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Abstract

Sparse LU factorization with partial pivoting is important
for many scienti�c applications and delivering high perfor�
mance for this problem is di�cult on distributed memory
machines� Our previous work has developed an approach
called S� that incorporates static symbolic factorization�
supernode partitioning and graph scheduling� This paper
studies the properties of elimination forests and uses them
to guide supernode partitioning�amalgamation and execu�
tion scheduling� The new design with �D mapping e�ec�
tively identi�es dense structures without introducing too
many zeros in the BLAS computation and exploits asyn�
chronous parallelism with low bu�er space cost� The imple�
mentation of this code� called S�� uses supernodal matrix
multiplication which retains the BLAS�� level e�ciency and
avoids unnecessary arithmetic operations� The experiments
show that S� improves our previous code substantially and
can achieve up to 		�
�GFLOPS on 	�� Cray T�E �

MHz
nodes� which is the highest performance reported in the lit�
erature�

� Introduction

Solution of sparse linear systems is a computational bottle�
neck in many problems� If a matrix is symmetric and posi�
tive de�nite� Cholesky factorization can be used� for which
fast parallel algorithms have been developed �	
� 	�� �
��
When pivoting is required to maintain numerical stability
for non�symmetric linear systems ��� 	��� it is very hard to
produce high performance for this problem because partial
pivoting operations dynamically change computation and
communication patterns during the elimination process� and
cause severe caching miss and load imbalance on modern
computers with memory hierarchies�

The previous work has addressed parallelization using
shared memory platforms or restricted pivoting ��� 	�� 	��
	��� Most notably� the recent shared memory implementa�
tion of SuperLU ��� �� 	�� has achieved up to ��
�GFLOPS
on � Cray C�
 nodes� For distributed memory machines�
in �	
� we proposed a novel approach called S� that inte�
grates three key strategies together in parallelizing this al�
gorithm� 	� adopt a static symbolic factorization scheme �	��
to eliminate the data structure variation caused by dynamic
pivoting� �� identify data regularity from the sparse struc�
ture obtained by the symbolic factorization so that e�cient
dense operations can be used to perform most of the com�
putation� �� make use of graph scheduling techniques and
e�cient run�time support called RAPID ��� 		� to exploit
irregular parallelism� The preliminary experiments are en�
couraging and good performance results are obtained with
	D data mapping for a set of nonsymmetric benchmark ma�
trices� We have achieved up to 	��
GFLOPS with RAPID
code on �� Cray T�E �

MHz nodes�

Our previous design uses task graphs for fast code proto�
typing� Elimination trees or forests are used extensively in
sparse Cholesky because they have more compact represen�
tation of parallelism and can be used for both matrix parti�
tioning and parallelism scheduling� It is di�cult to handle
sparse LU similarly for a general matrix A because A can be
nonsymmetric and may require partial pivoting� The classi�
cal approach for LU normally uses elimination trees of ATA�
which normally produce too much false computational de�
pendency� Thus our primary goal is to study the de�nition
and properties of elimination trees�forests to guide matrix
partitioning and parallelism control in LU�

Our second goal is to incorporate �D block�based map�
ping in our framework� In the literature �D mapping has
been shown more scalable than 	D for dense LU and sparse
Cholesky �	� �
� �	�� However there are di�culties to apply
the �D block�oriented mapping to the case of sparse LU fac�
torization even the static structure is predicted in advance�
First� pivoting operations and row interchanges require fre�
quent and well�synchronized inter�processor communication
when each column is distributed to multiprocessors� Second�
exploiting irregular parallelism to a maximum degree may
need a substantial amount of extra bu�er space�

In ���� we reported a preliminary version of the �D code
with a simple parallelism scheduling mechanism� Recently
with a modi�ed control mechanism called factor�ahead� S�

has achieved up to ����GFLOPS on 	�� Cray T�E �

MHz
nodes ���� In this paper� we will brie�y explain this control



mechanism� and will further report several new performance�
improving strategies based on elimination forests� Those
strategies include supernode partitioning and amalgamation
using the properties of elimination forests� e�cient supernode�
level matrix multiplication� and parallelism exploitation us�
ing elimination forests� Our new design� called S�� can im�
prove our previous code in an average of more than 

� in
terms of execution time� In particular we can achieve up to
����GFLOPS on 	�� T�E �

MHz nodes and 		�
�GFLOPS
on 	�� T�E �

MHz nodes� This is the highest performance
ever achieved for this problem�

The rest of this extended abstract is organized as follows�
Section � gives the background knowledge of the sparse LU�
Section � presents a modi�ed de�nition and properties of
elimination forests for sparse LU� gives the strategies of su�
pernode partitioning and amalgamation using those prop�
erties� Section � describes strategies for �D asynchronous
parallelism exploitation� Section 
 discusses a fast matrix
multiplication algorithm suitable for submatrices obtained
by supernode partitioning strategies� Section � presents the
experimental results on Cray T�E� Section � concludes the
paper� Due to the limit on the paper length� all theorem
proofs are not included� but are available in �����

� Background

The purpose of LU factorization is to �nd two matrices
L and U for a nonsymmetric sparse matrix A such that
PA � LU � where L is a unit lower triangular matrix� U is
an upper triangular matrix� and P is a permutation matrix
containing pivoting information� In this section� we brie�y
discuss related techniques used in our algorithm�

Static symbolic factorization� Static symbolic fac�
torization is proposed in �	�� to identify the worst case nonzero
patterns without knowing numerical values of elements� The
basic idea is to statically consider all the possible pivoting
choices at each elimination step and the space is allocated
for all the possible nonzero entries� The symbolic factoriza�
tion for an n � n matrix can be outlined as follows�

�At each step k�	 � k � n�� each row i � k which has
a nonzero element in column k is a candidate pivot row
for row k� As the static symbolic factorization proceeds� at
step k the nonzero structure of each candidate pivot row is
replaced by the union of the structures of all these candidate
pivot rows except the elements in the �rst k � 	 columns��

Using an e�cient implementation of the symbolic factor�
ization algorithm �	��� this preprocessing step can be very
fast� For example� it costs less than one second for most
of our tested matrices� at worst it costs � seconds on a sin�
gle node of Cray T�E� and the memory requirement is rela�
tively small� The dynamic factorization� which is used in the
sequential and share�memory versions of SuperLU ��� 	���
provides more accurate data structure prediction on the
�y� but it is challenging to parallelize SuperLU with low
runtime control overhead on distributed memory machines�
In ��� 	
�� we show that static factorization does not pro�
duce too many �ll�ins for most of the tested matrices� even
for large matrices using a simple matrix ordering strategy
�minimum degree ordering�� For few tested matrices� static
factorization generates an excessive amount of �ll�ins and
future work is needed to study re�ordering strategies to re�
duce over�estimation ratios�

L�U supernode partitioning� After the nonzero �ll�in
pattern of a matrix is predicted� the matrix is further parti�

tioned using a supernodal approach to improve the caching
performance� In �	��� a nonsymmetric supernode is de�ned
as a group of consecutive columns in which the correspond�
ing L factor has a dense lower triangular block on the diago�
nal and the same nonzero pattern below the diagonal� Based
on this de�nition� in each column block the L part only
contains dense subrows� We call this partitioning method
L supernode partitioning� Here by �subrow� we mean the
contiguous part of a row within a supernode� After an L su�
pernode partition has been obtained on a sparse matrix A�
the same partitioning is applied to the rows of the matrix to
further break each supernode into submatrices� This is also
known as U supernode partitioning� In �	
�� we show that
after the L�U supernode partitioning� each diagonal subma�
trix is dense� and each nonzero o��diagonal submatrix in the
L part contains only dense subrows� and furthermore each
nonzero submatrix in the U factor of A contains only dense
subcolumns� This is the key to maximize the use of BLAS��
subroutines �
� in our algorithm� And on most current com�
modity processors with memory hierarchies� BLAS�� sub�
routines usually outperform BLAS�� subroutines substan�
tially when implementing the same functionality �
�� Fig�
ure 	 illustrates an example of a partitioned sparse matrix
and the black areas depict dense submatrices� subrows and
subcolumns�
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Figure 	� Example of a partitioned sparse matrix�

Data mapping� Given an n�n matrix A� assume that
after the matrix partitioning it has N�N submatrix blocks�
For example� the matrix in Figure 	 has �� � submatrices�
Let Ai�j denote a submatrix of A with row block index i
and column block index j� For block�oriented matrix com�
putation� 	D column block cyclic mapping and �D block
cyclic mapping are commonly used� In 	D column block
cyclic mapping� the j�th column block of A is assigned to
the same processor Pj mod p� where p is the number of the
processors� In the �D cyclic mapping� processors are viewed
as a �D grid� and a column block of A is assigned to a column
of processors� �D sparse LU Factorization is more scalable
than the 	D data mapping ��� 	��� However �D mapping
introduces more overhead for pivoting and row swapping�

Program partitioning� Each column block k is asso�
ciated with two types of tasks� Factor�k� and Update�k� j�
for 	 � k � j � N � 	� Task Factor�k� factorizes all the
columns in the k�th column block� including �nding the
pivoting sequence associated with those columns and up�
dating the lower triangular portion of column block k� The
pivoting sequence is held until the factorization of the k�



th column block is completed� Then the pivoting sequence
is applied to the rest of the matrix� This is called �de�
layed pivoting� ���� �� Task Update�k� j� uses column block
k �Ak�k� Ak���k� � � � � AN�k� to modify column block j� That
includes �row swapping� using the result of pivoting derived
by Factor�k�� �scaling� which uses the factorized submatrix
Ak�k to scale Ak�j � and �updating� which uses submatrices
Ai�k and Ak�j to modify Ai�j for k�	 � i � N � Figure � out�
lines the partitioned LU factorization algorithm with partial
pivoting�

for k � 	 to N
Perform task Factor�k��
for j � k�	 to N with Akj �� 


Perform task Update�k� j��
endfor

endfor

Figure �� Partitioned sparse LU factorization with partial
pivoting�

The �D RAPID code� We have implemented a paral�
lel method with 	D data mapping using the RAPID runtime
system ��� 	
�� This code uses a DAG to model irregular par�
allelism and RAPID to schedule the tasks� Then RAPID will
execute the scheduled DAG on a distributed memory ma�
chine using a low�overhead communication scheme� Using
DAGs to model irregular LU parallelism is good in help�
ing us understand the parallelism in sparse LU and develop
the �rst prototype of high performance message�passing LU
code� In ��� 	��� we show that 	D RAPID code based on
graph scheduling can actually outperform �D codes with
simpler scheduling methods when su�cient space is avail�
able� But �D mapping exposes more parallelism� which
makes �D codes more scalable and easier to achieve load
balance� Also the RAPID implementation in �	
� uses ex�
tra memory space for supporting general irregular computa�
tions� Thus in designing �D codes� we paid special attention
to the usage of bu�er space so that �D codes are able to fac�
torize large matrices under memory constraints�

� Elimination forests and nonsymmetric supernode
partitioning

In this section� we extend the previous work on elimina�
tion forests �	� 	�� and identify the properties of elimination
forests to design more robust strategies for supernode parti�
tioning and detect when pivoting for di�erent columns can
be conducted concurrently� As a result� both sequential and
parallel codes can be improved�

��� The de�nition of elimination forests

Considering an n�n sparse matrix A� we assume that every
diagonal element of A is nonzero� Notice that for any non�
singular matrix which does not have a zero�free diagonal� it
is always possible to permute the rows of the matrix so that
the permuted matrix has a zero�free diagonal ���� We will
use the following notations in the rest of this section� We
will still call the matrix after symbolic factorization as A
since this paper assumes the symbolic factorization is con�
ducted �rst� Let ai�j be the element of row i and column j
in A and ai�j�s�t be the submatrix of A from row i to row j

and column s to t� Let Lk denote column k of the L fac�
tor� which is ak�n�k�k� Let Uk denote row k of the U factor�
which is ak�k�k�n� Also let jLkj and jUkj be the total number
of nonzeros and �ll�ins in those structures�

De�nition � An LU Elimination forest for an n � n
matrix A has n nodes numbered from 	 to n� For any two
numbers k and j �k � j�� there is an edge from vertex j
to vertex k in the forest if and only if akj is the �rst o��
diagonal nonzero in Uk and jLkj � 	� Vertex j is called the
parent of vertex k� and vertex k is called a child of vertex
j�

An elimination forest for a given matrix can be gener�
ated in a time complexity of O�n� and it can actually be
a byproduct of the symbolic factorization� Figure � illus�
trates a sparse matrix after symbolic factorization and its
elimination forest�
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Figure �� A sparse matrix and its elimination forest�

Theorem 	 below demonstrates the structural properties
of an elimination forest�

Theorem � If vertex j is an ancestor of vertex k in an
elimination forest� then Lk � fk� k� 	� � � � � j � 	g � Lj and
Uk � fk� k � 	� � � � � j � 	g � Uj �

Theorem � below identi�es the dependency information
in the elimination forest�

De�nition � Let j � k� Lk directly updates Lj if task
Update�k� j� is performed in LU factorization� i�e� akkj �� 

and jLkj � 	� Lk indirectly updates Lj if there is a
sequence s�� s�� � � � � sp such that� s� � k� sp � j and Lsq
directly updates Lsq�� for each 	 � q � p� 	�

Theorem � Let k � j� Lk is used to directly or indirectly
update Lj in LU factorization if and only if vertex j is an
ancestor of vertex k�

Theorem 	 captures the structural containment between
two columns in L and two rows in U � which will be used
for designing supernode partitioning with amalgamation in
the next subsection� Theorem � indicates dependency infor�
mation in the numerical elimination� which can guide our
parallel scheduling of asynchronous parallelism�



George and Ng proposed a de�nition of elimination forests
in �	�� to control row�wise elimination� The di�erence be�
tween their de�nition and the above de�nition is that we
impose the condition jLkj � 	� In practice� we �nd that the
tested matrices can have up to 

� of columns with zero
lower�diagonal elements� Imposing this condition avoids some
unnecessary dependence among vertices and it is also re�
quired for proving Theorems 	 and ��

Figure � illustrates the di�erence among three de�nitions
of elimination tree�forests using a very simple example� Fig�
ure ��a� shows a sparse matrix A and no �ll�in is created by
symbolic factorization� Figure ��b� displays the elimination
tree of ATA� Figure ��c� illustrates the elimination forest
under George and Ng�s de�nition and Figure ��d� shows the
elimination forest under our de�nition� It can be seen that
the elimination forest under our de�nition identi�es more
parallelism� Another observation is that Theorem 	 only
holds under our de�nition of elimination forests�
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T

Figure �� A sparse matrix and its elimination tree�forests
under three di�erent de�nitions�

��� �D L�U supernode partitioning and amalgama�
tion

Given a nonsymmetric matrix A after symbolic factoriza�
tion� in �	
� we have described a �D L�U supernode parti�
tioning in which two stage partitioning is applied� Stage 	�
A group of consecutive columns that have the same struc�
ture in the L factor is considered as one supernode column
block� Then the L factor is sliced as a set of consecutive
column blocks� Stage �� After an L supernode partition has
been obtained� the same partition is applied to the rows of
the matrix to further break each supernode column block
into submatrices�

We examine how elimination forests can be used to guide
and improve the �D L�U supernode partitioning� The fol�
lowing corollary is a straightforward result of Theorem 	 and
it shows that we can easily traverse an elimination forest to
identify supernodes� Notice that each element in a dense
structure can be a nonzero or a �ll�in due to static symbolic
factorization�

Corollary � If for each i � fs � 	� s � �� � � � � tg� vertex i
is the parent of vertex i � 	 and jLij � jLi��j � 	� then ��
the diagonal block as�t� s�t is completely dense� 	� at���n�s�t
contains only dense subrows� and 
� as�t�t���n contains only
dense subcolumns�

The partitioning algorithm using the above corollary can
be brie�y summarized as follows� For each pair of two con�
secutively numbered vertices with the parent�child relation�
ship in the elimination forest� we check the size di�erence
between the two corresponding columns in the L part� If
the di�erence is one� we assign these two columns into an
L supernode� Since if a submatrix in a supernode is too
large� it won�t �t into the cache and also large grain parti�
tioning reduces available parallelism� we usually enforce an
upper bound on the supernode size� Notice that U parti�
tioning is applied after the L partitioning is completed� We
do not need to check any constraint on U because as long
as a child�parent pair �i� i � 	� satis�es jLij � jLi��j � 	�
we can show that jUij � jUi��j � 	 based on Theorem 	 in
�	
� and hence the structures of Ui and Ui�� are identical�
Figure 
�a� illustrates supernode partitioning of the sparse
matrix in Figure �� There are � L�U supernodes and from
the L partitioning point of view� columns from 	 to 
 are
not grouped but columns �� � and � are clustered together�
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Figure 
� �a� Supernode partitioning for the matrix in Fig�
ure �� �b� The result of supernode amalgamation�

For most of the tested sparse matrices in our experi�
ments� the average supernode size after the above partition�
ing strategy is very small� about 	�
 to � columns� This
leads to relatively �ne grained computation� In practice�
amalgamation is commonly adopted to increase the aver�
age supernode size by introducing some extra zero entries in
dense structures of supernodes� In this way� caching perfor�
mance can be improved and interprocessor communication
overhead may be reduced� For sparse Cholesky �e�g� �	����
the basic idea of amalgamation is to relax the restriction
that all the columns in a supernode must have exactly the
same o��diagonal nonzero structure� In a Cholesky elimi�
nation tree� a parent could be merged with its children if
merging does not introduce too many extra zero entries into
a supernode� Row and column permutations are needed if
the parent is not consecutive with its children� For sparse
LU� such a permutation may alter the symbolic factorization
result� In our previous approach �	
�� we simply compare the
consecutive columns of the L factor� and make a decision on
merging if the total number of di�erence is under a pre�set
threshold� This approach is simple� resulting in a bounded
number of extra zero entries included in the dense structure
of L supernode� However� the result of partitioning may
lead to too many extra zero entries in the dense structure
of U supernode� Using the elimination forest properties� we
can remedy this problem by partitioning L and U factors



simultaneously as follows�
We call our supernodes after amalgamation as relaxed

L�U supernodes and each of them includes elements from
both the L part and the U part�

De�nition � A relaxed L�U supernode R�s�t� contains three
parts� the diagonal block as�t�s�t� the L supernode part as���n�s�t
and the U supernode part as�t�t���n�

The following corollary� which is also a straightforward
result of Theorem 	� can be used to bound the nonzero struc�
ture of a relaxed L�U supernode�

Corollary � If for each i where s � 	 � i � t� vertex i is
the parent of vertex i � 	 in an elimination forest� then the
nonzero structure of each column in as���n� s�t is a subset of
the structure in Lt� and the nonzero structure of each row
in as�t� t���n is a subset of the structure in Ut�

Using Corollary �� in R�s � t� the ratio of extra �ll�ins in�
troduced by amalgamation compared with the actual nonze�
ros can be computed as�

z �
�t� s� 	�� � �t� s� 	�� �nz�Lt� � nz�Ut�� ��

nz�R�s � t��
� 	

where nz�� gives the number of nonzero elements in the cor�
responding structure including �ll�ins created by symbolic
factorization� Also notice that both Lt and Ut include the
diagonal element�

Thus our heuristic for �D partitioning is to traverse the
elimination forest and �nd relaxed supernodes R�s � t� sat�
isfying the following conditions�

	� for each i where s�	 � i � t� vertex i is the parent of
vertex i� 	 in the elimination forest�

�� the extra �ll�in ratio� z� is less than the pre�de�ned
threshold� and

�� t� s�	 � the pre�de�ned upper bound for supernode
sizes�

Our experiments show that the above strategy is very e�ec�
tive and the complexity of the partitioning algorithm with
amalgamation is O�n�� which is very low and is made possi�
ble by Corollary �� Our experiments show that the number
of total extra �ll�ins doesn�t change much when the upper
bound for z is in the range of 	
 � 	

� and it seldom ex�
ceeds �� of the total nonzeros in the whole matrix� In terms
of upper bound for supernode size� �
 gives the best caching
and parallel performance on T�E� Thus all the experiments
in Section � are completed with z � �
� and t� s�	 � �
�

Figure 
�b� illustrates the result of supernode amalgama�
tion for the sparse matrix in Figure �� Condition z � �
�
is applied during the amalgamation� There are four relaxed
L�U supernodes� R�	 � ��� R�� � ��� R�
 � 
�� and R�� � ���

In the rest of this paper� we will call relaxed L�U su�
pernodes simply as supernodes� and the supernode size of
R�s � t� is t� s� 	�

� �D asynchronous parallelism exploitation

In this section� we present scheduling control strategies for
exploiting asynchronous �D parallelism so that di�erent up�
dating stages can be overlapped� After �D L�U supernode
partitioning and amalgamation� the n�n sparse matrix A is

��dimensionally partitioned into N �N submatrices� Sym�
bol Ai�j is used to denote the submatrix in row block i and
column block j and Ai�j�s�t denotes the submatrices from
row block i to j and column block s to t� Our �D algorithm
uses the standard cyclic mapping since it tends to distribute
data evenly which is important to solve large problems� In
this scheme� p available processors are viewed as a two di�
mensional grid� p � pr � pc� Then block Ai�j is assigned to
processor Pi mod pr� j mod pc �

In Section �� we have described two types of tasks in�
volved in LU� One is Factor�k�� which is to factorize all the
columns in the k�th column block� including �nding the piv�
oting sequence associated with those columns� The other is
Update�k� j�� which is to apply the pivoting sequence derived
from Factor�k� to the j�th column block� and modify the
j�th column block using the k�th column block� where k � j
and Ukj �� 
� The �D data mapping enables parallelization
of a single Factor�k� or Update�k� j� task on pr processors
because each of them is executed by column k mod pc of the
processor grid� The main challenge is the coordination of
pivoting and data swapping across a subset of processors to
exploit as much parallelism as possible with low bu�er space
demand�

For task Factor�k�� the computation is distributed among
processors in column k mod pc of the processor grid and a
global synchronization between those processors is needed
for correct pivoting� To simplify the parallelism control of
task Update�k� j� we split it into two subtasks� ScaleSwap�k�
which does scaling and delayed row interchange for subma�
trices Ak�N� k���N � Update�D�k� j� which modi�es column
block j using column block k� For ScaleSwap�k�� the syn�
chronization among processors within the same column of
the grid is needed� For Update�D�k� j�� no synchronization
among processors is needed as long as the desired submatri�
ces in column blocks k and j are made available to processor
Pi mod pr � j mod pc where k � 	 � i � N �

We discuss three scheduling strategies below� The �rst
one as reported in ��� is a basic approach in which computa�
tion �ow is controlled by the pivoting tasks Factor�k�� The
order of execution for Factor�k�� k � 	� �� � � � � N is sequen�
tial� but Update�D�� tasks� where most of the computation
comes from� can execute in parallel among all processors�
Let symbol Update�D�k� �� denote tasks Update�D�k� t� for
k � 	 � t � N � The asynchronous parallelism comes from
two levels� First a single stage of tasks Update�D�k� �� can
be executed concurrently on all processors� In addition� dif�
ferent stages of Update�D�� tasks from Update�D�k� �� and
Update�D�k�� ��� where k �� k�� can also be overlapped�

The second approach is called factor�ahead which im�
proves the �rst approach by letting Factor�k � 	� start as
soon as Update�D�k� k � 	� completes� This is based on
an observation that in the basic approach� after all tasks
Update�D�k� �� are done� all processors must wait for the
result of Facor�k�	� to start Update�D�k�	� ��� It is not
necessary that Facor�k � 	� has to wait the completion of
all tasks Update�D�k� ��� This idea has been used in the
dense LU algorithm �	�� and we extend it for asynchronous
execution and incorporate a bu�er space control mechanism�
The details are in ����

The factor�ahead technique still imposes a constraint that
Factor�k � 	� must be executed after the completion of
Factor�k�� In order to exploit potential parallelism between
Factor�� tasks� our third design is to utilize dependence in�
formation implied by elimination forests� Since we deal with
a partitioned matrix� an element�wise elimination forest in



De�nition 	 needs to be clustered into a supernode�wise
elimination forest� We call the new forest as a supernodal
elimination forest�

De�nition � A supernodal elimination forest has N nodes�
Each node corresponds to a relaxed L�U supernode� Supern�
ode R�i� � i�� is the parent of supernode R�j� � j�� if and
only if there exists vertex i � fi�� i� � 	� � � � � i�g and ver�
tex j � fj�� j� � 	� � � � � j�g such that i is j�s parent in the
corresponding element�wise elimination forest�

As for the example in Figure 
�b�� its supernodal elim�
ination forest is depicted in Figure �� The corresponding
matrix is partitioned into �� � submatrices�

Supernode 3 - R(5:5)

Supernode 1 - R(1:2)

Supernode 2 - R(3:4)

Supernode 4 - R(6:8)

Figure �� Supernodal elimination forest for the matrix in
Figure 
�b�

�
A supernodal elimination forest can be generated e��

ciently in complexity O�n� using the Theorem � below�

Theorem � Supernode R�i� � i�� is the parent of supernode
R�j� � j�� in the supernodal elimination forest if and only if
there exists vertex i � fi�� i� � 	� � � � � i�g which is the parent
of vertex j� in the element�wise elimination forest�

Finally the following theorem indicates computation de�
pendence among supernodes and exposes the possible par�
allelism that can be exploited�

Theorem � L part of supernode R�j� � j�� directly or indi�
rectly updates L supernode R�i� � i�� if and only if R�i� � i��
is an ancestor of supernode R�j� � j���

Our design for LU task scheduling using the above for�
est concept is di�erent from the ones for Cholesky �	� 	��
because pivoting and row interchanges complicate the �ow
control in LU� Using Theorem �� we are able to exploit some
parallelism among Factor�� tasks� After tasks Factor�i�
and Update�D�i� k� have �nished for every child i of su�
pernode k� task Factor�k� is ready for execution� Because
of the space constraint on the bu�er size� our current de�
sign does not fully exploit the parallelism and this design is
explained below�

Space complexity� We examine the degree of par�
allelism exploited in the factor�ahead and elimination for�
est guided algorithms by determining number of updating
stages that can be overlapped� Using this information we
can estimate the extra bu�er space needed per processor
for asynchronous execution� This bu�er is used to accom�
modate nonzeros in Ak�N�k and pivoting sequence at each
elimination step k� We de�ne the stage overlapping de�
gree for updating tasks as

maxfjk � k�j
�
� There exist tasks Update�D�k� �� and

Update�D�k�� �� executed concurrently�g
It is proved in ��� that for the factor�ahead approach� the

reachable overlapping degree is pc among all processors and

the extra bu�er space complexity is about ����BSIZE
n

� S�
where S� is the sequential space size for storing the entire
sparse matrix and BSIZE is the maximum supernode size�
This complexity is very small for a large matrix� Also be�
cause �D cyclic mapping normally leads to a uniform data
distribution� our factor�head approach is able to handle large
matrices�

In our current design for the elimination forest guided
approach� we enforce a constraint so that the above size
of extra bu�er space is also su�cient� This constraint is
that for any processor that executes both Factor�k� and
Factor�k�� where k � k�� Factor�k�� cannot start until
Factor�k� completes� In other words� Factor�� tasks are
executed sequentially on each single processor column but
they can be concurrent across all processor columns� Fig�
ure � shows the elimination forest guided approach based
on the above strategy� It is obvious that allocating more
bu�ers can relax this constraint and increase the degree of
stage overlapping� Our current experimental study does not
show a substantial advantage by doing that� however� more
work is needed to investigate this issue under the memory
constraint�

Example� Figure ��a� and �b� are the factor�ahead and
elimination forest guided schedules for the partitioned ma�
trix in Figure 
�b� on a ��� processor grid� Notice that some
of Update�D�� tasks such as U�	� �� are not listed because
they do not exist due to the matrix sparsity� To simplify our
illustration� we assume that each of Factor��� ScaleSwap��
and Update�D�� takes one unit time and communication
cost is zero� In the factor�ahead schedule� Factor��� is ex�
ecuted immediately after Update�D�	� �� on the processor
column 	� The basic approach would schedule Factor��� af�
ter ScaleSwap���� Letting Factor�� tasks complete as early
as possible is important since many updating tasks depend
on Factor�� tasks� In the elimination forest based schedule�
Factor��� is executed in parallel with Factor�	� because
there is no dependence between them� implied by the forest
in Figure �� As a result� the length of this schedule is one
unit shorter than the factor�ahead schedule�

PC2

F(2)

S(1)

PC1

F(1)

S(1)

F(4)

U(3,4)

S(3)

U(2,4)

S(2)

U(1,4)U(1,3)

F(3)

S(2)

S(3)

Idle

Idle

(b) Elimination Forest
Guided Approach

PC2PC1

Idle

S(1)

F(2)

U(1,4)

S(2)

U(2,4)

S(3)

U(3,4)

F(4)

F(1)

S(1)

U(1,3)

F(3)

S(2)

S(3)

Idle

Idle

Idle

(a) Factor-ahead Approach

Figure �� Task schedules for matrix in Figure 
�b�� F ��
stands for Factor��� S�� stands for ScaleSwap��� U�� stands
for Update�D�� and PC stands for Processor Column�

� Implementation with supernodal GEMM kernel

We examine how the computation�dominating part of the
LU algorithm is e�ciently implemented using the level of



���� Let �my rno�my cno� be the �D coordinates of this processor�

���� Let m be the smallest column block number assigned to this processor�

���� if m doesn�t have any child supernode then

��	� Perform task Factor�m� for blocks this processor owns�

��
� endif

���� for k � � to N � �
��
� Perform ScaleSwap�k� for blocks this processor owns�

���� Let m be the smallest column block number �m � k� assigned to this processor�

���� Perform Update�D�k�m� for blocks this processor owns�

���� if column block m is not factorized and all m�s child supernodes have been factorized then

���� Perform Factor�m� for blocks this processor owns�

���� endif

���� for j � m� � to N

��	� if my cno � j mod pc then

��
� Perform Update�D�k� j� for blocks this processor owns�

���� endif

��
� endfor

���� endfor

Figure �� Supernode elimination forest guided �D approach�

BLAS as high as possible� Computations in task Update�D��
involve the following supernode block multiplication� Ai�j �
Ai�j � Ai�k � Ak�j where k � i and k � j� The BLAS��
GEMM routine �
� may not directly be applicable because
subcolumns or subrows in those submatrices may not be
consecutive and the target block Ai�j may have a nonzero
structure di�erent from that of product Ai�k � Ak�j �

There could be several approaches to circumvent the
above problem� One approach is to use the mixture of BLAS�
	���� routines� If Ai�k and Ai�j have the same row sparse
structure� and Ak�j and Ai�j have the same column sparse
structure� BLAS�� GEMM can be directly used to modify
Ai�j � If only one of the above two conditions holds� then the
BLAS�� routine GEMV can be employed� Otherwise only
the BLAS�	 routine DOT can be used� In the worst case� the
performance of this approach is close to the BLAS�	 perfor�
mance� Another approach is to treat non�zero submatrices
of A as dense during the space allocation and computation�
and hence BLAS�� GEMM can be employed more often�
But this approach normally leads to an excessive amount of
extra space and unnecessary arithmetic operations�

We propose the following approach called Supernodal
GEMM to minimize unnecessary computation but retain
high e�ciency� The basic idea is described as follows� If the
BLAS�� GEMM is not directly applicable� we divide the op�
eration into two steps� At the �rst step� we ignore the target
nonzero structure of Ai�j and directly use BLAS�� GEMM
to compute Ai�k � Ak�j � The result is stored in a temporal
block� At the second step� we merge this temporal result
block with Ai�j using subtraction� Figure � illustrates these
two steps� Since the computation of the �rst step is more
expensive than the second step� our code for multiplying su�
pernodal submatrices can achieve performance comparable
to the BLAS�� GEMM� A further optimization is to speedup
the second step since the result merging starts to play some
role for the total time after the GEMM routine reduces the
cost of the �rst step� Our strategy is that if the result block
and Ai�j have the same row sparse structure or the same col�
umn sparse structure� the BLAS�	 AXPY routine should be
used to avoid scalar operations� And to increase the prob�
ability of structure consistency between the temporal result

block and Ai�j � we treat some of L and U submatrices as
dense during the space allocation stage if the percentage of
nonzeros in such a submatrix compared to the entire block
size exceeds a threshold� For Cray�T�E� our experiments
show that threshold �
� is the best to reduce the result
merging time with small space increase�

Ai,k k,j

=

A

=

i,j tmp Ai,j

= -

Step 1:

Step 2:

if target block is in L factor if target block is in U factor

OR

Ai,j tmp Ai,j

tmp

X

-
A

Figure �� An illustration of Supernodal GEMM� Target
block Ai�j could be in the L factor or U factor�

Another issue is how to store and detect dense subrows
and subcolumns� In our approach� for an L submatrix� sub�
rows are stored in a consecutive space even their correspond�
ing row numbers may not be consecutive� A bitmap scheme
is used to indicate the supernode nonzero structure� A bit
is set to 
 if the corresponding subrow is zero� and set to
	 otherwise� For example if an L submatrix contains only
dense subrows� a bit is assigned for each subrow� Since we
limit the supernode size no larger than �
 to �t the cache on
T�E� we can use a ���bit integer to store the bitmap of each
submatrix� and can determine if a subrow is dense e�ciently
using a single logical �and� operation� The strategy for a
U submatrix is the same except in a subcolumn�oriented
fashion�

� Experimental studies on Cray T�E

In this section� most of the experiments are conducted on
T�E at San Diego Supercomputing Center �SDSC� unless
explicitly stated� Each Cray�T�E processing element at
SDSC has a clock rate of �

MHz� an �Kbytes internal



cache� ��Kbytes second level cache� and 	��Mbytes mem�
ory� The peak bandwidth between nodes is reported as



Mbytes�s and the peak round trip communication la�
tency is about 
�
���s ����� We have observed that when
block size is �
� double�precision GEMM achieves ���MFLOPS
while double precision GEMV reaches �

MFLOPS� We have
used block size �
 in our experiments� We recently ob�
tained an access to a Cray�T�E at the NERSC division of
the Lawrence Berkeley Lab� Each node in this machine has
a clock rate of �

MHz and �
�Mbytes memory� We have
done one set of experiments to show the performance im�
provement on an upgraded machine�

We will �rst report the overall sequential and parallel
performance of our new code compared to SuperLU and
our previous design� Then we measure the e�ectiveness
of the proposed optimization strategies� In calculating the
MFLOPS achieved by our parallel algorithms� we do not in�
clude extra �oating point operations introduced by the static
�ll�in overestimation� The achieved MFLOPS is computed
as the operation count obtained from SuperLU divided by
the parallel time of our algorithm on T�E� Table 	 shows
the statistics of the tested matrices� Column � is the or�
der of the matrix and column � is the number of nonzeros
before symbolic factorization� We have also listed the total
number of factor entries divided by jAj in SuperLU� S� and
Cholesky factorization of ATA for these matrices� And the
comparison is shown in column �� 
 and �� The result shows
that the overestimation in S� usually leads to less than 

�
extra nonzeros than SuperLU does� But the ATA approach
overestimates substantially more nonzeros� which also indi�
cates that the elimination tree of ATA introduces too many
false dependency edges� All matrices are ordered using the
minimum degree algorithm and the permutation algorithm
for zero�free diagonal ���� In subsection ���� we will also
report performance of S� for circuit simulation matrices�

factor entries�jAj
Matrix Order jAj SuperLU S� ATA
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Table 	� Testing matrices and their statistics�

��� Overall code performance

Our previous study ��� 	
� shows that even with the intro�
duction of extra nonzero elements by static symbolic factor�
ization� the performance of the S� sequential code can still
be competitive to SuperLU because we are able to use more
BLAS�� operations� Table � shows new code S� can actually

be faster than the SuperLU because of using new supernode
partitioning and matrix multiplication strategies� The test
matrices are selected from Table 	 that can be executed on
a single T�E node� We include a test for factorizing a dense
matrix to examine the algorithm performance on this ex�
treme aspect� The improvement over SuperLU for the dense
case is the highest because our code can fully utilize BLAS��
for this case� We also compare the sequential performance
of S� with our previous design S� �	
�� The performance
improvement ratios vary from ��� to �
�� For the dense
case� there is no improvement because the results of parti�
tioning and matrix multiplication between two versions are
the same in this case�

For parallel performance� we compare our new code with
the previous version ��� in Table � and the improvement ratio
in terms of MFLOPS vary from 	�� to 		��� in average
more than 

�� Table � shows the absolute performance of
the S� on an LBL�s Cray T�E machine with �

MHz CPU�
The highest performance reached is 		�
�GFLOPS� while
for the same matrix� ����GFLOPS is reached on �

MHz
T�E�

��� E	ectiveness of the proposed optimization strate�
gies

Elimination forest guided partitioning and amalga�
mation� Our new strategies for supernode partitioning with
amalgamation cluster columns and rows simultaneously us�
ing structural containment information implied by an elim�
ination forest� Our previous design S� �	
� does not con�
sider the bounding of nonzeros in the U part� We compare
our new code S� with a modi�ed version using the previ�
ous partitioning strategy� The performance improvement
ratio by using the new strategy is listed in Figure 	
 and
an average of �
� improvement is obtained� The ratio for
matrix �af��
�
� is not substantial because this matrix is
very sparse and even new partitioning�amalgamation strat�
egy can not produce large supernodes�

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

#proc

P
T

(o
ld

_m
et

ho
d)

/P
T

(n
ew

_m
et

ho
d)

−
1 *: goodwin

o: e40r0100
+: af23560
x: fidap011

Figure 	
� Performance improvement by using new supern�
ode partitioning�amalgamation strategy�

E�ectiveness of supernodal GEMM� We assess the
gain due to the introduction of the supernodal GEMM op�
eration� We compare S� with a modi�ed version using a
mixed approach which mixes BLAS�	���� as described in
Section 
� We don�t compare with the approach that treats
all nonzero blocks dense since it introduces too much extra
space and computation� The performance improvement ra�
tio of our supernodal approach over the mixed approach is



Matrix Sequential S� SuperLU Sequential S� Exec� Time Ratio
Time M�ops Time M�ops Time M�ops S��SuperLU S��S�

sherman
 
��
 ����� 
��� ���� 
��� ���� 
��� 
���
lnsp���� 	��� ���
� 	��� ���� ��
 �	�	 
��� 
���
lns���� 	�
� ����
 	��� ���� ��	� �
�� 
��� 
���
sherman� 	�
� ���
� 	��� ���� ��
� �
�� 
��� 
���
jpwh��	 
�
� ����� 
�
� �	�
 
��� �
�� 
��� 
��

orsreg	 	��
 ���		 	�
� �
�� ��
� �
�� 	�

 
���
saylr� ���� �
�	
 ���� ���� ��
� �
�� 
��� 
���

goodwin 	
��� �
��� � � 	��
 ���� � 
��

dense	


 ��
� 	�
�
 ���� ���� ��
� 	�
�
 
��� 	�



Table �� Sequential performance� Symbol ��� implies the data is not available due to insu�cient memory�
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Table �� MFLOPS performance of S� and S� on �

MHz Cray T�E�

listed in Figure 		� The improvement is not substantial for
matrix �e�
r
	

� and none for �goodwin�� This is because
they are relatively dense and the mixed approach has been
employing BLAS�� GEMM most of the time� For the other
two matrices which are relatively sparse� the improvement
ratio can be up to 	
��
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Figure 		� Performance improvement by using the supern�
odal GEMM�

A comparison of the control strategies for ex�
ploiting �D parallelism� In Table 
 we assess the perfor�
mance improvement by using the elimination forest guided
approach against factor�ahead and basic approaches described
in Section �� Compared to the basic approach� the improve�
ment ratios vary from 	�� to �	� and the average is ����
Compared to the factor�ahead approach� the average im�
provement ratio is 		� and the ratios tend to increase when
the number of processors increases� This result is expected

in the sense that the factor�ahead approach improves the de�
gree of computation overlapping by scheduling factor tasks
one step ahead while using elimination forests can exploit
more parallelism�

��� Performance on circuit simulation matrices

We recently obtained a few matrices from circuit simulation
in Texas Instruments ����� for which the static factorization
may generate many extra �ll�ins� We chose three of them
which are large enough for parallel test and ran them using
S� on �

MHz Cray T�E� Table � shows that static fac�
torization does produce a large number of �ll�ins for these
matrices �up to � times higher than dynamic factorization
using the same matrix ordering�� However� the experimen�
tal results in Table � demonstrate that S� still achieves de�
cent MFLOPS in a large number of processors� Remember
that we do not include extra �oating point operations intro�
duced by the static �ll�in overestimation in calculating the
MFLOPS achieved by our parallel algorithms� The achieved
MFLOPS is computed as the operation count obtained from
SuperLU divided by the parallel time of our algorithm on
T�E�

factor entries�jAj
Matrix Order jAj SuperLU S� ATA
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Table �� Circuit simulation testing matrices and their statis�
tics�
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Table �� Experimental results of S� on �

MHz Cray T�E� All times are in seconds�
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Table 
� Performance improvement by using the elimination forest guided approach�


 Concluding remarks

Our experiments show that properly using elimination forests
can guide us for e�ective matrix partitioning and parallelism
exploitation� Together with the supernodal matrix multipli�
cation algorithm� our new design can improve the previous
code substantially and set a new performance record�

Our experiments also show that S� and S� can deliver
high performance for large sparse matrices� Static symbolic
factorization may create too many �ll�ins for some matrices�
in which case S� can still achieve good performance on a
large number of processors� Therefore our approach is ap�
plicable to a large range of problems using a simple ordering
strategy �minimum degree ordering�� It might be possible
to use di�erent matrix reordering to reduce overestimation
ratios and more studies are needed on this issue�

Acknowledgment

This work is supported by NSF CDA��
���	�� NSF CA�
REER CCR���
���
� and DARPADABT�������C�

�� through
the Rutgers HPCD project�

We would like to thank Cong Fu for continuous help on
this project� Horst Simon for providing access to a Cray T�E
at National Energy Research Scienti�c Computing Center�
Stefan Boeriu for supporting access to a Cray T�E at San
Diego Supercomputing Center� Andrew Sherman and Vinod
Gupta for providing circuit simulation matrices� Esmond Ng
for helpful discussions� Apostolos Gerasoulis and the anony�
mous referees for their valuable comments�

References

�	� C� Ashcraft� R� Grimes� J� Lewis� B� Peyton� and
H� Simon� Progress in Sparse Matrix Methods for

Large Sparse Linear Systems on Vector Supercomput�
ers� International Journal of Supercomputer Applica�
tions� 	�	
��
� 	����

��� J� Demmel� Numerical Linear Algebra on Parallel Pro�
cessors� Lecture Notes for NSF�CBMS Regional Con�
ference in the Mathematical Sciences� June 	��
�

��� J� Demmel� S� Eisenstat� J� Gilbert� X� Li� and J� Liu�
A Supernodal Approach to Sparse Partial Pivoting�
Technical Report CSD��
����� EECS Department� UC
Berkeley� September 	��
� To appear in SIAM J� Ma�
trix Anal� Appl�

��� J� Demmel� J� Gilbert� and X� Li� An Asynchronous
Parallel Supernodal Algorithm for Sparse Gaussian
Elimination� Technical Report CSD�������� EECS De�
partment� UC Berkeley� February 	���� To appear in
SIAM J� Matrix Anal� Appl�

�
� J� Dongarra� J� Du Croz� S� Hammarling� and R� Han�
son� An Extended Set of Basic Linear Algebra Subrou�
tines� ACM Trans� on Mathematical Software� 	��	��
��� 	����

��� I� S� Du�� On Algorithms for Obtaining a Maximum
Transversal� ACM Transactions on Mathematical Soft�
ware� ������	
���
� September 	��	�

��� C� Fu� X� Jiao� and T� Yang� A Comparison of 	�D
and ��D Data Mapping for Sparse LU Factorization on
Distributed Memory Machines� Proc� of �th SIAM Con�
ference on Parallel Processing for Scienti�c Computing�
March 	����

��� C� Fu� X� Jiao� and T� Yang� E�cient Sparse LU Fac�
torization with Partial Pivoting on Distributed Mem�
ory Architectures� IEEE Transactions on Parallel and
Distributed Systems� �����	
��	�
� February 	����



Matrix P�� P�	� P��� P��� P�	��
Time M�ops Time M�ops Time M�ops Time M�ops Time M�ops

TIa 
��� ����� 
��
 
	��� 
��	 ����� 
��� ����� 
��� �����
TId 	��� ����� 	�	
 
	��	 
��
 ����
 
��� �
��� 
�
� 	
����
TIb ����� 	���� �
�

 ����� 	��

 

��� ���� �	
�� ���� 	����


Table �� Performance of S� for circuit simulation matrices on �
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