
Brief Announcement: Operational Analysis of
Processor Speed Scaling

Kai Shen
University of Rochester

kshen@cs.rochester.edu

Alex Zhang
Hewlett-Packard Laboratories

alex.zhang@hp.com

Terence Kelly
Hewlett-Packard Laboratories
terence.p.kelly@hp.com

Christopher Stewart
University of Rochester

stewart@cs.rochester.edu

ABSTRACT
This brief announcement presents a pair of performance lawsthat
bound the change in aggregate job queueing time that resultswhen
the processor speed changes in a parallel computing system.Our
laws require only lightweight passive external observations of a
black-box system and they apply to many commonly employed
scheduling policies. By predicting the application-levelperformance
impact of processing speed adjustments in parallel processors, in-
cluding traditional SMPs and now increasingly ubiquitous multi-
core processors, our laws address problems ranging from capac-
ity planning to dynamic resource allocation. Finally, our results
show thatoperational analysis—an approach to performance anal-
ysis traditionally associated with commercial transaction process-
ing systems—usefully complements existing parallel performance
analysis techniques.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Management, performance, theory

Keywords
Multi-processor, multicore, operational analysis, capacity planning,
power, P-states, ACPI, dynamic resource allocation, performance
modeling, queuing, scheduling, Internet servers, datacenter-on-chip

1. INTRODUCTION
Multicore processors and other contemporary technology trends

promise to revolutionize hardware and software architectures [12].
For example, they will enable consolidated “datacenter-on-chip”
deployments of commercial applications that are locally distributed
across clusters today [9, 17, 18]. Unfortunately, these technology
trends together with the increasing complexity and opacityof mod-
ern applications threaten to obfuscate application-levelperformance
and its relation to important system parameters in emergingparallel
computing systems. Ubiquitous multicore processors make it in-
creasingly important to understand application-level performance
in parallel computing in order to make principled tradeoffsbe-
tween performance and other considerations (e.g., hardware cost
and power).

Copyright is held by the author/owner(s).
SPAA’08, June 14–16, 2008, Munich, Germany.
ACM 978-1-59593-973-9/08/06.

This brief announcement outlines an approach to parallel perfor-
mance analysis that relates application-level performance to pro-
cessor speed. Our method is based onoperational analysis that
requires only directly measurable (“operational”) quantities, e.g.,
arrival and departure times. Operational analysis, popularized by
Denning & Buzen [7], stands in contrast to stochastic queuing mod-
els [3] because the latter rely upon detailed probabilisticassump-
tions, some of which are fundamentally untestable [10]. The clas-
sical operational laws include Little’s Law [15], the foundation of
more sophisticated techniques including Mean Value Analysis [14].
We derive operational laws that bound the change in application-
level queuing delays that would result if an observed workload were
served by faster or slower processors. Such bounds can inform de-
cisions ranging from hardware selection (e.g., capacity planning
and online application migration in heterogeneous data centers) to
power regulation (e.g., via processor speed scaling using the P-
states of the ACPI interface [8]).

Our laws rest upon assumptions that are straightforward, easy
to test, and often satisfied in real computing systems. They em-
ploy only lightweight passive external observations of black-box
applications and are therefore practical in production environments
where source code access, invasive instrumentation, and controlled
benchmarking are not permitted. The derivations of our operational
laws are nontrivial but the laws themselves are easy for nonspecial-
ists to learn and to apply in a wide range of practical contexts.

For brevity we sketch only the theoretical aspect of our work
here; we defer experiments, some technical details, and an extended
discussion to the full version of this paper. A companion paper con-
siders the complementary problem of predicting the application-
level performance consequences of changing the number of proces-
sors available to an application, holding processor speed fixed [11].

2. SYSTEM MODEL

Arrivals

Preemption

k ProcessorsQueue

Departures

Figure 1: System model.

Consider a single-
queue station withk
processors as depicted
in Figure 1. Jobs with
heterogeneous service
demands enter the sys-
tem and depart after
their demands are sat-
isfied. Preemption is permitted but not required, i.e., jobsmay
alternate between the queue and the processors. The information
available to us is severely restricted: We may observe job arrivals
and departures and note the times at which they occur. Such in-
formation can be collected in practice from a network “sniffer”

Service time

time

N (t)k=2

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������ N=2

Queueing time

Figure 2: Service & queueing times.

monitoring an Internet server [5] or from the job dispatcherof a
cluster scheduler [4, 16]. Jobs may be “anonymous” in the sense
that we cannot associate specific departures with the corresponding
arrivals. Furthermore the system is a black box; we have no infor-
mation about the state of the queue or the processors except what
we can infer from our external observations and assumptions.

ASSUMPTION 1. Work conservation: No processor is idle un-
less the queue is empty.

ASSUMPTION 2. Serial jobs: A job occupies exactly one queue
position or processor at any instant.

Assumption 1 is satisfied by the default configuration of today’s
mainstream operating systems and virtual machine monitor sched-
ulers [2, 6] and also by cluster job schedulers. Assumption 2de-
scribes request handling in the vast majority of today’s Internet
servers and job processing in many compute clusters. We note
that our system model is an imperfect description of computing
systems in which jobs “block” (i.e., join queues other than the
single queue of Figure 1). In practice, jobs may queue for mu-
texes and for storage and network I/O. Technology trends, how-
ever, promise to dramatically reduce blocking in emerging sys-
tems: Large main memory caches eliminate the need for blocking
reads in the warm steady state and ultra-low-latency non-volatile
write caches eliminate blocking for durable writes [19]. Transac-
tional memory promises to supplant application-level mutexes [13].
Finally, whereas locally distributed application software compo-
nents in a cluster make blocking remote procedure calls to one
another [18], no such blocking occurs when components sharea
multicore processor in a consolidated “datacenter-on-chip” deploy-
ment [9]. In summary, technology trends are making our system
model applicable to an increasingly wide range of practicalcom-
puting systems as the multicore era unfolds.

Our observations begin with an empty system at timet = 0. Let
Nk(t) denote the number of jobs present in the system at timet,
which equals the cumulative number of arrivals up to timet mi-
nus the number of departures. We call the graph ofNk(t) vs. t the
occupancy curve. The area beneath the occupancy curve equals ag-
gregate response time across all jobs. Furthermore, as illustrated
in Figure 2, the horizontal line atN = k divides the area beneath
the occupancy curve into aggregate service time (belowN = k) and
aggregate queueing time (above). This is because Assumptions 1
and 2 imply that the number of processors busy at any instant is the
lesser ofk and Nk(t). The companion paper contains a detailed
discussion [11]. Our goal in this paper is to bound the change
in queuing time that would result if the processors were faster or
slower while the workload remains unchanged. By “unchanging
workload” we mean that arrival times are deterministic and do not
depend on processor speed, i.e., we consider open arrivals.

3. SPEED SCALING LAWS
In practice, processing capacity can be adjusted by changing pro-

cessor parameters or by migrating applications to different proces-
sors. We model such changes with a processor speedup factor:af-
ter the adjustment, the service demands of all tasks are scaled by
a constant factorf . In other words, a job requiringD seconds to
complete before the change will requireD

f seconds after scaling.
Note that the speed scaling factor may not match the change ofraw
processor clock frequency since other factors like processor cache
size and memory bandwidth may also affect the processing speed.

We add two assumptions about the scheduling policy and the
impact of changing job arrival rate.

ASSUMPTION 3. Deterministic scheduling: All scheduling de-
cisions are made deterministically and they are based solely on the
following information: the set of runnable jobs; arbitrary static
properties of each job (e.g., priority/preemptibility); and the amount
of service each runnable job has received at each scheduling deci-
sion point.

ASSUMPTION 4. Arrival rate monotonicity: When the arrival
times of all jobs scale up by a constant factor (> 1.0), aggregate
queueing time does not increase.

Most commonly employed scheduling policies satisfy Assump-
tion 3. In particular, it is easy to see that First-Come-First-Served,
Shortest-Job-First, Shortest-Remaining-Processing-Time-First, Round
Robin, and Processor Sharing are all deterministic. Assumption 4
is intuitive because the constant-factor scale-up of all jobs’ arrival
times means a reduction of workload intensity (less work to do)
in any given time window and thus less queueing. We can show
that all static priority-based preemptive schedulers (including First-
Come-First-Served and Shortest-Job-First) and fine-grained Pro-
cessor Sharing (or Round Robin with infinitesimal quanta) satisfy
Assumption 4. For brevity we do not provide the proofs in thispa-
per. Our first performance law provides a lower bound on queueing
time reduction due to speedup.

The Processor Speedup Law. If the k identical processors all
get a speedup factor f (f > 1.0), then aggregate queueing up to
time T will decrease by at least a factor of f−1

f . In other words, the

queueing time reduction is at least f−1
f ·A, where A is the original

aggregate queueing time:

A ≡
∫ T

0
max{Nk(t)−k, 0}dt

Derivation This law can be understood by two simple transfor-
mations of processing capacity and workload. In the first transfor-
mation, we scale up processor speed by a factor off and simultane-
ously scale down the arrival time of all jobs by a factor of1

f . There-
fore both job service time and arrival time scale down by a factor
of 1

f . Following Assumption 3, the same scheduling decisions will
be made (albeit at different time instants) before and afterthe trans-
formation. Therefore, the whole occupancy curve scales down by
a factor of 1

f along the time scale (horizontal axis) after the trans-
formation. This indicates that the aggregate job queueing time also
scales down by a factor of1f . In the second transformation, we
scale back the arrival time of all jobs by a factor off . According to
Assumption 4, we know this transformation does not increasethe
aggregate job queueing time. Figure 3 illustrates the two transfor-
mations using a simple example of two jobs in a single-processor
system (k = 1) running an FCFS scheduler. Each job has a service

Job1

N(t)

Job2

Job2

Job1

N(t)

Job2

Job1

N(t)

t=0 1 2

N=1

t=0 1 2 3 4

N=1

Queueing time

t=0 1 2

N=1

Job arrival time scale 0.5
Processor speed scale 2.0

Job arrival time scale 2.0

Figure 3: An illustration of the two transformations in the Pro-
cessor Speedup Law derivation.

time of 2 seconds before the speedup and the processor speedup
factor is f = 2.0. After the two transformations, we conclude that
the aggregate queueing time of the jobs will scale down by at least
a factor of 1

f (or decrease by at least a factor off−1
f) due to the

speedup.

Given the Processor Speedup Law we can easily bound the change
in aggregateresponse time. The law states that aggregate queueing
time will decrease by at least a factor off−1

f after the speedup.
Since aggregate service time will decrease by exactly the same fac-
tor, aggregateresponse time (queueing time + service time) will be
reduced by at least a factor off−1

f .
Finally, we can derive a mirror result to the Processor Speedup

Law for the case of processor slowdown (f < 1.0): Both aggregate
queueing time and aggregate response time will increase by at least
a factor of1− f

f . We call thisThe Processor Slowdown Law.

4. CONCLUSION
This brief announcement outlines a pair of operational lawsthat

bound the queueing time changes in parallel processors whenthe
the processor speed scales. Our laws only require blackbox-observable
information and they apply to many commonly employed resource
scheduling policies. To the best of our knowledge, operational anal-
ysis does not figure prominently in the literature on parallel com-
puting [1]. However our results show that operational analysis can
shed light on understanding the impact of speed adjustmentsin par-
allel processors, including traditional SMPs and now increasingly
ubiquitous multicores.

Acknowledgments
This work was supported in part by the U.S. National Science Foun-
dation grants CCF-0448413, CNS-0615045, and CCF-0621472.We
thank Arif Merchant for detailed feedback on our work.

5. REFERENCES
[1] ACM Digital Library, January 2008. Extensive full-text

keyword searches of all past SPAA proceedings for

“operational,” “Little,” “Buzen,” etc. yield only a handful of
passing references to operational laws. Tracing back-pointers
from classic papers such as [7] yields similar results.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. InProc. ACM
Symposium on Operating Systems Principles (SOSP), pages
164–177, October 2003.

[3] Gunter Bolch, Stefan Greiner, Hermann de Meer, and
Kishor S. Trivedi.Queueing Networks and Markov Chains.
John Wiley & Sons, 1998.

[4] The Condor Project.
http://www.cs.wisc.edu/condor/.

[5] Hewlett-Packard Corp. HP Real User Monitor, January 2008.
Search for “Real User Monitor” at
http://www.hp.com/.

[6] VMWare Corporat. VMWare ESX Server 3, January 2008.
http://www.vmware.com/products/vi/esx/.

[7] Peter J. Denning and Jeffrey P. Buzen. The operational
analysis of queueing network models.ACM Computing
Surveys, 10(3):225–261, September 1978.

[8] HP, Intel, Microsoft, Phoenix Technologies Ltd., and
Toshiba. Advanced configuration and power interface
specification (ACPI), October 2006.
http://www.acpi.info/spec.htm.

[9] Ravi Iyer, Ramesh Illikkal, Li Zhao, Srihari Makineni, Don
Newell, Jaideep Moses, and Padma Apparao.
Datacenter-on-chip architectures: Tera-scale opportunities
and challenges.Intel Technical Journal, 11(3):227–238,
August 2007.

[10] Raj Jain.The Art of Computer Systems Performance
Analysis. John Wiley & Sons, 1991.

[11] Terence Kelly, Kai Shen, Alex Zhang, and Christopher
Stewart. Operational analysis of parallel servers, April 2008.

[12] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle
Olukotun. Niagara: A 32-way multithreaded SPARC
processor.IEEE Micro, pages 21–29, March 2005.

[13] James Larus and Ravi Rajwar.Transactional Memory.
Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2007.

[14] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and
Kenneth C. Sevcik.Quantitative System Performance:
Computer System Analysis Using Queueing Network Models.
Prentice-Hall, 1984.

[15] John D.C. Little. A Proof of the Queueing Formula:
L = λW . Operations Research, 9(3):383–387, May 1961.

[16] Platform Computing. LSF Scheduler.
http://www.platform.com/Products/
platform-lsf-family/.

[17] Christopher Stewart, Terence Kelly, Alex Zhang, and Kai
Shen. A dollar from 15 cents: Cross-platform management
for internet services. InProc. USENIX Annual Technical
Conference, June 2008.

[18] Christopher Stewart and Kai Shen. Performance modeling
and system management for multi-component online
services. InProc. USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 71–84,
May 2005.

[19] Texas Memory Systems. RamSan-400 Solid State Disk,
January 2008.http:
//www.superssd.com/products/ramsan-400/.

