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Abstract� Static symbolic factorization coupled with supernode partitioning and asynchronous
computation scheduling can achieve high giga�op rates for parallel sparse LU factorization with
partial pivoting� This paper studies properties of elimination forests and uses them to optimize
supernode partitioning�amalgamation and execution scheduling� It also proposes supernodal matrix
multiplication to speed�up kernel computation by retaining the BLAS�� level e�ciency and avoiding
unnecessary arithmetic operations� The experiments show that our new design with proper space
optimization� called S�� improves our previous solution substantially and can achieve up to ��
GFLOPS on �	
 Cray T�E ���MHz nodes�

�� Introduction� The solution of sparse linear systems is a computational bot�
tleneck in many scienti�c computing problems� When dynamic pivoting is required
to maintain numerical stability in direct methods for solving non�symmetric linear
systems� it is challenging to develop high performance parallel code because pivoting
causes severe caching miss and load imbalance on modern architectures with mem�
ory hierarchies� The previous work has addressed parallelization on shared mem�
ory platforms or with restricted pivoting ��� ��� ��� �	
� Most notably� the recent
shared memory implementation of SuperLU has achieved up to ����GFLOPS on �
Cray C	 nodes ��� �� ��
� For distributed memory machines� we proposed an ap�
proach that adopts a static symbolic factorization scheme to avoid data structure
variation ��� ��
� Static symbolic factorization eliminates the runtime overhead of
dynamic symbolic factorization with a price of over�estimated �ll�ins and thereafter
extra computation ���
� However� the static data structure allowed us to identify data
regularity� maximize the use of BLAS�� operations� and utilize task graph scheduling
techniques and e�cient run�time support ���
 to achieve high e�ciency�

This paper addresses three issues to further improve the performance of paral�
lel sparse LU factorization with partial pivoting on distributed memory machines�
First� we study the use of elimination trees in optimizing matrix partitioning and
task scheduling� Elimination trees or forests are used extensively in sparse Cholesky
factorization ���� ��� ��
 because they have a more compact representation of paral�
lelism than task graphs� For sparse LU factorization� the traditional approach uses
the elimination tree of ATA� which can produce excessive false computational depen�
dency� In this paper� we use elimination trees�forest� of A to guide matrix partitioning
and parallelism control in LU factorization� We show that improved supernode par�
titioning and amalgamation e�ectively control extra �ll�ins and produce optimized
supernodal partitioning� We also use elimination forests to identify data dependence
and potential concurrency among pivoting and updating tasks and thus maximize
utilization of limited parallelism�

Second� we propose a fast and space�e�cient kernel for supernode�based matrix
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multiplication to improve the performance of sparse LU factorization� This is based on
the observation that nonzero submatrices generated by supernodal partitioning and
amalgamation have special patterns� Namely� they contain either dense subrows or
subcolumns� This new kernel avoids unnecessary arithmetic operations while retains
the BLAS�� level e�ciency�

Third� we evaluate space requirement of static factorization and propose an op�
timization scheme which acquires memory on�the��y only when it is necessary� This
scheme can e�ectively control peak memory usage� especially when static symbolic
factorization overestimates �ll�ins excessively�

Our new design with these optimizations� called S�� improves our previous code
by more than �� in execution time� In particular S� without space optimization
achieved up to ���� GFLOPS on ��� T�E �MHz nodes and ���� GFLOPS� on
��� T�E ��MHz nodes� The space optimization technique slightly degrades overall
time e�ciency but it reduces space requirement by up to ��� in some cases� S�

with space optimization can still deliver up to ��GFLOPS on ��� Cray ��Mhz
T�E nodes� Notice that we only count true operations� in the sense that no extra
arithmetic operation introduced by static factorization or amalgamation is included
in computing giga�op rates of our algorithm�

The rest of this paper is organized as follows� Section � gives the background
knowledge for sparse LU factorization� Section � presents a modi�ed de�nition and
properties of elimination trees for sparse LU factorization� and their applications
in supernode partitioning and amalgamation� Section � describes our strategies of
exploiting �D asynchronous parallelism� Section � discusses a fast matrix multiplica�
tion kernel suitable for submatrices derived from supernode partitioning� Section �
presents experimental results on Cray T�E� Section � discusses space optimization for
S�� Section � concludes the paper� A summary of notations and the proof for each
theorem are listed in the appendix�

�� Background� LU factorization with partial pivoting decomposes a
non�symmetric sparse matrix A into two matrices L and U � such that PA � LU �
where L is a unit lower triangular matrix� U is an upper triangular matrix� and P is
a permutation matrix containing pivoting information�

Static symbolic factorization� A static symbolic factorization approach is pro�
posed in ���
 to identify the worst case nonzero patterns for sparse LU factorization
without knowing numerical values of elements� The basic idea is to statically con�
sider all possible pivoting choices at each elimination step and space is allocated for
all possible nonzero entries� Static symbolic factorization annihilates data structure
variation� and hence it improves predictability of resource requirements and enables
static optimization strategies� On the other hand� dynamic factorization� which is
used in SuperLU ��� ��
� provides more accurate control of data structures on the �y�
But it is challenging to parallelize dynamic factorization with low runtime overhead
on distributed memory machines�

The static symbolic factorization for an n � n matrix is outlined as follows� At
each step k�� � k � n�� each row i � k which has a nonzero element in column k
is a candidate pivot row for row k� As the static symbolic factorization proceeds�
at step k the nonzero structure of each candidate pivot row is replaced by the union
of the structures of all these candidate pivot rows except the elements in the �rst

�We reported a performance record of ����� GFLOPS in an earlier paper �	�� We later found that
the operation count included extra computation due to amalgamation� In this paper� we disabled
amalgamation in operation counting�

	



k � � columns� Using an e�cient implementation ���
 for the symbolic factorization
algorithm proposed in ���
� this preprocessing step can be very fast� For example�
it costs less than one second for most of our test matrices� and at worst it costs �
seconds on a single node of Cray T�E� The memory requirement is also fairly small�
If LU factorization is used in an iterative numerical method� then the cost of symbolic
factorization together with other preprocessing is amortized over multiple iterations�

In the previous work� we show that static factorization does not produce too many
�ll�ins for most of our test matrices� even for large matrices using a simple matrix
ordering strategy �minimum degree ordering� ��� ��
� For a few matrices that we have
tested� static factorization generates an excessive number of �ll�ins� In Section �� we
discuss space optimization for S� in addressing such a problem�

L�U supernode partitioning� After the �ll�in pattern of a matrix is predicted�
the matrix is further partitioned using a supernodal approach to improve caching
performance� In ���
� a non�symmetric supernode is de�ned as a group of consecutive
columns� in which the corresponding L part has a dense lower triangular block on the
diagonal and the same nonzero pattern below the diagonal� Based on this de�nition�
in each column block the L part only contains dense subrows� We call this partitioning
scheme L supernode partitioning� Here by �subrow�� we mean the contiguous part of
a row within a supernode�

After an L supernode partitioning has been performed on a sparse matrix A�
the same partitioning is applied to the rows of A to further break each supernode
into submatrices� This is also known as U supernode partitioning� Since coarse�
grain partitioning can reduce available parallelism and produce large submatrices
which do not �t into the cache� an upper bound on the supernode size is usually
enforced in the L�U supernode partitioning� After the L�U supernode partitioning�
each diagonal submatrix is dense� and each nonzero o��diagonal submatrix in the L
part contains only dense subrows� and furthermore each nonzero submatrix in the
U part of A contains only dense subcolumns ���
� This is the key to maximize the
use of BLAS�� subroutines ��
 in our algorithm� And on most current commodity
processors with memory hierarchies� BLAS�� subroutines usually outperform BLAS�
� subroutines substantially when implementing the same functionality ��
� Figure �
illustrates an example of a partitioned sparse matrix and the black areas depict dense
submatrices� subrows� and subcolumns�
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Fig� �� Example of a partitioned sparse matrix�

Data mapping� After symbolic factorization and matrix partitioning� a parti�
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tioned sparse matrix A has N � N submatrix blocks� For example� the matrix in
Figure � has � � � submatrices� Let Ai�j denote the submatrix in A with row block
index i and column block index j� Let Li�j and Ui�j denote a submatrix in the lower
and upper triangular part of matrix A respectively� For block�oriented matrix compu�
tation� �D column block cyclic mapping and �D block cyclic mapping are commonly
used� In �D column block cyclic mapping� a column block of A is assigned to one
processor� In �D mapping� processors are viewed as a �D grid� and a column block is
assigned to a column of processors� �D sparse LU factorization is more scalable than
�D data mapping ��
� However� �D mapping introduces more overhead for pivoting
and row swapping� Since asynchronous execution requires extensive use of bu�ers� in
designing �D codes� we need to pay special attention to the usage of bu�er space� so
that our �D code is able to factorize larger matrices under memory constraints�

for k � � to N
Perform task Factor�k��
for j � k � � to N with Uk�j �� 

Perform task Update�k� j��
endfor

endfor

Fig� �� Partitioned sparse LU factorization with partial pivoting�

Program partitioning� Each column block k is associated with two types of
tasks� Factor�k� and Update�k� j� for � � k � j � N � Task Factor�k� factorizes all
the columns in the kth column block and its function includes �nding the pivoting
sequence associated with those columns and updating the lower triangular portion
of column block k� The pivoting sequence is held until the factorization of the kth
column block is completed� Then the pivoting sequence is applied to the rest of the
matrix� This is called �delayed pivoting� ��
� Task Update�k� j� uses column block
k �Lk�k� Lk���k� � � � � LN�k� to modify column block j� That includes �row swapping�
which applies the pivoting derived by Factor�k� to column block j� �scaling� that
uses the factorized submatrix Lk�k to scale Uk�j � and �updating� that uses submatrices
Li�k and Uk�j to modify Ai�j for k � � � i � N � Figure � outlines the partitioned LU
factorization algorithm with partial pivoting�

�� Elimination forests and non�symmetric supernode partitioning� In
this section� we study properties of elimination forests ��� ��� ��� ��
� and use them
to design more robust strategies for supernode partitioning and parallelism detection�
As a result� both sequential and parallel versions of our code can be improved�

We will use the following notations in our discussion� Let A be the given n � n
sparse matrix� Notice that the nonzero structure of matrix A changes after symbolic
factorization and the algorithm design discussed in the rest of this paper addresses
A after symbolic factorization� Let ai�j be the element in A with row index i and
column index j� and ai�j�s�t be the submatrix in A from row i to row j and from
column s to t� Let lk be column k in the lower triangular part and let uk be row k in
the upper triangular part of A after symbolic factorization� Notice that both lk and
uk include ak�k � To emphasize nonzero patterns of A� we use symbol � to express the
nonzero structure after symbolic factorization� Expression �ai�j ��  means that ai�j

�An elimination forest only has one tree when the corresponding sparse matrix is irreducible� In
that case� it is also called an elimination tree�
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is not zero after symbolic factorization� We assume that every diagonal element in
the original sparse matrix is nonzero� Notice that for any nonsingular matrix which
does not have a zero�free diagonal� it is always possible to permute the rows of A to
obtain a matrix with zero�free diagonal ��
� Let �lk be the index set of nonzeros in
lk� i�e� fi j �ai�k �� � i�kg� Similarly� let �uk be the index set of nonzeros in uk� i�e�

fj j �ak�j �� � j�kg� Symbol j�lkj �or j�ukj� denotes the cardinality of �lk �or �uk��

���� The de�nition of elimination forests� We study the elimination forest
of a matrix which may or may not be reducible� Previous research on elimination
forests has shown that an elimination forest contains information about all potential
dependency if the corresponding sparse matrix is irreducible ��� ��� ��� ��
� Al�
though it is always possible to decompose a reducible matrix into several smaller
irreducible matrices� the decomposition introduces extra burden on software design
and implementation� Instead� we generalize the original de�nition of elimination tree
to reducible matrices� Our de�nition� listed in De�nition ���� di�ers from the origi�
nal de�nition by imposing condition j�lkj � �� Imposing this condition not only avoids
some false dependency� but also allows us to generalize the some results for irreducible
matrices to reducible matrices� which are summarized in Theorems ��� and ���� Note
that when A is irreducible� the condition j�lkj � � holds for all � � k � n and the
new de�nition generates the same elimination forest as the original de�nition� In
practice� we �nd that some test matrices can have up to �� of columns with zero
lower�diagonal nonzeros after symbolic factorization�

Definition ���� An LU Elimination forest for an n � n matrix A has n
vertices numbered from � to n� For any two numbers k and j �k � j�� there is an
edge from vertex j to vertex k in the forest if ak�j is the �rst o��diagonal nonzero in

�uk and j�lkj � �� Vertex j is called the parent of vertex k� and vertex k is called a
child of vertex j�
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Fig� �� A sparse matrix and its elimination forest�

An elimination forest for a given matrix can be generated in a time complexity
of O�n� if computed as a byproduct of symbolic factorization� Figure � illustrates a
sparse matrix after symbolic factorization and its elimination forest� We now discuss
two properties of an elimination forest for a general sparse matrix�

�



Theorem ���� If vertex j is an ancestor of vertex k in the elimination forest�
then fr j r��lk � j�r�ng � �lj � and fc j c��uk � j�c�ng � �uj�

uj
lk

uk

lj

Fig� �� An illustration of Theorem ��� �vertex j is an ancestor of vertex k in the elimination
forest��

Theorem ��� �illustrated in Figure �� captures the structural containment between
two columns in L and between two rows in U � It indicates that the nonzero struc�
ture of lj �or uj� subsumes lk �or uk� if the corresponding vertices have an ancestor
relationship� This information will be used for designing supernode partitioning with
amalgamation in the next subsection�

Definition ���� Let j � k� lk directly updates lj if task Update�k� j� is

performed in LU factorization� i�e� �ak�j ��  and j�lkj � �� lk indirectly updates lj
if there is a sequence s�� s�� � � � � sp such that� s� � k� sp � j and lsq directly updates
lsq�� for each � � q � p� ��

Theorem ���� Let k � j� lk directly or indirectly updates lj in LU factorization if
and only if vertex j is an ancestor of vertex k in the elimination forest� Theorem ���
indicates dependency information during numerical factorization� which can guide the
scheduling of asynchronous parallelism�

���� �D L�U supernode partitioning and amalgamation� Given a non�
symmetric matrix A after symbolic factorization� in ���
 we have described a two�stage
L�U supernode partitioning method� At Stage �� a group of consecutive columns that
have the same structure in the L part is considered as one supernode column block�
Then the L part is sliced as a set of consecutive column blocks� After an L supernode
partition has been obtained� at Stage � the same partition is applied to rows of the
matrix to break each supernode column block further into submatrices�

We examine how elimination forests can be used to guide and improve the �D
L�U supernode partitioning� The following corollary is a straightforward result of
Theorem ��� and it shows that we can easily traverse an elimination forest to identify
supernodes� Notice that each element in a dense structure can be a nonzero or a �ll�in
due to static symbolic factorization�

Corollary ���� If for each k � fs � �� s � �� � � � � tg� vertex k is the parent of

vertex k � � and j�lkj � j�lk��j � �� then after symbolic factorization� �� diagonal block
as�t� s�t is completely dense� 	� at���n�s�t contains only dense subrows� and 
� as�t�t���n
contains only dense subcolumns�

The partitioning algorithm using the above corollary is brie�y summarized as
follows� For each pair of two consecutively numbered vertices with the parent�child
relationship in the elimination forest� we check the size di�erence between the two
corresponding columns in the L part� If the di�erence is one� we assign these two
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columns into an L supernode� Since if a submatrix in a supernode is too large� it
won�t �t into the cache and also large grain partitioning reduces available parallelism�
we usually enforce an upper bound on the supernode size� Notice that U partitioning
is applied after the L partitioning is completed� We need not check any constraint
on U because as long as a child�parent pair �i� i� �� satis�es j�lij � j�li��j � �� it also
satis�es j�uij � j�ui��j� � due to Theorem � in ��� ��
� Hence the structures of ui and
ui�� are identical� Figure ��a� illustrates supernode partitioning of the sparse matrix
in Figure �� There are � L�U supernodes in this �gure� From the L partitioning point
of view� columns from � to � are not grouped but columns �� � and � are clustered
together�

Fill-in entries generated by supernode amalgamationNonzeros in original matrix
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Fig� �� �a� Supernode partitioning for the matrix in Figure �� �b� The result of supernode
amalgamation with � related L�U supernodes�

For most of the test matrices in our experiments� the average supernode size after
the above partitioning strategy is very small� about ��� to � columns� This leads to
relatively �ne grained computation� In practice� amalgamation is commonly adopted
to increase the average supernode size by introducing some extra zero entries in the
dense structures of supernodes� In this way� caching performance can be improved
and interprocessor communication overhead may be reduced� For sparse Cholesky
factorization�e�g� ���
�� the basic idea of amalgamation is to relax the restriction
that all the columns in a supernode must have exactly the same o��diagonal nonzero
structure� In a Cholesky elimination tree� a parent could be merged with its children
if merging does not introduce too many extra zero entries into a supernode� Row and
column permutations are needed if the parent is not consecutive with its children�
For sparse LU factorization� such a permutation may alter the result of symbolic
factorization� In our previous approach ���
� we simply compare consecutive columns
of the L part� and make a decision on merging if the total number of di�erence is
under a pre�set threshold� This approach is simple� resulting in a bounded number of
extra zero entries included in the dense structure of an L supernode� However� the
result of partitioning may lead to too many extra zero entries in the dense structure
of a U supernode� Using Theorem ���� we can remedy this problem as follows by
partitioning L and U parts simultaneously and controlling the number of �ll�ins in
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both L and U �
We consider a supernode containing elements from both L and U parts� and refer

to a supernode after amalgamation as a relaxed L�U supernode� The de�nition is
listed below�

Definition ���� A relaxed L�U supernode R�s�t� contains three parts� the di�
agonal block as�t�s�t� the L supernode part at���n�s�t and the U supernode part as�t�t���n�
The supernode size of R�s � t� is t� s� ��

A partitioning example illustrated in Figure ��b� has four relaxed L�U supern�
odes� R�� � ��� R�� � ��� R�� � ��� and R�� � ��� The following corollary� which is also
a straightforward result of Theorem ���� can be used to bound the nonzero structure
of a relaxed L�U supernode�

Corollary ���� If for each k where s�� � k � t� vertex k is the parent of vertex
k�� in an elimination forest� then fi j i��lk� t�i�ng � �lt� and fj j j��uk� t�j�ng �
�ut�

Using Corollary ���� in R�s � t� the ratio of extra �ll�ins introduced by amalga�
mation compared with the actual nonzeros can be computed as�

z �
�t� s� ��� � �t� s� ��� �j�ltj� j�utj � ��

nz�R�s � t��
� �

where nz�� gives the number of nonzero elements in the corresponding structure in�

cluding �ll�ins created by symbolic factorization� Also notice that both �lt and �ut
include diagonal element at�t�

Thus our heuristic for �D partitioning is to traverse the elimination forest and
�nd relaxed supernodes R�s � t� satisfying the following conditions�

�� for each i where s � � � i � t� vertex i is the parent of vertex i � � in the
elimination forest�

�� the extra �ll�in ratio� z� is less than the pre�de�ned threshold� and
�� t� s� � � the pre�de�ned upper bound for supernode sizes�

The complexity of such a partitioning algorithm with amalgamation is O�n�� which is
very low and is made possible by Corollary ���� Our experiments show that the above
strategy is very e�ective� The number of total extra �ll�ins doesn�t change much when
the upper bound for z is in the range of �� �� and it seldom exceeds �� of the
total nonzeros in the whole matrix� In terms of upper bound for supernode size� ��
gives the best caching and parallel performance on the T�E� Thus all the experiments
in Section � are completed with z � �� and supernode size � ��� Figure ��b� is the
result of supernode amalgamation for the sparse matrix in Figure � using condition
z � ���

In the rest of this paper� we will call relaxed L�U supernodes simply as supern�
odes�

Compressed storage scheme for submatrices� In our implementation� every
submatrix is stored in a compressed storage scheme with a bit map to indicate its
nonzero structure� In addition to the storage saving� the compressed storage scheme
can also eliminate certain unnecessary computations on zero elements which will be
discussed in details in Section �� For an L submatrix� its subrows are stored in a con�
secutive space even though their corresponding row numbers may not be consecutive�
The bit map is used to identify dense subrows in L submatrices� A bit is set to  if
the corresponding subrow is zero� and set to � otherwise� Figure � illustrates such a
storage scheme for a �� � L submatrix� In this example� the second� third and �fth
subrows are dense and all other subrows are completely zero� The strategy for a U






submatrix is the same except in a subcolumn�oriented fashion� Since level�� cache is
not large in practice and the supernode size is limited to �t the cache �limit is �� on
Cray T�E�� we can use a ���bit word to store the bit map of each submatrix� and can
determine if a subrow is dense e�ciently using a single logical �and� operation�

Space overhead for a submatrix includes the bit map and global matrix index�
Index information is piggybacked on a message when sending submatrices among
processors� In terms of space for bit maps� if a submatrix is completely zero� its bit
map vector is not needed� For a non�zero submatrix� the size of its bit map is just
one word� Thus numerical values of the sparse matrix always dominate the overall
storage requirement and space overhead for bit map vectors is insigni�cant� It should
also be noted that in a future CPU architecture with a large level�� cache� a ���bit
word may not be su�cient and some minor changes in the implementation are needed
to use two words or more� In this case� using more than one word for a bit vector
should not cause space concern because amalgamation ensures the average submatrix
size is not too small� Also this compression scheme can be turned o� for an extremely
small submatrix �but we do not expect such a thing is needed in practice��
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(B) Compressed storage (C) Bitmap(A) An L submatrix

Fig� �� An illustration of a compressed storage scheme for an L submatrix�

�� �D asynchronous parallelism exploitation� In this section� we present
scheduling strategies for exploiting asynchronous �D parallelism so that di�erent up�
dating stages can be overlapped� After �D L�U supernode partitioning and amal�
gamation� the n � n sparse matrix A is ��dimensionally partitioned into N � N
submatrices� Let symbol Ai�j denote the submatrix in row block i and column block
j and let Ai�j�s�t denote all submatrices from row block i to j and from column block
s to t� Let Li�j and Ui�j �i �� j� denote submatrices in the lower and upper triangular
part respectively� Our �D algorithm uses the standard cyclic mapping since it tends
to distribute data evenly� which is important to solve large problems� In this scheme�
p available processors are viewed as a two dimensional grid� p � pr � pc� Then block
Ai�j is assigned to processor Pi mod pr� j mod pc �

In Section �� we have described two types of tasks involved in LU factorization�
One is Factor�k�� which is to factorize all the columns in the kth column block�
including �nding the pivoting sequence associated with those columns� The other is
Update�k� j�� which is to apply the pivoting sequence derived from Factor�k� to the
jth column block� and modify the jth column block using the kth column block� where
k � j and Uk�j �� � The �D data mapping enables parallelization of a single Factor�k�
or Update�k� j� task on pr processors because each column block is distributed into
pr processors� The main challenge is the coordination of pivoting and data swapping
across a subset of processors to exploit as much parallelism as possible with low bu�er
space demand�

For task Factor�k�� the computation is distributed among processors in column





k mod pc of the processor grid� and global synchronization among this processor
column is needed for correct pivoting� To simplify the parallelism control of task
Update�k� j� we split it into two subtasks� ScaleSwap�k� which does scaling and de�
layed row interchange for submatrices Ak�N� k���N � and Update�D�k� j� which mod�
i�es column block j using column block k� For ScaleSwap�k�� the synchronization
among processors within the same column of the grid is needed� For Update�D�k� j��
no synchronization among processors is needed as long as the desired submatrices in
column blocks k and j are made available to processor Pi mod pr� j mod pc where
k � � � i � N �

We discuss three scheduling strategies below� The �rst one as reported in �	
 is a
basic approach in which computation �ow is controlled by pivoting tasks Factor�k��
The order of execution for Factor�k�� k � �� �� � � � � N is sequential� but Update�D��
tasks� where most of the computation comes from� can execute in parallel among all
processors� Let symbol Update�D�k� 	� denote tasks Update�D�k� t� for k�� � t � N �
The asynchronous parallelism comes from two levels� First a single stage of tasks
Update�D�k� 	� can be executed concurrently on all processors� In addition� di�erent
stages of Update�D�� tasks from Update�D�k� 	� and Update�D�k�� 	�� where k �� k��
can also be overlapped�

The second approach is called factor�ahead which improves the �rst approach by
letting Factor�k��� start as soon as Update�D�k� k��� completes� This is based on
an observation that in the basic approach� after all tasks Update�D�k� 	� are done�
all processors must wait for the result of Factor�k � �� to start Update�D�k � �� 	��
It is not necessary that Factor�k � �� has to wait for the completion of all tasks
Update�D�k� 	�� This idea has been used in the dense LU algorithm ���
 and we extend
it for asynchronous execution and incorporate a bu�er space control mechanism� The
details are in ��
�

The factor�ahead technique still imposes a constraint that Factor�k��� must be
executed after the completion of Factor�k�� In order to exploit potential parallelism
between Factor�� tasks� our third design is to utilize dependence information repre�
sented by elimination forests� Since we deal with a partitioned matrix� the elimination
forest de�ned in De�nition ��� needs to be clustered into a supernode�wise elimination
forest� We call the new forest as a supernodal elimination forest� And we call
the element�wise elimination forest as a nodal elimination forest�

Definition ���� A supernodal elimination forest has N nodes� Each node cor�
responds to a relaxed L�U supernode� Supernode R�i� � i�� is the parent of supernode
R�j� � j�� if there exists vertex i � fi�� i���� � � � � i�g and vertex j � fj�� j���� � � � � j�g
such that i is j�s parent in the corresponding nodal elimination forest�

A supernodal elimination forest can be generated e�ciently in O�n� time using
Theorem ��� listed below� Figure � illustrates the supernodal elimination forest for
Figure ��b�� The corresponding matrix is partitioned into �� � submatrices�

Supernode 3 - R(5:5)

Supernode 1 - R(1:2)

Supernode 2 - R(3:4)

Supernode 4 - R(6:8)

Fig� �� Supernodal elimination forest for the matrix in Figure ��b�
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Theorem ���� Supernode R�i� � i�� is the parent of supernode R�j� � j�� in the
supernodal elimination forest if and only if there exists vertex i � fi�� i� � �� � � � � i�g
which is the parent of vertex j� in the nodal elimination forest�

Finally the following theorem indicates computation dependence among supern�
odes and exposes the possible parallelism that can be exploited�

Theorem ���� The L part of supernode R�j� � j�� directly or indirectly updates
the L part of supernode R�i� � i�� if and only if R�i� � i�� is an ancestor of supernode
R�j� � j���

Our design for LU factorization task scheduling using the above forest concept
is di�erent from the ones for Cholesky factorization ��� ��
 because pivoting and row
interchanges complicate the �ow control in LU factorization� Using Theorem ���� we
are able to exploit some parallelism among Factor�� tasks� After tasks Factor�i� and
Update�D�i� k� have �nished for every child i of supernode k� task Factor�k� is ready
for execution� Because of the space constraint on the bu�er size� our current design
does not fully exploit the parallelism and this design is explained below�

Space complexity� We examine the degree of parallelism exploited in our al�
gorithm by determining the maximum number of updating stages that can be over�
lapped� Using this information we can estimate the extra bu�er space needed per
processor for asynchronous execution� This bu�er is used to accommodate nonzeros
in Ak�N�k and the pivoting sequence at each elimination step k� We de�ne the stage
overlapping degree for updating tasks as

maxfjk � k�j
�
� Update�D�k� 	� and Update�D�k�� 	� can execute concurrently�g

It is shown in ��
 that for the factor�ahead approach� the reachable overlapping
degree is pc among all processors and the extra bu�er space complexity is about
����BSIZE

n
�S� where S� is the sequential space size for storing the entire sparse matrix

and BSIZE is the maximum supernode size� This complexity is very small for a large
matrix� Also because �D cyclic mapping normally leads to a uniform data distribution�
our factor�head approach is able to handle large matrices�

For the elimination forest guided approach� we enforce a constraint so that the
above size of extra bu�er space � ����BSIZE

n
� S�� is also su�cient� This constraint is

that for any processor that executes both Factor�k� and Factor�k�� where k � k��
Factor�k�� cannot start until Factor�k� completes� In other words� Factor�� tasks
are executed sequentially on each single processor column but they can be concurrent
across all processor columns� As a result� our parallel algorithm is space�scalable for
handling large matrices� Allocating more bu�ers can relax the above constraint and
increase the degree of stage overlapping� However� our current experimental study
does not show a substantial advantage by doing that and we plan to investigate this
issue further in the future� Figure � shows our elimination forest guided approach
based on the above strategy�

Example� Figure 	�a� and �b� are the factor�ahead and elimination forest guided
schedules for the partitioned matrix in Figure ��b� on a � � � processor grid� No�
tice that some of Update�D�� tasks such as U��� �� are not listed because they do
not exist due to the matrix sparsity� To simplify our illustration� we assume that
each of Factor��� ScaleSwap�� and Update�D�� takes one unit time and communi�
cation cost is zero� In the factor�ahead schedule� Factor��� is executed immediately
after Update�D��� �� on the processor column �� The basic approach would schedule
Factor��� after ScaleSwap���� Letting Factor�� tasks complete as early as possible
is important since many updating tasks depend on Factor�� tasks� In the elimination
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���� Let �my rno�my cno� be the �D coordinates of this processor�

���� Let m be the smallest column block number owned by this

processor�

���� if m doesn�t have any child supernode then

��	� Perform task Factor�m� for blocks this processor owns�

��
� endif

���� for k � � to N � �
��� Perform ScaleSwap�k� for blocks this processor owns�

���� Let m be the smallest column block number �m � k� this

processor owns�

���� Perform Update�D�k�m� for blocks this processor owns�

���� if column block m is not factorized

and all m�s child supernodes have been factorized then

���� Perform Factor�m� for blocks this processor owns�

���� endif

���� for j � m� � to N
��	� if my cno � j mod pc then

��
� Perform Update�D�k� j� for blocks this processor owns�

���� endif

��� endfor

���� endfor

Fig� �� Supernode elimination forest guided �D approach�

forest based schedule� Factor��� is executed in parallel with Factor��� because there
is no dependence between them� represented by the forest in Figure �� As a result�
the length of this schedule is one unit shorter than the factor�ahead schedule�

PC2
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S(1)

PC1

F(1)

S(1)

F(4)

U(3,4)

S(3)

U(2,4)

S(2)

U(1,4)U(1,3)

F(3)

S(2)

S(3)

Idle

Idle

(b) Elimination Forest
Guided Approach

PC2PC1

Idle

S(1)

F(2)

U(1,4)

S(2)

U(2,4)

S(3)

U(3,4)

F(4)

F(1)

S(1)

U(1,3)

F(3)

S(2)

S(3)

Idle

Idle

Idle

(a) Factor-ahead Approach

Fig� 	� Task schedules for matrix in Figure ��b�� F �� stands for Factor��	 S�� stands for
ScaleSwap��	 U�� stands for Update	D�� and PC stands for Processor Column�

�� Fast supernodal GEMM kernel� We examine how the computation�dominating
part of the LU algorithm can be e�ciently implemented using the highest level of

�	



BLAS possible� Computations in task Update�D�� involve the following supernode
block multiplication� Ai�j � Ai�j � Li�k 	 Uk�j where k � i and k � j� As we men�
tioned in the end of Section ���� submatrices like Ai�j � Li�k and Uk�j are all stored in
a compressed storage scheme with bit maps which identify their dense subcolumns or
subrows� As a result� the BLAS�� GEMM routine ��
 may not be directly applicable
to Ai�j � Ai�j �Li�k 	Uk�j because subcolumns or subrows in those submatrices may
not be consecutive and the target block Ai�j may have a nonzero structure di�erent
from that of product Li�k 	 Uk�j �

There could be several approaches to circumvent the above problem� One ap�
proach is to use a mixture of BLAS������ routines� If Li�k and Ai�j have the same
row sparse structure� and Uk�j and Ai�j have the same column sparse structure� BLAS�
� GEMM can be directly used to modify Ai�j � If only one of the above two conditions
holds� then the BLAS�� routine GEMV can be employed� Otherwise only the BLAS��
routine DOT can be used� In the worst case� the performance of this approach is close
to the BLAS�� performance� Another approach is to treat non�zero submatrices of
A as dense during space allocation and submatrix computation� and hence BLAS��
GEMM can be employed more often� But considering the average density of subma�
trices is only around ��� for our test matrices� this approach normally leads to an
excessive amount of extra space and unnecessary arithmetic operations�

We propose the following approach called Supernodal GEMM to minimize unnec�
essary computation but retain high e�ciency� The basic idea is described as follows�
If the BLAS�� GEMM is not directly applicable� we divide the operation into two
steps� At the �rst step� we ignore the target nonzero structure of Ai�j and directly
use BLAS�� GEMM to compute Li�k 	 Uk�j � The result is stored in a temporary
block� At the second step� we merge this temporary block with Ai�j using subtrac�
tion� Figure � illustrates these two steps� Since the computation of the �rst step is
more expensive than the second step� our code for multiplying supernodal submatri�
ces can achieve performance comparable to BLAS�� GEMM� A further optimization
is to speed�up the second step since the result merging starts to play some role for the
total time after the GEMM routine reduces the cost of the �rst step� Our strategy
is that if the result block and Ai�j have the same row sparse structure or the same
column sparse structure� the BLAS�� AXPY routine should be used to avoid scalar
operations� And to increase the probability of structure consistency between the tem�
porary result block and Ai�j � we treat some of L and U submatrices as dense during
the space allocation stage if the percentage of nonzeros in such a submatrix compared
to the entire block size exceeds a threshold� For Cray�T�E� our experiments show
that threshold ��� is the best to reduce the result merging time with small space
increase�

	� Experimental studies on Cray T�E� S� has been implemented on Cray
T�E using its SHMEM communication library� Most of our experiments are conducted
on a T�E machine at San Diego Supercomputing Center �SDSC�� Each Cray�T�E
processing element at SDSC has a clock rate of �MHz� an �Kbytes internal cache�
	�Kbytes second level cache� and ���Mbytes memory� The peak bandwidth between
nodes is reported as �Mbytes�s and the peak round trip communication latency is
about �����s ���
� We have observed that when the block size is ��� double�precision
GEMM achieves ���MFLOPS while double precision GEMV reaches ���MFLOPS�
We have used a block size �� in our experiments� We also obtained access to a
Cray�T�E at the NERSC division of the Lawrence Berkeley Lab� Each node in this
machine has a clock rate of ��MHz and ���Mbytes memory� We have done one set
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Fig� �
� An illustration of Supernodal GEMM� Target block Ai�j could be in the L part or U part�

of experiments to show the performance improvement on this faster machine�

In this section� we report the overall sequential and parallel performance of S�

without incorporating space optimization techniques� and measure the e�ectiveness
of the optimization strategies proposed in Sections � and �� In next section� we will
study the memory requirement of S� with and without space optimization� Table �
shows the statistics of the test matrices used in this section� Column � is the orders
of the matrices and column � is the number of nonzeros before symbolic factorization�
In column �� � and � of this table� we have also listed the total number of nonzero
entries divided by jAj using three methods� Those nonzero entries including �ll�ins are
produced by dynamic factorization� static symbolic factorization� or Cholesky factor�
ization of ATA� The result shows that for these tested matrices� the total number of
nonzeros predicted by static factorization is within �� of what dynamic factorization
produces� But the ATA approach overestimates substantially more nonzeros� which
indicates that the elimination tree of ATA can introduce too many false dependency
edges� All matrices are ordered using the minimum degree algorithm � on ATA and
the permutation algorithm for zero�free diagonal ��
�

factor entries
jAj

Matrix Order jAj Dynamic Static A
T
A Application domain

sherman� ���� ����� ����� ����� ����� Oil reservoir modeling
lnsp���� ���� ����� ���	� ����� �
��
 Fluid �ow modeling
lns���� ���� ����� �	��� ����� ����� Fluid �ow modeling
sherman� ���� ����� ����� ����� ����� Oil reservoir modeling
jpwh��� ��� 
��� ����� ����� ����� Circuit physics
orsreg� ���� ����� ����� ����� ����� Oil reservoir simulation
saylr� ��
� ����
 ����� ����� �
��� Oil reservoir modeling
goodwin ���� ������ ��
� ���	� �
��� Fluid mechanics
e��r���� ���	� ����
� ����
 ����� �
��	 Fluid dynamics
raefsky� ����� ���
�	� ����
 �	��
 ���
	 Container modeling
inaccura �
��
 ������
 ���� ����� �
��� Structure problem
af���
� ���
� �
���	 ����� ����� ����� Navier�Stokes Solver
dap��� �

�� �����
� ����
 ����� ����� Finite element modeling
vavasis� ����� �
	���� ����� ����� �	��� PDE

Table �

Test matrices and their statistics�

�A Matlab program is used for minimum degree ordering�
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In calculating the MFLOPS achieved by our parallel algorithm� we do not include
extra �oating point operations introduced by static �ll�in overestimation and supernode
amalgamation� The achieved MFLOPS is computed by using the following formula�

Achieved MFLOPS �
True operation count

Elapsed time of our algorithm on the T�E
�

The true operation count is obtained by running SuperLU without amalgamation�
Amalgamation can be turned o� in SuperLU by setting the relaxation parameter for
amalgamation to � ��� ��
�

	��� Overall code performance� Table � lists the sequential performance of
S�� our previous design S�� and SuperLU �� The result shows S� can actually be
faster than SuperLU because of the use of new supernode partitioning and matrix
multiplication strategies� The test matrices are selected from Table � that can be
executed on a single T�E node� The performance improvement ratios from S� to
S� vary from ��� to ��� Notice that time measurement in Table � excludes sym�
bolic preprocessing time� However� symbolic factorization in our algorithms is very
fast and takes only about ���� of numerical factorization time for the matrices in
Table �� And this ratio tends to decrease as the matrix size increases� This prepro�
cessing cost is insigni�cant� especially when LU factorization is used in an iterative
algorithm� In Table �� we list the time of symbolic factorization for each matrix inside
the parentheses behind the time of S��

Matrix Sequential S� SuperLU Sequential S� Time Ratio

Time M�ops Time M�ops Time M�ops S�

SuperLU
S�

S�

sherman� ��
� ������ �	�
 ���	 ���� ���� �
�� ��	� ��
�
lnsp���� ���	 ����	� ���� ���� ���� ���� �
�� ��	
 ����
lns���� ���	 ������ ���� ��	� ���	 ���� ���� ��	
 ����
sherman� ���
 ������ �
�� ��
	 ���
 ���� ���	 ���� ����
jpwh��� ���� ������ ���	 ���
 ���� ��
� ���� ���� ����
orsreg� ��
� ������ ���� ���� �
�
 ���� ���� ���� ���	
saylr� ��
� ������ ���� ��
� �
�� ���� �	�� ���� ���


goodwin ����
 ������ 
��� � � ���� ���� � ��
�
Table �

Sequential performance on a �

MHz Cray T�E node� Symbol �� implies the data is not
available due to insu�cient memory or is not meaningful due to paging�

For parallel performance� we compare S� with a previous version ��
 in Table �
and the improvement ratio in terms of MFLOPS varies from ��� to ����� in average
more than ��� Table � shows the absolute performance of S� on the Cray T�E
machine with ��MHz CPU� The highest performance reached is ����GFLOPS� while
for the same matrix� ����GFLOPS is reached on the T�E with �MHz processors��

	��� E
ectiveness of the proposed optimization strategies� Elimination

forest guided partitioning and amalgamation� Our new strategy for supernode
partitioning with amalgamation clusters columns and rows simultaneously using struc�
tural containment information implied by an elimination forest� Our previous design
S� ��� ��
 does not consider the bounding of nonzeros in the U part� We compare

�We did not compare with another well�optimized package UMFPACK �	� because SuperLU has
been shown competitive to UMFPACK ����

��



Matrix P�� P��	 P��� P�	� P����

S� S� S� S� S� S� S� S� S� S�

goodwin ���
� ���
� ���
	 	��
� ��	
� �	
� ���
� �
� ��
� ��	
�
e��r���� ���
� ���
� ���
� �
� ���
� ���
� ��
� ����
� ���
� ���
�
raefsky� ���
� �	�
� ��
� ���
� ����
 ����
� ����
� ����
� ����
� ����
	
inaccura ��
� ���
� �	�
� ���
� �	
� ����
	 ���
 �	�
	 ����
� ����

af���	� ���
� ���
� ���
� ��
� ��
� ��	�
� ����
� ����
� ����
 ����

�dap��� ���
� ���
� ��
� ����
� ����
� �	��
� ����
� ���
	 ����
� 	���
�
vavasis� ��
� ��
� ����
� ����
 ����
� ����
� ���	
� ���	
� 	�	
	 ���	
�

Table �

MFLOPS performance of S� and S� on the �

MHz Cray T�E�

Matrix P�� P��	 P��� P�	� P����
Time M�ops Time M�ops Time M�ops Time M�ops Time M�ops

goodwin �
�� ���
	 �
�� ���
� �
	� �	�
� �
	� ���
� �
	 ��
�
e��r���� �
�	 	��
� �
�� ���
 �
� ����
� �
	� ����
	 �
�� ���	
�
raefsky� ��
	� ���
	 ��
	� ���	
� ��
�� ��	
� 	
�� �	�	
� �
�� 	���
�
inaccura 	
�	 	�
� �
�� ����
� �
�� �	��
� �
�� ����
� �
�� ����
	
af���	� ��
� 	��
� 	
� ����
� �
�	 ��	
� �
� ����
� �
�� ���
�
�dap��� ��
�� ����
� ��
� ����
� 	
�� �	��
 �
�� �	��
� �
�� ����
�
vavasis� 	�
	� ����
� ��
	� �	��
� ��
�	 ����
� ��
� �	�
� �
�� �����
�

Table �

Experimental results of S� on the ��
MHz Cray T�E� All times are in seconds�

our new code S� with a modi�ed version using the previous partitioning strategy�
The performance improvement ratio by using the new strategy is listed in Figure ��
and an average of �� improvement is obtained� The ratio for matrix �af����� is
not substantial because this matrix is very sparse and the partitioning�amalgamation
strategy cannot produce large supernodes�
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Fig� ��� Performance improvement by using new supernode partitioning�amalgamation strategy�

E
ectiveness of supernodal GEMM� We assess the gain due to the introduc�
tion of our supernodal GEMM operation� We compare S� with a modi�ed version
using an approach which mixes BLAS������ as described in Section �� We do not
compare with the approach that treats all nonzero blocks as dense since it introduces
too much extra space and computation� The performance improvement ratio of our
supernodal approach over the mixed approach is listed in Figure ��� The improvement
is not substantial for matrix �e�r�� and none for �goodwin�� This is because they
are relatively dense and the mixed approach has been employing BLAS�� GEMMmost
of the time� For the other two matrices which are relatively sparse� the improvement
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ratio can be up to ���
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Fig� ��� Performance improvement by using the supernodal GEMM�

A comparison of the control strategies for exploiting �D parallelism�
In Table � we assess the performance improvement by using the elimination forest
guided approach against the factor�ahead and basic approaches described in Section ��
Compared to the basic approach� the improvement ratios vary from ��� to ��� and
the average is ���� Compared to the factor�ahead approach� the average improvement
ratio is ��� and the ratios tend to increase when the number of processors increases�
This result is expected in the sense that the factor�ahead approach improves the
degree of computation overlapping by scheduling factor tasks one step ahead while
using elimination forests can exploit more parallelism�

Matrix Improvement over Basic Improvement over Factor�ahead
P��� P��� P��� P���� P��� P��� P��� P����

goodwin ��� ��� �	� ��� �� ��� �� ���
e�r� ��� �� �� ��� ��� ��� ��� ���
raefsky� ��� ��� ��� ��� �� �� ��� ���
inaccura ��� ��� ��� ��� �� ��� 	� ���
af���� ��� ��� ��� �� �� ��� �� ���
�dap�� ��� ��� ��� ��� �� ��� ��� ���
vavasis� ��� ��� ��� ��� �� �� �� ���

Table �

Performance improvement by using the elimination forest guided approach�

�� Space Optimization� For all matrices tested above static symbolic factor�
ization provides fairly accurate prediction of nonzero patterns and only creates ��
to �� more �ll�ins compared to dynamic symbolic factorization used in SuperLU�
However� for some matrices especially in circuit and device simulation� static symbolic
factorization creates too many �ll�ins� Table � shows characteristics of �ve matrices
from circuit and device simulations� Static symbolic factorization does produce a
large number of �ll�ins for these matrices �up to � times higher than dynamic sym�
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bolic factorization using the same matrix ordering ��� Our solution needs to provide
a smooth adaptation in handling such cases�

factor entries�jAj
Matrix Order jAj Dynamic Static ATA
TIa ���� ���� ����� ����	 ����
TId ���� ����	 ����� ����� �����
TIb ���� �����	 	���� ������ �����
memplus ����� 		��� ����� ������ �����	
wang� ���� ������ �	��� �	���� ������

Table �

Circuit and device simulation test matrices and their statistics�

For the above cases� we �nd that a signi�cant number of predicted �ll�ins remain
zero throughout numerical factorization� This indicates that space allocated to those
�ll�ins is unnecessary� Thus our �rst space�saving strategy is to delay the space
allocation decision and acquire memory only when a submatrix block becomes truly
nonzero during numerical computation� Such a dynamic space allocation strategy
can lead to a relatively small space requirement even if static symbolic factorization
excessively over�predicts �ll�ins� Another strategy is to examine if space recycling
for some nonzero submatrices is possible since a nonzero submatrix may become
zero during numerical factorization due to pivoting� This has a potential to save
signi�cantly more space since the early identi�cation of zero blocks prevents their
propagation in the update phase of numerical factorization�

Space requirements� We have conducted experiments ��
 to study memory
requirement by incorporating the above space optimization strategies into S� on a
SUN Ultra�� with ��MB memory� In the following study� we refer to the revised
S� with space optimization as SpaceS�� Table � lists the space requirement of S��
SuperLU and SpaceS� for the matrices from Tables � and �� Matrix vavasis� is
not listed because its space requirement is too high for all three algorithms on this
machine�

The result in Table � shows that our space optimization strategies are e�ective�
SpaceS� uses slightly less space compared to S� for matrices in Table � and ��� less
space on average for matrices in Table � ���� less space for matrix TIb�� Compared to
SuperLU� our algorithm actually uses ��	� less space on average while static symbolic
factorization predicts ���more nonzeros� That is because the U structure in SuperLU
is less regular than that in S� and the indexing scheme in S� is simpler� Notice that
the space cost in our evaluation includes symbolic factorization� This part of cost
ranges from �� to �� of the total cost� We also list the ratio of SpaceS� processing
time to S� and to SuperLU� Some entries are marked ��� instead of actual numbers
because we observed paging on these matrices which may a�ect the accuracy of the
result� In terms of average time cost� the new version is faster than SuperLU� which
is consistent to the results in Section ���� It is also slightly faster than S� because
the early elimination of zero blocks prevents their propagation and hence reduces
unnecessary computation�

�Using a di�erent matrix ordering �MMD on AT �A�� SuperLU generates fewer �ll�ins on certain
matrices� This paper focuses algorithm design when ordering is given and studies performance using
one ordering method� An interesting future research topic is to study ordering methods that optimize
static factorization�
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Matrix Space Requirement Space Ratio Time Ratio

S� SuperLU SpaceS� SpaceS�

SuperLU
SpaceS�

S�
SpaceS�

SuperLU
SpaceS�

S�

sherman� ����� ����� 	��� ��� ��� ��
�� ���
sherman� ����� ����	 ����� ���	 ��� ���	� ����
orsreg� ����� ����� ����� ���� ��� ��	� ��
	�
saylr� 
��� ���
� 
���� ��� ��� ���� ��
��
goodwin 	��	 ������ 	
�� ��
	 �� ����� ���
e��r���� ���
� ��	�� �
���
 ��
� �� � �
raefsky� ������� 	�	��� 	
��	� ���� ��� ����� ��	�
af	���� ������� ������� ��	�
� ���� ��� ��
� ��
�
�dap��� 		����� 	����	� 	��	�
 ��
� �� � �
TIa 
���� ��	�� ���	� ���� ��
� ����� ���	
TId 	���� �
���� ����� ���� ���� ����� �����

memplus ��
�	�
 ����� �
���� ��� ���� � �
TIb ������
 		��	
� ������� ��� ���	 � �
wang� ����
�� � ������� � ��
� � �

Table �

Space requirement in MBytes on a SUN Ultra�� machine� Symbol �� implies that the data is
not available due to insu�cient memory or paging which a�ects the measurement�

Matrix vavasis� TIa TId TIb memplus wang�
MFLOPS on ��� nodes ��� ��	�	 ���	 ������ ������ �����
MFLOPS on � nodes ��	��	 ��	�� ����� ����� ���	�� �����

Table �

MFLOPS performance of SpaceS� on ��
MHz Cray T�E�

Parallel Performance� Our experiments on Cray T�E show that the parallel
time performance of SpaceS� is still competitive to S�� Table � lists performance of
SpaceS� on vavasis� and circuit simulation matrices in ��MHz T�E nodes� SpaceS�

can still achieve ��GFLOPS on matrix vavasis�� which is not much less than the
highest ����GFLOPS achieved by S� on ��� ��MHz T�E nodes� For circuit simu�
lation matrices� SpaceS� delivers reasonable performance�

Table 	 is the time di�erence of S� with and without space optimization on
�Mhz T�E nodes� For the matrices with high �ll�in overestimation ratios� we ob�
serve that S� with dynamic space management is better than S�� It is about �	�
faster on � processors and ��� faster on ��� processors� As for other matrices� on
� processors SpaceS� is about ����� slower than S� while on ��� processors� it is
�� slower than S�� On average� SpaceS� tends to become slower when the num�
ber of processors becomes larger� This is because the lazy space allocation scheme
introduces new overhead for dynamic memory management and for row and column
broadcasts �blocks of the same L�column or U�row� now allocated in non�contiguous
memory� can no longer be broadcasted as a unit�� This new overhead a�ects critical
paths� which dominate performance when parallelism is limited and the number of
processors is large�

�� Concluding remarks� Our experiments show that the proper use of elim�
ination forests allows for e�ective matrix partitioning and parallelism exploitation�
Together with the supernodal matrix multiplication algorithm� our new design can
improve the previous code substantially and set a new performance record� Our
experiments also show that S� with dynamic space optimization can deliver high
performance for large sparse matrices with reasonable memory cost� Static symbolic
factorization may create too many �ll�ins for some matrices� but our space optimiza�
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Matrix P�� P��� P��� P��� P����
goodwin ������ ����	� ����� ������ ����	�
e�r� ������ ������ ������� ������ ������
raefsky� ����� ����� ����� ������ �����
af���� ������ ���	�� �	���� ������ �������
vavasis� ����� ����	� ���� ������ ������
TIa ������ ����� ����� ���	�� �����
TId ������ ������ 	���� ����� �	��	�
TIb ������ ������ �	���� �����	� �����

memplus ������� ������� ���	� ������ ������
wang� ����� ����� ����� ����� ������

Table 	

Performance di�erence of S� and SpaceS� on �

MHz Cray T�E� A positive number indicates
an improvement of SpaceS� over the original S�	 while a negative number indicates a slowdown�

tion techniques can e�ectively reduce memory requirements� Our comparison with
SuperLU indicates that the sequential version of S� is highly optimized and can be
faster than SuperLU� Our evaluation has focused on using a simple� but popular
ordering strategy� Di�erent matrix reordering methods can result in di�erent num�
bers of �ll�ins� More investigation is needed to address this issue in order to reduce
overestimation ratios�

Performance of S� is sensitive to the underlying message�passing library per�
formance� Our experiments use the SHMEM communication library on Cray T�E
and recently we have implemented S� using MPI ���� The MPI based S� version is
more portable� however the current version is about �� slower than the SHMEM
based version� This is because SHMEM uses direct remote memory access while MPI
requires hand�shake between communication peers� which involves synchronization
overhead� We expect that more careful optimization on this MPI version can lead to
better performance and use of one�side communication available in the future MPI��
release may also help boosting performance� The source code of this MPI�based S�

version is available at http���www�cs�ucsb�edu�research�S� and the HPC group in
SUN Microsystems plans to include it in their next release of the S�L library used for
SUN SMPs and clusters ���
�
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Appendix A� Notations�

A The sparse matrix to be factorized� Notice that elements of A change
during factorization� In this paper proposed optimizations are applied to A
after symbolic factorization�

ai�j The element in A with row index i and column index j�
ai�j�s�t The submatrix in A from row i to row j and from column s to t�
lk Column k in the low triangular part of A�
uk Row k in the upper triangular part of A�

	�



�ai�j �ai�j ��  if and only if ai�j is nonzero after symbolic factorization�
�lk The index set of nonzero elements in lk after symbolic factorization�
�uk The index set of nonzero elements in uk after symbolic factorization�

j�lkj The cardinality of �lk�
j�ukj The cardinality of �uk�
Ai�j The submatrix in the partitioned A with row block index i and column

block index j�
Ai�j�s�t The submatrices in the partitioned A from row block i to j and from

column block s to t�
Li�j The submatrix with block index i and j in the lower triangular part�
Ui�j The submatrix with block index i and j in the upper triangular part�
R�i � j� Relaxed L�U supernode� which contains a diagonal block� an L supernode

and a U supernode�

Appendix B� Proof of Theorems�
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Fig� ��� An illustration for the proof of Theorem ����

B��� Theorem �� Proof� To prove the theorem holds when vertex j is an an�
cestor of vertex k� we need only to show that it holds if vertex j is the parent of vertex
k� because of the transitivity of ����

If vertex j is the parent of vertex k in this elimination forest� �ak�j �� � Let ati�j
denote the symbolic value of ai�j after step t of symbolic factorization� Since ak�j is
not changed after step k of symbolic factorization� akk�j �� �

We �rst examine the L part as illustrated in Figure ���a�� For any i � k and

i � �lk� i�e�� �ai�k �� � we have aki�k �� � Because aki�k and akk�j are used to update aki�j �

it holds that i � �lj � Therefore� fr j r��lk � j�r�ng � �lj �
Next we examine the U part as illustrated in Figure ���b�� Since lk must contain

at least one nonzero o��diagonal element before step k of symbolic factorization� we
assume it is ak��i�k � Because ak�j is the �rst o��diagonal nonzero in �uk� and �ak�i �� � we
know i � j� For any m � j and m � �uk� we prove m � �uj as follows� Since �ak�m �� 

and aki�k �� � it follows that aki�j ��  and aki�m �� � Therefore� aji�j �� � As a result�

aki�m ��  and ajj�m �� � And we conclude fc j c��uk � j�c�ng � �uj �

B��� Theorem �� Proof� If lk directly updates lj in LU factorization� vertex k
must have a parent in the forest� Let

T � ft j t � j and t is an ancestor of k in the elimination forestg
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Fig� ��� An illustration for the proof of Theorem ����

Since k�s parent � j� set T is not empty� Let i be the largest element in T � We
show i � j by contradiction as illustrated in Figure ��� Assume i � j� Following
Theorem ���� fc j c��uk � i�c�ng � �ui� Since �ak�j �� � we know �ai�j �� � Let m
be i�s parent� Since i is the largest element in Tand m � i� we know m �� T � Thus�
it holds that m � j� However� ai�m should be the �rst o��diagonal nonzero in �ui�
this is a contradiction since �ai�j �� � Thus vertex j is an ancestor of vertex k in the
elimination forest�

If lk indirectly updates lj � there must be a sequence s�� s�� � � � � sp such that�
s� � k� sp � j and lsq directly updates lsq�� for each � � q � p � �� That is� vertex
sq�� is an ancestor of vertex sq for each � � q � p� �� Thus� we conclude that vertex
j is an ancestor of vertex k�

Conversely� if vertex j is an ancestor of vertex k in the elimination forest� there
must be a sequence s�� s�� � � � � sp such that� s� � k� sp � j and vertex sq�� is the
parent of vertex sq for each q where � � q � p � �� Then for each � � q � p � ��

lsq directly updates lsq�� since j�lsq j �� � and �asq�sq�� �� � Thus� we conclude that lk
directly or indirectly updates lj during numerical factorization�

B��� Theorem �� Proof� The �if� part is an immediate result of De�nition ����
Now we prove the �only if� part� If R�i� � i�� is the parent of R�j� � j�� in the
supernodal elimination forest� there exists vertex i � fi�� i� � �� � � � � i�g and vertex
j � fj�� j���� � � � � j�g such that i is j�s parent in the corresponding nodal elimination
forest� Below we prove by contradiction that such a vertex j is unique and it must be
j��

Suppose j is not j�� i�e�� j� � j � j�� Since the diagonal block of R�j� � j��
is considered to be dense �including symbolic �ll�ins after amalgamation�� for every
u � fj�� j� � �� � � � � j� � �g� u�s parent is u� � in the nodal elimination forest� Thus
j�s parent should be one in fj� � �� � � � � j�g� however� we also know that j�s parent is
i in the nodal elimination forest and j� � i� That is a contradiction�

B��� Theorem �� Proof� If the L part of supernode R�j� � j�� directly or
indirectly updates L supernode R�i� � i��� there exists an lj �j � fj�� j� � �� � � � � j�g�
which directly or indirectly updates column li �i � fi�� i� � �� � � � � i�g�� Because of
Theorem ���� i is an ancestor of j� According to De�nition ���� R�i� � i�� is an ancestor
of supernode R�j� � j���

On the other hand� if R�i� � i�� is an ancestor of supernode R�j� � j��� for
each child�parent pair in the path from R�j� � j�� to R�i� � i��� we can apply both
Theorem ��� and Theorem ���� Then� it is easy to show that the L part of each
child supernode in this path directly or indirectly updates the L part of its parent

		



supernode� Thus L part of supernode R�j� � j�� directly or indirectly updates L part
of supernode R�i� � i���
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