
1

The Convergence-Guaranteed Random Walk
and Its Applications in Peer-to-Peer Networks

Ming Zhong, Kai Shen, and Joel Seiferas
Department of Computer Science, University of Rochester

Rochester, NY 14627-0226, USA
Email: {zhong, kshen, joel}@cs.rochester.edu

Abstract— Network structure construction and global state
maintenance are expensive in large-scale, dynamic peer-to-peer
(p2p) networks. With inherent topology independence and low
state maintenance overhead, random walk is an excellent tool in
such network environments. However, the current uses are limited
to unguided or heuristic random walks with no guarantee on
their converged node visitation probability distribution . Such a
convergence guarantee is essential for strong analytical properties
and high performance of many p2p applications. In this paper,
we investigate an approach for random walks to converge to
application-desired node visitation probability distributions while
only requiring information about direct neighbors of each peer.
Our approach is guided by the Metropolis-Hastings algorithm
for Monte Carlo Markov Chain sampling. Our contributions
are three-fold. First, we analyze the convergence time of the
random walk node visitation probability distribution on co mmon
p2p network topologies. Second, we analyze the fault tolerance
of our random walks in dynamic networks with potential
walker losses. Third, we present the effectiveness of random
walks in assisting three realistic network applications: random
membership subset management, search, and load balancing.
Both search and load balancing desire random walks with biased
node visitation distributions to achieve application-specific goals.
Our analysis, simulations, and Internet experiment demonstrate
the advantage of our random walks compared with alternative
topology-independent index-free approaches.

I. I NTRODUCTION

Random walk is a way to sample network nodes —
at each step, a walker randomly chooses its next hop to
visit (among direct neighbors of the current node) following
certain probabilistic preference for each neighbor. Random
walk is particularly attractive in large-scale, dynamic peer-
to-peer (p2p) networks. In these networks, nodes can join
and leave dynamically without centralized control, and the
network topology itself can also change over time. Random
walk requires little global knowledge or state maintenanceand
it can function on almost all connected network topologies.
In these aspects, it is superior to systems with sophisticated
index states or rigid network structures,e.g., distributed hash
tables (DHTs) [35], [37], [43]. Compared with index-free node
traversal schemes like network flooding, random walk is in-
herently scalable in that its network communication overhead
does not increase as the network size grows.

This work was supported in part by the National Science Foundation (NSF)
grants CCR-0306473, ITR/IIS-0312925, CNS-0615045, and CCF-0621472.
Shen was also supported by an NSF CAREER Award CCF-0448413 and two
IBM Faculty Awards.

Many current uses of random walks [6], [12], [18], [19],
[26], [28] do not follow any topology-driven or application-
specific guidance — at each step the walker chooses from
current outgoing links with an equal probability for each
link. Others make biased random walk decision at each step
following some simple heuristics [10], [27], [29], [44]. In
either case, the random walks do not provide any guarantee
on their converged node visitation probability distributions.
Such a convergence guarantee is desirable or even essentialfor
many p2p applications utilizing random walks. For instance, a
random membership subset service desires uniformly random
node sampling for the maintenance of representative mem-
bership subsets [15], [16], [22], [24], [25], [38]. As another
example, object search with certain bias (each node is searched
with probability proportional to the square-root of its content
popularity) is known to achieve low search latency among
index-free searches [11], [28].

In this paper, we investigate an approach to support ran-
dom walks that uniquely converge to application-desired node
visitation probability distributions. At each step, the walker
randomly chooses its next hop following certain probabilistic
preference determined with the assistance of the Metropolis-
Hastings algorithm [21], [32]. In this approach, the random
walk movement at each step only requires local information
and information concerning direct neighbors.

Our contribution in this paper is three-fold. First, we study
the convergence time of our random walks for achieving the
targeted node visitation probability distribution. This is impor-
tant since random walks can take significant warm-up time to
converge to the desired node visitation distribution. We provide
analytical bounds for the random walk convergence time on
several common p2p network topologies: k-dimensional tori,
Chord topology [43], random powerlaw topology, and random
regular topology. In addition to the analytical bounds, we also
produce simulation results under some typical network setups.

Our second contribution is an analysis of the fault tolerance
of random walk based node sampling. Random walk is in-
herently robust since it requires no global state maintenance.
However, a walker may be lost due to node failures or
departures in a dynamic network. We propose two methods
to recover walker losses: one employs periodic walker call-
backs to detect walker losses; the other enforces a bounded
lifetime for each walker and deterministically reincarnates a
new walker at the lifetime bound of the older walker. We
analyze these two methods’ fault tolerance abilities under

2

given random walk convergence time and node failure model.
Particularly for the second method, we derive an optimal
walker lifetime to maximize its fault tolerance.

Our third contribution concerns application studies. Un-
structured p2p applications often require a node sampling
service that can achieve guaranteed node visitation distribu-
tions with high scalability and robustness. Specifically, some
applications may desire uniform node visitation probability
distribution while others may want non-uniform distributions
to achieve application-specific goals. We present the effec-
tiveness of random walks in assisting three realistic network
applications: random membership subset management, search,
and load balancing. Our results show that our convergence-
guaranteed random walks can achieve desired application
goals or high performance in a topology-independent index-
free fashion.

The rest of this paper is organized as follows. Section II
discusses existing study on random works in p2p networks.
Section III provides the theoretical foundation for guaranteed
unique convergence of random walk node visitation probability
distribution. Sections IV and V analyze two important issues
concerning our proposed random walks — convergence time
and fault tolerance — respectively. Section VI presents the
effectiveness of our approach and application-specific issues in
the context of three application studies. Section VII describes
a prototype implementation and Internet experiment of our
proposed convergence-guaranteed random walks. Section VIII
concludes the paper with a summary of our results.

II. RELATED WORK

Random walks have been used in many p2p applications,
including search [18], [19], [28], topology construction [18],
[26], [31], and peer sampling [6]. For example, Lvet al. find
that random walk based search is preferable to flooding-based
search in unstructured p2p networks [28]. Gkantsidiset al.
report that random walks are particularly better than flooding
in two application scenarios, when topologies are clustered or
when multiple requests are issued for the same query [18].
Their subsequent work shows that hybrid search schemes,
which combine short random walks with local flooding, may
lead to further performance improvement over pure flooding
or random walks in clustered topologies [19]. Law and Siu
propose a low-overhead distributed algorithm for constructing
well-connected topologies, where a new peer is connected
to existing nodes chosen by running random walks for a
certain number of steps [26]. In addition, Bharambeet al.
use a random walk based peer sampling algorithm that allows
each node to estimate system-wide metrics (e.g., global load
distribution) based on peer samples [6]. However, random
walks in these approaches do not follow any topology-driven
or application-specific guidance — at each step the walker
chooses from current outgoing links with equal probabilities.
Such unguided random walks always visit nodes with proba-
bilities proportional to their degrees and cannot support other
application-specific node sampling distributions.

There has been some attempts to exploit the applicability
of biased random walks in p2p systems [10], [12], [27],

[29], [44]. Typically, such work is motivated by Adamicet
al.’s discovery that the high-degree nodes (super-peers) in
powerlaw graphs may be utilized by random walks to achieve
search performance scaling sub-linearly with the network
size [1]. Specifically, Gia uses random walks biased towards
high-capacity peers to enhance the search performance of
Gnutella [10]. Lv et al. also use capacity-biased random
walks to speed up the search process in Gnutella [29].
Cooper improves the search performance of random walks
by always forwarding walkers to the neighbors with the
most documents [12]. This may increase the probability of
finding matches since the walkers tend to quickly cover a
large volume of data. Loguinovet al. suggest that unbalanced
zone partitioning in DHTs may be addressed by using zone
size biased random walks (split the largest zone found upon
peer joining, and merge with the smallest zone discovered
upon peer departure) [27]. Adaptive probabilistic search (APS)
uses feedback from previous searches (maintained in local
index tables) to direct random walkers [44]. In summary, the
setup of these biased random walks are guided by heuristics
derived from network topologies or application-level tech-
niques. Although these empirical methods may achieve better
quantitative performance than unguided random walks, there is
little understanding on their analytical properties because they
lack a guarantee on converged node visitation distributions.

We are aware of a recent work by Stauffer and Barbosa on
probabilistic random flooding [42]. Both random walks and
random partial flooding can achieve probabilistic node visita-
tions. Like random walks, flooding is robust and requires very
limited index information. However, Stauffer and Barbosa’s
work on probabilistic random flooding [42] only attempts to
achieve uniform visitation. In comparison, our guided random
walks can converge to arbitrary (potentially non-uniform)node
visitation probabilities with proved convergence. Further, we
would like to point out that the “node visitation probability”
for our random walks differs from that of typical flooding.
Our random walks are concerned with the steady-state node
visitation probability of each walk step. In probabilisticflood-
ing [42], the node visitation probability often refers to the
chance for a node to be eventually visited in a flooding session.
Such semantic difference makes flooding most appropriate
for information dissemination while our random walks can
support additional applications such as membership subset
management and continuous load statistics maintenance.

III. FOUNDATION FOR GUARANTEED RANDOM WALK

CONVERGENCE

Let G = (V, E) be an undirected connected graph. A
random walkon G starts at a nodev0, which is either fixed
or drawn according to some initial distributionπ0. If the
random walk is at nodevt at time stept, then it moves to a
neighborvt+1 of nodevt at stept+1, chosen randomly with a
certain probability distribution. Letπt denote the distribution
of nodevt, so thatπt(i) = Prob(vt = i) for eachi ∈ V .
Let P = (Pi,j), i, j ∈ V , denote the transition matrix of the
random walk —Pi,j is the probability that the random walk
moves from nodei to nodej in one step.Pi,j = 0 if nodesi,

3

0 1

1

1

0 1

α

α

1−α1−α

Fig. 1. An illustration on how self-loops achieve unique convergence of
random walks.

j are not adjacent. The dynamics of the random walk follows
πt+1 = πtP = π0P

t+1.
Our random walks build on the Metropolis-Hastings al-

gorithm [21], [32] — a standard approach to assign state
transition probabilities to Monte Carlo Markov Chains such
that they converge to any specified probability distributions.

Theorem 1: [3], [32] Let π be the desired probability
distribution. Let di denote the degree of nodei. For each
neighborj of nodei, let

Pi,j =

{

1
di

if π(i)
di

≤ π(j)
dj

;
1
dj

· π(j)
π(i) if π(i)

di
> π(j)

dj
.

and Pi,i = 1 − ∑

j∈ neighbors(i) Pi,j . Thenπ is a converged
probability distribution of the random walk with transition
matrix P .

It is easy to show thatπ is a converged distribution by
verifying πP = π. We also use a laziness factor in our random
walk configuration to introduce self-loops at each node, which
ensures thatπ is the unique converged distribution according
to Doeblin [14].

Theorem 2: [14] If P is irreducible and aperiodic, then
πt converges to a unique stationary distributionπ such that
πP = π, independent of the initial distributionπ0.

HereP is irreducible if and only if for anyi, j, there exists
a t such that(P t)i,j > 0. P is aperiodicif and only if for any
i, j the greatest common divisor of the set{t : (P t)i,j > 0}
is 1. Intuitively, irreducibility means that any two nodes are
mutually reachable by random walks.Aperiodicitymeans that
a random walk does not periodically commute between any
two nodes. Aperiodicity can be achieved by introducing self-
loop transitions of some positive probability on each node.
For example, if a random walk with transition probabilities
defined in the left diagram of Figure 1 starts from node 0,
then it always stays at node 1 after an odd number of steps
and visits node 0 after an even number of steps. Consequently,
such a random walk oscillates between node 0 and 1 and
does not have a unique converged distribution. However, it
is easy to bring unique convergence to this random walk by
just introducing a self-loop with probability0 < α < 1 to
each node as shown in the right diagram of Figure 1, after
which the new random walk uniquely converges toπ with
π(0) = π(1) = 0.5.

Putting them altogether, we configure the random walk
transition matrix in the following fashion. For each neighbor
j of nodei, we set

Pi,j =

{

α · 1
di

if π(i)
di

≤ π(j)
dj

;

α · 1
dj

· π(j)
π(i) if π(i)

di
> π(j)

dj
.

and Pi,i = 1 − ∑

j∈ neighbors(i) Pi,j . α is a laziness factor
(between 0 and 1) to guarantee unique convergence. In our
configuration, the random walk movement at each step only
requires the knowledge on network degrees and desired visita-
tion probabilities of the current node and its direct neighbors.

IV. RANDOM WALK CONVERGENCETIME

Although our random walks are guaranteed to uniquely
converge to the desired node visitation probability distribution,
the convergence is not immediate after a random walk is
initiated. For instance, after one step of the walk, it is not
possible for the walker to go beyond the direct neighbors
of the starting node. The convergence time indicates when
a newly initiated random walk starts visiting nodes in the
desired probability distribution. It also affects the random walk
recovery from walker losses (examined later in Section V). In
this section, we study the convergence time of random walk
node visitation probability distribution.

A. Preliminary and Our Approach

We first introduce a metric for measuring the difference
between two probability distributions.

Definition 1: The differencebetween two arbitrary proba-
bility distributions,x andy, is defined as‖x, y‖ = 1

2

∑

i |xi−
yi|. The factor12 is to ensure that the maximum difference does
not exceed1.

Assuming thatπ is the desired distribution andπt is the
random walk node visitation distribution at stept, the extent
to which the convergence is achieved at stept is measured
by ‖πt, π‖. ‖πt, π‖ = 0 obviously represents complete con-
vergence. The factor12 ensures that‖πt, π‖ never exceed1.
Fast convergence means that‖πt, π‖ goes down quickly ast
grows.

Definition 2: For ǫ > 0, theconvergence timeis defined as
τ(ǫ) = min{t : ∀t′ ≥ t, ‖πt′ , π‖ ≤ ǫ}.

The convergence time measures the time forπt to converge
to π. With these metrics, the convergence time of a random
walk is bounded as follows.

Theorem 3: [13] Let πmin = minπ(i)>0 π(i), thenτ(ǫ) ≤
∆−1

P log((πminǫ)−1). Here∆P is the eigengap of the random
walk transition probability matrixP .

It is known thatP has|V | eigenvaluesλ1, λ2, ..., λ|V | such
that 1 = λ1 > |λ2| ≥ ... ≥ |λ|V ||. The eigengap ofP is
defined as∆P = 1 − |λ2|, which provides a bound for the
convergence time. A larger eigengap means shorter conver-
gence time. However, for large-scale p2p network applications,
the sizes of transition matrices are so large that it is very
difficult to compute exact eigenvalues and eigengaps. Several
approaches [13], [39], [40] have been proposed for establishing
bounds for eigengaps of transition matrices. In this paper,we
compute the eigengap bounds by using thecanonical path
approach [39].

The main idea of the canonical path approach is as follows.
When there is a small cut in the random walk probability
transition flow graph, it takes a long time for the probability
flow to move from one side of the cut to the other (in order
to reach the equilibrium). Thus the minimum cut (max-flow)

4

in the probability transition graph provides a bound for the
convergence time.

Let π be the unique converged distribution.P is the
transition matrix of the random walk.G = (V, E) is the
random walk probability transition graph corresponding toP .
For distinct nodesx, y in the graphG, a canonical pathγxy

refers to a path betweenx, y. Γ, a family of canonical paths,
includes exactly one path for each pair of distinct nodesx, y:
Γ = {γxy : x, y ∈ V, x 6= y}. Let Q(e) = π(x)Px,y =
π(y)Py,x. From the view of probability flows between nodes,
the pathγxy carries a probability flow ofπ(x)π(y) andQ(e)
represents the capacity of the edgee. A canonical path family
Γ represents a routing scheme for every pair of distinct nodes
in the network. Thecongestionof Γ is defined as

ρ(Γ) = max
e

1

Q(e)

∑

γxy∋e

π(x)π(y), (1)

and thecongestionof the graphG is defined as

ρ(G) = min
Γ

ρ̄(Γ), whereρ̄(Γ) = max
e

∑

γxy∋e

1. (2)

In principle, a canonical path family with low congestion
means that the random walk transition probability graph does
not have stringent bottlenecks for probability flows and hence
the random walks can converge quickly.ρ(Γ) measures the
maximum per-edge flow-to-capacity ratio of a specific canon-
ical path family Γ. ρ̄(Γ) is the maximum number of paths
that is routed over an edge for the canonical path familyΓ.
It is obvious that the worst routing scheme may lead to a
congestion ofn2 for a network withn nodes — when the
flow between every two nodes must go through the same
edge. It is also obvious that the minimum congestion on a
network withn nodes and|E| edges isn2

|E| , when every edge
is equally congested.ρ(G) chooses the canonical path family
with the minimum number of per-edge routing paths. Note that
ρ(G) is an inherent property of the network topologyG and
is independent of the random walk node visitation distribution
π.

For random walks configured based on the Metropolis-
Hastings algorithm (Theorem 1), we have (fore = (i, j)).

Q(e) = π(i)Pi,j =

{

π(i)
di

if π(i)
di

≤ π(j)
dj

;
π(j)
dj

if π(i)
di

> π(j)
dj

.

Hence we have

max
e

1

Q(e)
≤ Dmax

πmin
,

whereDmax is the maximum node degree.
The canonical path family with the minimum congestion on

a given random walk transition probability graph provides a
lower bound for the eigengap of the corresponding transition
matrix P :

Theorem 4: [39] Let l represent the network diameter. Let
Dmax be the maximum node degree.

∆P ≥ 1

l · minΓ ρ(Γ)
≥ 1

l
· πmin

Dmax
· 1

(
∑

i∈Π√
ρ(G)

π(i))2

where Π√
ρ(G)

represent the
√

ρ(G) nodes with the largest
node visitation probabilities in the distributionπ.

By combining Theorem 3 and Theorem 4, we have:
Theorem 5:The convergence time is bounded by

τ(ǫ) ≤ l · Dmax

πmin
·







∑

i∈Π√
ρ(G)

π(i)







2

· log((πminǫ)−1)

The above result reveals that the random walk convergence
time bound depends on network topology properties such as
graph diameter, maximum node degree, and the congestion of
the graph. It also relies on the skewness ofπ, the targeted node
visitation probability distribution — the more skewedπ is, the
larger the time bound is (since the total probability ofΠ√

ρ(G)

becomes larger). For example, ifπ is a uniform distribution,
then the convergence time bound is

τ(ǫ) ≤ l · Dmax

πmin
·







∑

i∈Π√
ρ(G)

π(i)







2

· log((πminǫ)−1)

= l · Dmax
1
n

· ρ(G)

n2
· log((πminǫ)−1)

= l · Dmax · ρ(G)

n
· log((πminǫ)−1)

As another example, ifπ is a highly skewed distribution (e.g.,
Zipf’s distribution) with the total probability ofΠ√

ρ(G)
close

to 1, then the convergence time can be bounded as follows
(larger than previous example)

τ(ǫ) ≤ l · Dmax

πmin
·







∑

i∈Π√
ρ(G)

π(i)







2

· log((πminǫ)−1)

≤ l · Dmax

πmin
· log((πminǫ)−1)

B. Asymptotic Convergence Time Bounds for Common P2P
Topologies

Using the canonical path approach explained above, here
we derive bounds for the convergence time of two commonly
used convergence-guaranteed random walks in various p2p
topologies. Specifically, we examine four kinds of network
topologies as listed below.

• Tori. Tori-like structures have been used for self-
organizing Content Addressable Networks (CAN) [35].
Structures like 2-d tori are also common in
geographically-constrained networks (where nodes’
transmission ranges are limited by geographical
distances) such as wireless ad hoc networks.

• Chord topologies[43]. An n-node ring-like network with
each node also connected to (besides its direct neighbors
on the ring) its 2-hop neighbors, 4-hop neighbors, ...,n

2 -
hop neighbors on the ring.

• Random powerlaw graphs. Measurement results on many
existing p2p systems [41] observed powerlaw node degree
distributions. It is known that powerlaw node degree
distributions may occur when each network node is

5

connected to some other nodes chosen randomly with
probability biased towards their degrees [5], [9].

• Random graphs. Random graphs model those network
applications in which each node is connected to some
random nodes chosen uniformly at random [38].

Table I shows the network diameters (l) and congestions
(ρ(G) as defined in Equation 2) of these network topologies.
Based on Theorem 5 and Table I, the convergence time of
random walks with two commonly targeted node visitation
distributions (one is uniform while the other is Zipf’s distri-
bution) can be bounded as shown in Table II.

In general, tori have the largest diameter and congestion val-
ues and hence the slowest convergence. The other three topolo-
gies are known to possess low diameters and low congestion
properties, which leads to quick convergence. In addition to
the network topology, the desired sampling distribution also
affects the random walk convergence time in that edges with
small transition probabilities (associated with nodes with small
visitation probabilities) may slow down random walks. The
problem may become more severe when these edges happen
to be bottlenecks for random walk movements as revealed by
edge congestion. Table II shows that the convergence time
grows as the targeted distribution becomes more skewed,i.e.,
(
P

i∈Π√
ρ(G)

π(i))2

πmin
becomes higher.

C. Simulation Results

As a complement to the analytical results, we provide
simulation results to quantitatively assess the convergence
time under common network topologies and node visitation
distributions. For our simulation, we measure the convergence
time of a random walk asτ(0.01), the number of walk steps
needed before‖πt, π‖ drops below 0.01.

Figure 2 presents the random walk convergence time un-
der different network sizes, topologies, and node visitation
distributions. The results show that the convergence time of
different network topologies follows the order of “2-d tori”
> “random powerlaw”> “random regular”> “Chord”. This
mostly matches the order of their network diameters and
congestion properties shown in Table I. However, it is worth
noting that Chord networks unexpectedly outperform random
powerlaw and random regular topologies. This is because the
average node degree of Chord topologies (log n) is higher than
that of these random topologies (a constant). More per-node
links decrease congestion properties and reduce diameters.

Figure 2 also shows that the convergence time tends to grow
linearly with the network size, which falls within the analytical
convergence time bounds derived in Table II. In particular,the
quantitatively measured convergence time grows significantly
slower than the analytical bounds on 2-d tori and random
powerlaw graphs. This is mainly because current bounding
techniques may not be able to achieve tight convergence time
bounds for random walks on all topologies and node visitation
distributions.

D. Summary

We summarize our results on random walk convergence
time as follows. First, the convergence time depends on the

network topology and the targeted node visitation probability
distribution. In principle, topologies with higher connectivity
or target visitations with more uniform distribution allowfaster
convergence. Second, we derived analytical bounds for random
walk convergence time on common p2p network topologies
and target visitation probability distributions. Our quantitative
simulation validates the analytical bounds although, due to the
limitations of current bounding techniques, the bounds arenot
tight in some cases.

Note that the derived convergence time is represented in
the number of walk steps. In practice, the convergence delay
in absolute time may be of more direct interests. Given the
convergence delay in random walk steps, we can achieve de-
sired absolute convergence time by adjusting the time between
adjacent walk steps. Therefore faster convergence time can
be achieved with faster-paced walks (and consequently more
processing and network overhead).

V. RANDOM WALK FAULT TOLERANCE

Random walks in p2p networks must tolerate network faults
and dynamic network changes. These include node or link
failures, dynamic node arrival/departure, and network topology
changes. Compared to network management with sophisticated
index states or rigid network structures (e.g., DHTs [35],
[37], [43]), random walks are inherently more fault tolerant
since it requires little state maintenance. For our convergence-
guaranteed random walks, the only required state at each node
consists of the network degree and visitation probability of its
direct neighbors. Consequently, our random walks can tolerate
network faults and changes as long as the required state at
each node (information concerning direct neighbors only) can
be properly updated. However, one problem due to dynamic
network changes warrants attention — a walker may be lost
if the node it currently resides at abruptly departs from the
network (or simply fails). To maintain continuous random
walks, walker losses must be promptly discovered and new
walkers must be initiated.

Note that we assume fail-stop node failure model in this
study. Under the fail-stop model, a node fails by simply
stopping its function. We do not consider other failure models
such as Byzantine node failures (in which a failed node may
do arbitrary things) or malicious nodes.

A. Walker Loss Recovery Methods

We describe two methods to recover from walker losses:

• Callback. Each walker makes periodic callbacks to the
originating node. If a sufficient number of callbacks are
not received in a row, the walker is considered lost and
a new walker will be initiated.

• Expiration. Each random walker is associated with a
certain Time-To-Live (or lifetime). The walker will stop
propagating (or expire) when the lifetime ends. The
walker originating node keeps a timer that alerts at the
end of walker lifetime. A new walker will be initiated at
such time. If a walker is lost before its lifetime ends, its
replacement is not initiated until that time.

6

k-d tori Chord random random
powerlaw graphs

Diameter n
1
k log n O(log n) O(log n)

[27] with high prob. [8] with high prob. [7]
Congestion O(n1+ 1

k) O(n · log n) O(n · (log n)2) O(n · log n)
ρ(G) with high prob. [17] with high prob. [17]

TABLE I

THE DIAMETERS AND CONGESTION PROPERTIES OF SEVERAL COMMON NETWORK TOPOLOGIES. n IS THE NUMBER OF NODES IN THE NETWORK.

k-d tori Chord random random
powerlaw graphs

Random walks O(n
2
k · log n

ǫ) O((log n)3 · log n
ǫ) O((log n)3 · n 1

α · log n
ǫ) O((log n)3 · log n

ǫ)
for uniform distributions

Zipf-biased random walks O(n1+ 1
k · log n · log n

ǫ) O(n · (log n)3 · log n
ǫ) O(n1+ 1

α · (log n)2 · log n
ǫ) O(n · (log n)3 · log n

ǫ)
whereπ(i) ∝ 1

i

TABLE II

THE CONVERGENCE TIME, τ(ǫ), OF TWO RANDOM WALKS ON COMMON P2P TOPOLOGIES. WE ALSO ASSUME THAT THE RANDOM POWER-LAW GRAPH

FOLLOWS A DEGREE DISTRIBUTION OFP (k) ∝ k−α , FOR WHICH THE MAXIMUM NODE DEGREE ISO(n
1
α) WITH HIGH PROBABILITY FOR LARGEn’ S.

IT IS KNOWN THAT α RANGES FROM2 TO 3 IN MANY REAL -WORLD APPLICATIONS[4].

1250 2500 5000 10000 20000

50

100

500

1000

2000

4000

Network size (in number of nodes)

C
on

ve
rg

en
ce

 ti
m

e
(in

 n
um

be
r

of
 s

te
ps

)

A) Random walks for Uniform Distributions

2−d tori
Random powerlaw
Random graphs
Chord graphs

1250 2500 5000 10000 20000

50

100

500

1000

2000

4000

Network size (in number of nodes)

C
on

ve
rg

en
ce

 ti
m

e
(in

 n
um

be
r

of
 s

te
ps

)

B) Random walks for Zipf Distributions

2−d tori
Random powerlaw
Random graphs
Chord graphs

Fig. 2. Random walk convergence time on different network sizes, topologies and node visitation distributions. We use topologies with an average node degree
of 4. In the simulation, the random powerlaw graph is generated by linking each new node to existing nodes chosen randomlywith probability proportional
to their degrees. Such a preferential link creation processis known to generate topologies with powerlaw degree distributions [5], [9]. We generate random
graphs by a simple process of linking each node to some other nodes chosen uniformly at random.

The main weakness with the Callback method lies in the
overhead of callbacks. Note that some random walk based
applications require callback messages as part of the appli-
cation semantics (such as membership subset management
and load balancing as described later in Section VI). For
these applications, periodic walker callbacks for loss detection
can be piggybacked in application callback messages and
consequently they are almost free.

Unlike Callback, the Expiration method requires no ad-
ditional network overhead. However, its recovery of walker
losses may not be prompt — if a walker is lost soon after
it leaves the originating node, a replacement walker will not
be initiated until the full expiration timer. At the other end,
the Expiration method forces walker re-initiation even if the

previous walker has not been lost, thus requiring additional
random walk convergence time to reach desired node sampling
distribution. An additional problem with this scheme is that it
may be hard for the walker to track the elapsed time since
its initiation. The difficulty arises in networks where nodes do
not have synchronized clocks and network latencies between
nodes are unknown.

B. Analysis and Quantitative Results

We analyze the availability of converged random walks un-
der dynamic network conditions with potential walker losses.
We define a metric ofavailability as the proportion of time
during which the random walk is existent and has already
converged to the desired node visitation probability distribu-

7

tion. As defined in Section IV-A, a random walk converges
when its current node visitation probability distributiondiffers
from the desired distribution by no more than a given errorǫ.
We analyze the availability for the two walker loss recovery
methods — Callback and Expiration.

The availability under walker losses certainly depends on
how long a walker is lost since its initiation. We usef(t) to
denote the probability density function for a walker lost after
t unit of time since its launch. Our analysis contains three
parts. In part one, we derive the availability result for thetwo
walker loss recovery methods with no assumption onf(t). In
part two, we will refine the result with the assumption that
f(t) follows an exponential distribution (assuming the failure
model is memory-less). Part three is motivated by the difficulty
of choosing the walker lifetime for the Expiration method. We
will follow up the result in part two to derive the availability-
maximizing walker lifetime for this method.

1) We first define some notations. Let the walker con-
vergence delay beC unit of time (assumed to be a
constant). For the Callback method, let the walker loss
detection delay beD unit of time (assumed to be a
constant). For the Expiration method, let the walker
lifetime beT unit of time.
We call a round as a duration of time between two
adjacent walker initiations. The availability of converged
random walks is calculated as the mean available time
during a round divided by the mean time of a round.
For Callback, the availability is:

∫ ∞
C f(t) · (t − C) dt

∫ ∞
0 f(t) · (t + D) dt

(3)

For Expiration, the availability is 0.0 ifT ≤ C. Other-
wise, the availability is:

∫ T

C
f(t) · (t − C) dt +

∫ ∞
T

f(t) · (T − C) dt

T
(4)

2) In this part we assume each node follows a memory-
less failure model with an exponential distribution for
the time to next failure. The probability density function
for this distribution ise−t/λ

λ whereλ is the average time
to next failure (or MTTF). We also assume nodes fail
independently of each other. Then the walker loss time
follows the same distribution as node failure —i.e.,
f(t) = e−t/λ

λ .
In this case, for Callback, the availability in Equation (3)
is refined to:

e−C/λ

1 + D/λ
(5)

In this case, for Expiration, the availability in Equa-
tion (4) is refined to:

(

e−C/λ − e−T/λ
)

T/λ
(6)

3) For the Expiration method, the choice ofT (walker
lifetime) may affect the availability of converged random
walks. Too short a walk lifetime is undesirable because a
random walk may not have converged before it expires.

Too long a walker lifetime is also undesirable because
a lost walker may take a long time to recover. We want
to find an optimalT that maximizes the availability of
converged random walks. We follow the assumption of
part two thatf(t) follows an exponential distribution
(assuming the failure model is memory-less). The opti-
malT (calledT̂) is the point at which the first derivative
of Equation (6) equals to 0. This means:

1 +
T̂

λ
= e

T̂
λ −C

λ (7)

To derive a closed-form solution, we use the approxima-
tion of ex ≈ 1+x+ x2

2! , the first three items of the Taylor
series ofex. Given the approximation, we can simplify
Equation (7) and provide a closed-form solution:

T̂

λ
≈ C

λ
+

√

2 · C

λ
(8)

Under the assumption of independent memory-less node
failure model, Figure 3 quantitatively shows the availability
of two walker loss recovery methods with a varying range
of C/λ. The availability of the Callback method is also
affected by the walker loss detection delay (represented by
D). We show three availability curves withD/λ = 0.0,
D/λ = 0.01, and D/λ = 0.1 respectively. In practice, the
walker loss detection delay is mostly affected by the frequency
of callback messages. If we assume the callback messages
are immediate and perfectly reliable, a walker loss is detected
after a single callback message fails to arrive. In this case,
the walker loss detection delayD is bounded by the interval
length between two consecutive callback messages. For the
Expiration method, we show its availability under the optimal
walker lifetime setup derived in Equation (8).

Results in Figure 3 indicate that, whenC/λ = 0.0001, the
availability of converged random walks under the Callback
method are 0.9999, 0.9900, and 0.9090 forD/λ = 0.0,
D/λ = 0.01, andD/λ = 0.1 respectively while the availabil-
ity for the Expiration method is 0.9859. WhenC/λ = 0.01,
the availability under the two methods are 0.9000–0.9900
and 0.8623 respectively. WhenC = λ, the availability under
the two methods are 0.3344–0.3679 and 0.1153 respectively.
Overall, Callback achieves better availability than Expiration
does (except for very smallC and largeD) but it incurs more
overhead due to callback messages.

C. Summary

Random walks are inherently robust since it requires lit-
tle state maintenance. However, node failures in a dynamic
network may lead to walker losses. We consider two meth-
ods to recover from walker losses — Callback and Expi-
ration. Callback detects walker losses more quickly at the
cost of additional callback messages. Under given random
walk convergence speed and node failure model, we analyze
the availability of converged random walks under these two
methods. Particularly for the Expiration method, we derive
an optimal walker lifetime to maximize its fault tolerance.
Our quantitative results show that the availability is high
(≥99% for Callback and≥ 86% for Expiration) when the node

8

0.0001 0.001 0.01 0.1 1.0
0

0.2

0.4

0.6

0.8

1

C/λ

av
ai

la
bi

lit
y

of
 c

on
ve

rg
ed

 r
an

do
m

 w
al

ks

Callback D/λ=0.0
Callback D/λ=0.01
Callback D/λ=0.1
Expiration

Fig. 3. The availability of two walker loss recovery methodswhen walker
may be lost due to node failures. Note that the X-axis is in thelogarithmic
scale. We assume nodes fail independently of each other and we also assume
each network node follows a memory-less failure model with an exponential
distribution for the time to next failure.λ represents MTTF of node failures.
C represents the convergence time for a newly initiated random walk. For
the Callback method, we show three availability curves withD/λ = 0.0,
D/λ = 0.01, andD/λ = 0.1 respectively (whereD represents the walker
loss detection delay). A curve with a smallerD is higher in the figure.

failure MTTF is at least two orders of magnitude larger than
the random walk convergence time. When the node failure
MTTF is only one order of magnitude larger than the random
walk convergence time, Callback can still achieve over 90%
availability.

VI. A PPLICATION STUDIES

In this section, we show how convergence-guaranteed ran-
dom walks can assist realistic applications in unstructured p2p
networks. Specifically, our random walks provide a distributed
node sampling service with high scalability, robustness, and
guaranteed node visitation distribution. Section VI-A describes
random membership subset management, which desires a uni-
form random walk node visitation probability to acquire repre-
sentative subsets of the whole network members. Section VI-
B presents the results for random walk based object search.
Based on a known result [11], this application desires random
walks with a biased node visitation probability distribution
— each node is probed with probability proportional to the
square-root of its content popularity. Section VI-C presents
the results for random walk based load balancing. We show
that our scheme (based on linearly load-biased node sampling)
achieves better load balancing than conventional alternatives.
We provide simulation results to quantitatively measure the
performance gain of convergence-guaranteed random walks
over alternative topology-independent index-free approaches.

A. Application I: Random Membership Subset Management

A membership service provides the list of members in a
dynamic network and it is an important building block for
distributed applications. When the overhead of maintaining the
full list of members is too high, random membership subset is
a viable alternative that can satisfy the membership service
needs of many applications [25]. For random membership
subset management, each node maintains a small, dynamically

changing, random membership subset with uniform represen-
tation over network members.

Many existing random membership management algo-
rithms, such as lpbcast [15], SCAMP [16], Saxons [38],
and Jelasityet al. [22], provide analytical and experimental
results on the membership information propagation speed.
However, no theoretical guarantee is given for the uniformity
of their membership subsets. Kostićet al. proposed a random
membership subset service for tree-shaped network topolo-
gies [25]. However, this algorithm cannot be applied to more
general mesh-like network structures. King and Saia proposed
a distributed algorithm which, with high probability, always
chooses a node uniformly at random from the set of nodes
in distributed hash tables [24]. However, their algorithm only
works for ring topologies.

We propose the first random membership subset manage-
ment algorithm with topology independence and proved uni-
formity. Our algorithm maintains random membership subsets
using random walk samplers that converge to a uniform
distribution on arbitrary connected topologies. According to
our approach described in Section III, we can guarantee
unique convergence to a uniform distribution by configuring
the random walk in the following way. If the random walk
is at nodex at time stept, then for each neighbory of x, it
moves toy with probability Px,y, where

Px,y =

{

1
2 · 1

dx
if dx ≥ dy;

1
2 · 1

dy
if dx < dy.

andPx,x = 1 −
∑

z∈ neighbor(x) Px,z. Heredx, dy denote the
number of neighbors of nodex andy, respectively.

A full service may function in the following way. For a
node (calledi) requiring a random membership subset with
sizeki, it initiateski random walksRi,1, Ri,2, ..., Ri,ki , each
of which converges to a uniform node visitation probability
distribution. When visited by a random walkRi,l, node j
sends its membership information (e.g., IP address) toi.
Upon receivingj’s membership information,i updates thelth
element of it local membership set withj if j is not yet in
set.

Simulation Results: We run simulations to validate the
convergence of our random membership management algo-
rithm on two common p2p topologies: random graphs and
random powerlaw graphs. Random graphs represent those p2p
topologies where new links are made independent of existing
node degrees. We generate random graphs by connecting
each new nodes to some nodes selected uniformly at random
from existing nodes. Random powerlaw graphs represent those
networks where new links are more likely attached to nodes
with large degrees. In our simulation, the random powerlaw
graphs are generated by using the PLRG algorithm [20]. We
use the random powerlaw graphs with exponentβ = 0.8,
following Lv et al.’s simulation setup [28].

We compare our degree-guided random walks against un-
guided random walks — at each step the walker chooses
from current outgoing links with equal probabilities. Figures 4
and 5 show the convergence results on random graphs and
random powerlaw graphs respectively. For both topologies,our

9

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time t (in number of walk steps)

||
π t, π

 ||
, d

ev
ia

tio
n

fr
om

 ta
rg

et
 d

is
tr

ib
ut

io
n

Unguided random walks
Convergence−guaranteed random walks

Fig. 4. The convergence of random walk node visitation probability
distribution on random graphs (20000 nodes).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time t (in number of walk steps)

||
π t, π

 ||
, d

ev
ia

tio
n

fr
om

 ta
rg

et
 d

is
tr

ib
ut

io
n

Unguided random walks
Convergence−guaranteed random walks

Fig. 5. The convergence of random walk node visitation probability
distribution on random powerlaw graphs (20000 nodes).

degree-guided random walks quickly converge to the desired
uniform node sampling distribution,e.g., ‖π, πt‖ drops below
0.01 within 40 walk steps. In comparison, unguided random
walks do not converge to the uniform node sampling. This is
because unguided random walks are more likely to visit nodes
with higher degrees while most network topologies (including
the two experimented topologies) have skewed node degree
distributions.

B. Application II: Index-Free Object Search

Many p2p search techniques utilize pre-constructed query
routing indices about data locations to speed up the search pro-
cess. The indices range from simple routing hints [36], [44],
[46] in unstructured p2p networks to exact object locations
used in distributed hash tables [35], [37], [43], which may be
too expensive to maintain. In comparison, index-free search
methods like query flooding and random walks are easier to
deploy and maintain. Without any guidance, however, these
approaches often suffer from long search latency caused by
having to probe a large number of network nodes.

Cohen and Shenker showed that index-free searches guided
by the square-root principlecan achieve low search la-

tency [11]. Under this principle, each object is probed with
probability proportional to the square root of its query pop-
ularity. The square-root principle can be realized through
data replication or topology adjustment. Specifically, data
replication adjusts peer content popularities [11], [28] while
topology adjustment changes peer visitation probabilities [12]
under unguided random walks or flooding. However, these
techniques may not be feasible in p2p applications with
large, dynamic datasets, where the maintenance of up-to-date
topologies or data replication copies often incur considerable
overhead.

We seek to support efficient index-free search using
popularity-biased random walks rather than biased replication
or topology adjustments. Our goal is to achieve search time
comparable with alternative search methods but at no cost of
data movement or topology changes. Based on the framework
in Section III, each query issues a random walker configured
as follows. Letdi denote the number of network neighbors
of peeri. Let pi denote the content popularity of peeri. If a
random walker is at peeri at a certain time step, then for each
neighborj of i it moves toj with probability Pi,j after next
step, where:

Pi,j =

{

1
2 · 1

di
if

√
pi

di
≤

√
pj

dj
;

1
2 · 1

dj
·
√

pj√
pi

if
√

pi

di
>

√
pj

dj
.

(9)

and the probability for the random walker does not move at
the stepPi,i = 1 − ∑

k∈ neighbor(i) Pi,k. The peer content
popularity pi can be estimated as the number of queries
satisfied at peeri divided by the total number of queries
received byi [12]. HencePi,j is locally computable.

It is easy to see that the above random walk converges to
π with π(i) ∝ √

pi. After convergence, our random walks
achieve the minimum expected search time for the known
popularity distributionp [11]. Note that the convergence time
is typically short compared with the expected object search
time (after convergence) on common p2p topologies (e.g.,
random graphs and random powerlaw graphs), which are
known to support fast random walk convergence due to their
high expansions and low diameters.

To speed up the search, multiple independent random walk-
ers can be used, with the expectation thatk independent
random walkers afterT steps tend to cover nearly equal
number of nodes as one random walker afterk · T steps [28].
Hence the search time can be reduced by roughlyk times with
no extra communication overhead.

Simulation Results: We compare the performance of our
popularity-biased random walks with two existing approaches
to achieve the square-root principle. Below are the specific
approaches we consider in our simulation study.

• Square-root replication. Each object is replicated ran-
domly over the network with the number of replication
copies proportional to the square-root of its popularity.
One unguided random walker is used for searching the
network while we set the average number of replication
copies as the number of random walkers used in the three
approaches. This is intended to make a fair comparison
since the expected search time for square-root replication

10

is inversely proportional to the average number of repli-
cation copies. For example, making replication copies at
every node obviously leads to 1-step search time.

• Square-root topology. Unguided random walkers are used
to search the network in this scheme. The degree of each
node is proportional to the square root of its content
popularity. To transform the original topology into this
square-root topology, we compute the node degree se-
quence and use the PLRG algorithm [20] to generate the
new randomized topology with the desired node degree
sequence.

• Square-root biased walks. Each query issues a number
of random walkers that travel according to Equation (9).
Similar to unguided random walks, the random walkers
coordinate with each other and terminate if others have
found the target.

• Unguided random walks. Each query issues a number
of random walkers that, at each step, travel along each
outgoing link of the current node with equal probabil-
ities. The random walkers coordinate with each other
by periodically calling back the source to know whether
other walkers have found the target. If so, the remaining
walkers terminate themselves.

We simulate a system that contains 1,000,000 objects.
The number of queries is 100,000. In our simulation, query
popularities follow Zipf-like distributions (the frequency of
the ith most popular query is proportional to1iβ). Specifically,
we choose the exponentβ = 0.6 and β = 1.2 based on
Sripanidkulchai’s measurement results on Gnutella traces[41].
We use random graphs and random powerlaw graphs as net-
work topologies in our simulation. Their generation methods
are the same as described in Section VI-A.

Figures 6 and 7 present the search time and communication
overhead on different network topologies (random graphs
and random powerlaw graphs), query popularity distributions,
and the number of random walkers (k). We observe that
unguided random walks have much lower performance than
other three approaches guided by the square-root principle.
Furthermore, the three methods have similar performance with
small variations (average 14% difference for random graphs
and 19% for random powerlaw graphs). Compared to the other
two approaches, it is important to note that the random walk
approach has the advantage of requiring no data movements
or link changes.

Figures 6 and 7 also show the impact of query popularity
distributions on the performance of the three search meth-
ods guided by the square-root principle. We find that the
search performance for high-skewness popularity distributions
(β = 1.2) is higher than that for low-skewness distributions
(β = 0.6). This is because highly skewed query popularity
distributions contain more heterogeneity to be exploited.

Our simulation supports the following results: 1) At no cost
of topology maintenance and/or movement, our popularity-
biased random walks achieve search performance comparable
with other approaches guided by the square-root principle.
2) Using multiple random walkers can significantly reduce
the search time, with slight increase in the communication
overhead. Such increase is due to the convergence overhead

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4000

8000

12000

16000

20000

24000

Search concurrency degree

S
ea

rc
h

tim
e

(in
 n

um
be

r
of

 w
al

k
st

ep
s)

Search time on random graphs

Unguided random walks
Square−root topology (β = 0.6)
Square−root biased walks (β = 0.6)
Square−root replication (β = 0.6)
Square−root topology (β = 1.2)
Square−root biased walks (β = 1.2)
Square−root replication (β = 1.2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

4000

8000

12000

16000

20000

24000

28000

32000

Search concurrency degree

T
he

 to
ta

l n
um

be
r

of
 m

es
sa

ge
s

Communication overhead on random graphs

Fig. 6. The search time and communication overhead on randomgraphs
(20000 nodes). The search concurrency degree represents the number of
random walkers (or the average number of replication copiesfor square-root
replication).

associated with more random walkers — each walker incurs
certain overhead during its convergence process and more
walkers require more overhead.

C. Application III: Load Balancing

In p2p networks, load imbalance may be caused by factors
such as uneven distribution of data objects among nodes, het-
erogeneity in node capacities and data object sizes, as wellas
network structure changes. Many existing p2p load balancing
algorithms (e.g., virtual servers [23], [43] and dynamic zone
balancing [2], [30], [34], [35], [45]) require an underlying
distributed hash table (DHT) infrastructure. Hence they are
not applicable to load balancing in unstructured p2p networks,
where the overlay topology can be formed arbitrarily and query
mechanisms such as DHT may not be available.

Without the assistance of a structured network or DHT,
Karger and Ruhl [23] suggest to use uniform node sampling
to support pair-wise load sharing. In each round, they let each
node periodically balance its load with another node sampled
with uniform probability over all network nodes. They show
that their approach can reduce the maximum per-node load to a
constant times the average per-node load withinO(log n) load

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4000

8000

12000

16000

20000

24000

28000

Search concurrency degree

S
ea

rc
h

tim
e

(in
 n

um
be

r
of

 w
al

k
st

ep
s)

Search time on random powerlaw graphs

Unguided random walks
Square−root topology (β = 0.6)
Square−root biased walks (β = 0.6)
Square−root replication (β = 0.6)
Square−root topology (β = 1.2)
Square−root biased walks (β = 1.2)
Square−root replication (β = 1.2)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5000

10000

15000

20000

25000

30000

35000

Search concurrency degree

T
he

 to
ta

l n
um

be
r

of
 m

es
sa

ge
s

Communication overhead on random powerlaw graphs

Fig. 7. The search time and communication overhead on randompowerlaw
graphs (20000 nodes). The search concurrency degree represents the number
of random walkers (or the average number of replication copies for square-
root replication).

balancing rounds (n is the network size). Furthermore, their
result is asymptotically optimal because each load balancing
operation between two nodes can at most reduce the per-node
load by a half, and the maximum per-node load could ben
times higher than the average.

Intuitively, sampling with probabilities biased towards
highly loaded nodes are more likely to bring them into load
balancing operations than uniform sampling. We propose a
new load balancing algorithm that uses load-biased random
walks to sample nodes and subsequently moves their load to
lightly loaded nodes. Although at the same asymptotic level
(which is optimal), our approach leads tofour times smaller
load balancing time upper-bound than that of uniform node
sampling in Karger and Ruhl’s approach [23]. For the detailed
analysis, please refer to [47].

The basic framework for pair-wise load sharing is as fol-
lows:

In each round, every nodei samples a random node
j 6= i. They perform a load movement to balance their
loads if the load of one node is at leastγ times larger
than that of the other.

where the thresholdγ avoids the load movement between two

nodes with similar loads. We chooseγ = 2 in our study.
The key variant of pair-wise load sharing is how the random

nodej is sampled. We sample nodes with probabilities pro-
portional to their loads and perform load balancing operations
accordingly. Such a linearly load-biased sampling has a unique
property that the probability to choose a node with load
k · L (assumingL is the average per-node load) is always
k
n regardless of the network-wide load distribution. Conse-
quently, this sampling scheme leads to faster load balancing
than uniform sampling because it tends to discover overloaded
nodes more often. More importantly, this sampling distribution
is superior to other biased distributions (e.g., quadratically
load-biased) in that it always favors nodes with above-average
loads independent of global load distribution. We implement
linearly load-biased node sampling based on the framework in
Section III, with the random walk configured as follows.

Let d(i) denote the number of neighbors of nodei. If the
random walk is at nodei, then for each neighborj of i, it
moves toj with probability Pi,j after next step, where:

Pi,j =

{

1
2 · 1

d(i) if Load(i)
d(i) ≤ Load(j)

d(j) ;
1
2 · 1

d(j) ·
Load(j)
Load(i) if Load(i)

d(i) > Load(j)
d(j) .

andPi,i = 1 − ∑

j∈ neighbor(i) Pi,j .
Each node issues a random walker that persistently runs

over the network as a node sampler. At each round, the random
walker reports its currently visited node as a node sample toits
source node, which then performs a load balancing operation
to balance the load between itself and the sampled node,i.e.,
an operation movesA−B

2 load from a node with loadA to
a node with loadB (A > B). Here the time period for each
sampling round needs to be long enough to avoid too frequent
load sharing operations since load movement typically incurs
substantial network bandwidth consumption. In addition, the
random walkers from different nodes are independent and no
synchronization is needed between them.

Simulation Results: We run simulations to compare the
load balancing performance of our linearly load-biased balanc-
ing (based on random walks) against that of uniform balancing
proposed by Karger and Ruhl [23]. We consider random
graph and random powerlaw graph network topologies in our
study. Their generation methods are the same as described in
Section VI-A. The comparison is done in terms of two metrics.

• The maximum load imbalance factor, defined as the
maximum per-node load divided by the average per-node
load.

• The number of hotspots, defined as the number of nodes
with load at least four times the average per-node load.

We assume that the initial load at a node (before load
balancing algorithms are employed) is chosen with a powerlaw
distribution with exponent−3, mean value2, and minimum
value1. The heavy-tail feature of powerlaw distribution means
that there may exist some highly loaded nodes in the network.
Let T be the length of a load balancing round (or the time
interval between two consecutive load balancing operations
initiated from one node). Each node starts running sampling
and load balancing algorithms at a time point chosen uniformly
at random from the range[0, T] in our simulation.

12

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

80

90

100

Time (in number of load balancing rounds)

T
he

 m
ax

im
um

 lo
ad

 im
ba

la
nc

e
fa

ct
or

Load imbalance factor on random graphs

Uniform balancing
Linearly load−biased balancing

0 1 2 3 4 5 6 7 8 9 10

50

100

150

200

250

300

350

400

Time (in number of load balancing rounds)

T
he

 n
um

be
r

of
 h

ot
sp

ot
s

Number of hotspots on random graphs

Uniform balancing
Linearly load−biased balancing

Fig. 8. The maximum load imbalance factor and the number of hotspots on
random graphs (20000 nodes).

Figures 8 and 9 compare the load imbalance reduction
speeds of the two load balancing approaches. Results show
that our load-biased random walks reduce load imbalance
significantly faster than uniform sampling based balancing. For
example, our load-biased random walks eliminate all hotspots
within 3 load balancing rounds while uniform balancing takes
7 rounds. The performance difference is mainly due to the
different speeds at which the three schemes discover and
offload hotspots.

VII. PROTOTYPE IMPLEMENTATION AND INTERNET

EXPERIMENT

We have made a prototype implementation of convergence-
guaranteed random walks over Internet overlay networks. The
implementation is encapsulated in an event-driven random
walk daemon at each node of the network. The daemon
receives propagated random walkers and passes them to next
hop (or keep them unmoved) at each step according to the
appropriate transitional probabilities determined in Section III.
A walker pauses for a certain time period after each step.
We call this period the per-step interval length and it is em-
ployed to control the walker propagation speed and associated
network overhead. The only non-local state that our random
walk maintains at each node is the network degrees of its

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

80

90

100

Time (in number of load balancing rounds)

T
he

 m
ax

im
um

 lo
ad

 im
ba

la
nc

e
fa

ct
or

Load imbalance factor on random powerlaw graphs

Uniform balancing
Linearly load−biased balancing

0 1 2 3 4 5 6 7 8 9 10

50

100

150

200

250

300

350

400

Time (in number of load balancing rounds)

T
he

 n
um

be
r

of
 h

ot
sp

ot
s

Number of hotspots on random powerlaw graphs

Uniform balancing
Linearly load−biased balancing

Fig. 9. The maximum load imbalance factor and the number of hotspots on
random powerlaw graphs (20000 nodes).

neighbors. Such state can be robustly maintained through soft
state based communications between network neighbors. More
specifically, neighboring nodes periodically update each other
with up-to-date network degrees. Dynamic state changes or
message losses can be simply recovered by later updates.

We consider the network overhead of walker movements.
Figure 10 illustrates the random walker data structure in our
implementation and it is 28-byte large. Counting the additional
28-byte UDP/IP headers, a random walker with 10 seconds
per-step interval length will incur a small 45 bits/second walker
movement overhead.

We conduct a simple experiment to demonstrate that our
prototype implementation functions as expected. Our exper-
iment uses 66 Planetlab [33] nodes over the Internet. The
nodes form a random-topology network with an average node
degree of 4 and a maximum node degree of 12. Our experi-
ment attempts to achieve uniform node visitation probability
distribution. Figure 11 illustrate the node visitation probability
distributions of our convergence-guaranteed random walk.For
each test, we let an arbitrarily chosen source send out 660 (ten
times the node count) random walkers and we then track their
movements at each step. We show the node visitation prob-
ability distributions at different stages of walker movements
(steps 0–19, steps 20–39, and steps 40–59). Results suggest

13

struct RandomWalker {
int type; /* type of walker: unguided, convergence-guaranteed, etc. */
struct in_addr source; /* the walker originating node */
int id; /* walker id (distinguishing from other walkers from the same source) */
double interval; /* per-step interval length */
unsigned int step; /* number of steps since the beginning */
unsigned int TTL; /* time-to-live in steps to expiration */

};

Fig. 10. The random walker data structure in our implementation.

0 10 20 30 40 50 60
0%

2%

4%

6%
12.7%

V
is

ita
tio

n
pr

ob
ab

ili
ty

(A) Node visitation probability distribution for walker steps 0−19

0 10 20 30 40 50 60
0%

2%

4%

6%

V
is

ita
tio

n
pr

ob
ab

ili
ty

(B) Node visitation probability distribution for walker steps 20−39

0 10 20 30 40 50 60
0%

2%

4%

6%

Network nodes

V
is

ita
tio

n
pr

ob
ab

ili
ty

(C) Node visitation probability distribution for walker steps 40−59

Fig. 11. Node visitation probability distributions of convergence-guaranteed random walks on a random topology with 66 Planetlab nodes. The converged
distribution is the uniform distribution.

that our convergence-guaranteed random walks can quickly
achieve approximately uniform node visitation probabilities
(after only 20 walk steps).

VIII. C ONCLUSION

As far as we know, this is the first work on the ef-
fectiveness and challenges in using convergence-guaranteed
random walks to provide p2p systems with application-specific
probabilistic node sampling service. In particular, we focus
on two important issues that concern the usage of random
walks in practical p2p systems: the convergence time and

fault tolerance of convergence-guaranteed random walks. We
present both analytical and simulation results on the random
walk convergence time for different network sizes, common
p2p network topologies, and various targeted node visitation
probability distributions. We also derive results on random
walk availability under dynamic network conditions with pos-
sible walker losses.

We evaluate the benefits of convergence-guaranteed random
walks configured according to our analytical results via three
p2p applications: random membership management, index-
free search, and load balancing. We also implement a pro-

14

totype of convergence-guaranteed random walks to assess
its overhead and convergence via a Planetlab-based Internet
experiment. Our results make the case that the usage of
convergence-guaranteed random walks can achieve stronger
analytical properties or higher system performance compared
with previous topology-independent index-free approaches.
Furthermore, our results and experiences (e.g., choosing proper
node sampling distributions, random walker configuration,
bounding the convergence time, the prototype implementation)
in these case studies can serve as guidance for the usage of
convergence-guaranteed random walks in other p2p applica-
tions.

REFERENCES

[1] L. Adamic, B. Huberman, R. Lukose, and A. Puniyani. Search in Power
Law Networks.Physical Review, (64):46135–46143, 2001.

[2] M. Adler, E. Halperin, R.M. Karp, and V. Vazirani. A Stochastic Process
on the Hypercube with Applications to Peer-to-Peer Networks. In Proc.
of the 25th ACM Symp. on Theory of Computing (STOC), pages 575–
584, San Diego, CA, June 2003.

[3] Y. Azar, A. Broder, A. Karlin, N. Linial, and S. Phillips.Biased Random
Walks. In Proc. of the 24th ACM Symp. on the Theory of Computing,
pages 1–9, 1992.

[4] A. Barabasi.Linked: How Everything Is Connected to Everything Else
and What It Means. Plume, 2003.

[5] A. Barabási and R. Albert. Emergence of Scaling in Random Networks.
Science, 286:509–512, 1999.

[6] A.R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
Scalable Multi-attribute Range Queries. InProc. of the ACM SIGCOMM,
pages 353–366, Portland, OR, August 2004.

[7] B. Bollobás. Random Graphs. Academic Press, London, UK, 1985.
[8] B. Bollobás and O. Riordan. The Diameter of a Scale-freeRandom

Graph. Combinatorica, 24(1):5–34, 2004.
[9] B. Bollobás, O. Riordan, J. Spencer, and G. Tusnady. TheDegree

Sequence of a Scale-free Random Graph Process.Random Structures
and Algorithms, 18(3):279–290, 2001.

[10] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.Shenker.
Making Gnutella-like P2P Systems Scalable. InProc. of the ACM
SIGCOMM, August 2003.

[11] E. Cohen and S. Shenker. Replication Strategies in Unstructured Peer-
to-Peer Networks. InProc. of the ACM SIGCOMM, Pittsburgh, PA,
August 2002.

[12] B.F. Cooper. Quickly Routing Searches Without Having to Move
Content. InProc. of the 4th International Workshop on Peer-to-Peer
Systems (IPTPS), Ithaca, NY, February 2005.

[13] P. Diaconis and D. Stroock. Geometric Bounds for Eigenvalues of
Markov Chains.Annals of Applied Probability, 1:36–61, 1991.

[14] W. Doeblin. Exposé de la théorie des chaı̂nes simplesconstantes de
Markov á un nombre fini d’états.Mathématique de l’Union Interbalka-
nique, 2:77–105, 1938.

[15] P.Th. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and
A.-M. Kermarrec. Lightweight Probabilistic Broadcast.ACM Trans. on
Computer Systems, 21(4):341–374, November 2003.

[16] A.J. Ganesh, A. Kermarrec, and L. Massoulié. SCAMP: Peer-to-peer
Lightweight Membership Service for Large-scale Group Communica-
tion. In Proc. of the 3rd International Workshop on Networked Group
Communicatio, pages 44–55, London, UK, November 2001.

[17] C. Gkantsidis, M. Mihail, and A. Saberi. Conductance and Congestion
in Power Law Graphs. InProc. of ACM SIGMETRICS, pages 148–159,
San Diego, CA, June 2003.

[18] C. Gkantsidis, M. Mihail, and A. Saberi. Random Walks inPeer-to-
peer Networks. InProc. of the IEEE INFOCOM, pages 120–130, Hong
Kong, China, March 2004.

[19] C. Gkantsidis, M. Mihail, and A. Saberi. Hybrid Search Schemes for
Unstructured Peer-to-peer Networks. InProc. of the IEEE INFOCOM,
pages 1526–1537, Miami, FL, March 2005.

[20] C. Gkantsidis, M. Mihail, and E. Zegura. The Markov Chain Simulation
Method for Generating Connected Power Law Random Graphs. InProc.
5th Workshop on Algorithm Engineering and Experiments (ALENEX),
2003.

[21] W.K. Hastings. Monte Carlo Sampling Methods Using Markov Chains
and Their Applications.Biometrika, 57:97–109, 1970.

[22] M. Jelasity, R. Guerraoui, A. Kermarrec, and M.V. Steen. The Peer
Sampling Service: Experimental Evaluation of Unstructured Gossip-
Based Implementations. InProc. of the 5th International Middleware
Conference, 2004.

[23] D. Karger and M. Ruhl. Simple Efficient Load Balancing Algorithms for
Peer-to-Peer Systems. InProc. of the 16th ACM Symp. on Parallelism
in Algorithms and Architectures (SPAA), pages 36–43, Barcelona, Spain,
June 2004.

[24] V. King and J. Saia. Choosing A Random Peer. InProc. of the 23rd
ACM Symp. on Principles of Distributed Computing, pages 125–130,
2004.

[25] D. Kostić, A. Rodriguez, J. Albrecht, A. Bhirud, and A.Vahdat. Using
Random Subsets to Build Scalable Network Services. InProc. of the 4th
USENIX Symp. on Internet Technologies and Systems (USITS), Seattle,
WA, March 2003.

[26] C. Law and K. Siu. Distributed Construction of Random Expander
Networks. In Proc. of the IEEE INFOCOM, pages 2133–2143, San
Francisco, CA, March 2003.

[27] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-Theoretic
Analysis of Structured Peer-to-Peer Systems: Routing Distances and
Fault Resilience. InProc. of the ACM SIGCOMM, pages 395–406,
Karlsruhe, Germany, August 2003.

[28] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in
Unstructured Peer-to-Peer Networks. InProc. of the ACM International
Conference on Supercomputing (ICS), pages 84–95, New York, NY, June
2002.

[29] Q. Lv, S. Ratnasamy, and S. Shenker. Can Heterogeneity Make Gnutella
Scalable? InProc. of the First International Workshop on Peer-to-Peer
Systems (IPTPS), 2002.

[30] G.S. Manku. Balanced Binary Trees for ID Management andLoad
Balance in Distributed Hash Tables. InProc. of the 23rd ACM Symp.
on Principles of Distributed Computing (PODC), pages 197–205, St.
John’s, Canada, July 2004.

[31] G.S. Manku, M. Naor, and U. Wieder. Know Thy Neighbor’s Neighbor:
The Power of Lookahead in Randomized P2P Networks. InProc. of the
ACM Symp. on Theory of Computing (STOC), 2004.

[32] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.Teller, and
E. Teller. Equation of State Calculations by Fast ComputingMachines.
Journal of Chemical Physics, 21:1087–1092, 1953.

[33] Planetlab. http://www.planet-lab.org.
[34] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load

Balancing in Structured P2P Systems. InProc. of the Second Int’l
Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, February
2003.

[35] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scal-
able Content-Addressable Network. InProc. of the ACM SIGCOMM,
pages 161–172, San Diego, CA, August 2001.

[36] S. Rhea and J. Kubiatowicz. Probabilistic Location andRouting. In
Proc. of the IEEE INFOCOM, pages 1248–1257, 2002.

[37] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object
Location and Routing for Large-scale Peer-to-Peer Systems. In Proc.
of IFIP/ACM Middleware Conference, pages 329–350, Heidelberg, Ger-
many, November 2001.

[38] K. Shen. Structure Management for Scalable Overlay Service Construc-
tion. In Proc. of the First USENIX/ACM Symp. on Networked Systems
Design and Implementation (NSDI), pages 281–294, San Francisco, CA,
March 2004.

[39] A. Sinclair. Improved Bounds for Mixing Rates of MarkovChains
and Multicommodity Flow.Combinatorics, Probability and Computing,
1:351–370, 1992.

[40] A. Sinclair and M. Jerrum. Approximate Counting, Uniform Generation
and Rapidly Mixing Markov Chains.Information and Comput., 82:93–
133, 1989.

[41] K. Sripanidkulchai. The popularity of Gnutella Queries and Its Impli-
cations on Scalability. InThe O’Reilly Peer-to-Peer and Web Services
Conference, 2001.

[42] A.O. Stauffer and V.C. Barbosa. Probabilistic Heuristics for Dissem-
inating Information in Networks. IEEE/ACM Trans. on Networking,
15(2):425–435, April 2007.

[43] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for InternetApplica-
tions. In Proc. of the ACM SIGCOMM, pages 149–160, San Diego,
CA, August 2001.

[44] D. Tsoumakos and N. Roussopoulos. Adaptive Probabilistic Search
for Peer-to-Peer Networks. InProc. of the 3rd IEEE International
Conference on P2P Computing, 2003.

15

[45] X. Wang, Y. Zhang, X. Li, and D. Loguinov. On Zone-Balancing of
Peer-to-Peer Networks: Analysis of Random Node Join. InProc. of
ACM SIGMETRICS, June 2004.

[46] B. Yang and H. Garcia-Molina. Improving Search in Peer-to-Peer
Networks. InProc. of the 22nd ICDCS, pages 5–14, Vienna, Austria,
July 2002.

[47] M. Zhong, K. Shen, and J. Seiferas. Dynamic load balancing
in unstructured peer-to-peer networks: Finding hotspots,
eliminating them. Unpublished manuscript, May 2007.
http://www.cs.rochester.edu/u/zhong/papers/hotspots.pdf.

