI MPI for the tested cases. TMPI is also
competitive with SGI MPI in a dedicated environment,
even though SGI MPI is highly optimized and takes ad-
vantage of SGI-specific low-level support [17]. The lock-
free management is critical for minimizing communica-
tion overhead and it would be interesting to compare
our design with the SGI’s lock-free design, had it be
documented.

The atomic operations used in our design should also
be available in other SMMs such as SUN Enterprise. We
plan to investigate this issue. We also plan to extend
our compile-time support for C++ /Fortran and exam-
ine the usefulness of our techniques for irregular com-
putation with chaotic communication patterns [15, 28].
TMPI is a proof-of-concept system to demonstrate the



effectiveness of our techniques, and we plan to add more
MPI functions to TMPI.
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A List of MPI Functions Implemented in TMPI

MPI_Recv_init ()
MPI_Sendrecv()
MPI_Sendrecv_replace()
MPI_Wait()
MPI_Waitall()
MPI_Request_free()
MPI_Comm size()
MPI_Comm rank ()
MPI_Bcast ()
MPI_Reduce ()
MPI_Allreduce()
MPI_Wtime ()
MPI_Barrier()

MPI_Irecv()



