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Abstract— Network structure construction and global state Many current uses of random walks [6], [12], [18], [19],
maintenance are expensive in large-scale, dynamic peer-peer [26], [28] do not follow any topology-driven or application
(p2p) networks. With inherent topology independence and W ghacific guidance — at each step the walker chooses from
state maintenance overhead, random walk is an excellent tbin t outqoi link ith | bability f h
such network environments. However, the current uses areriited ‘?U”e” outgoing 'n_ S with an equal pro _a_ lity for eac
to unguided or heuristic random walks with no guarantee on link. Others make biased random walk decision at each step
their converged node visitation probability distribution. Such a following some simple heuristics [10], [27], [29], [44]. In
convergence guarantee is essential for strong analyticargperties  either case, the random walks do not provide any guarantee
and high performance of mﬁ\nfy p2p gpp"ca“fkns' In this paper  on their converged node visitation probability distritouts.
we investigate an approach for random walks to converge to . . .
application-desired node visitation probability distrib utions while Sucha Converge”‘_’e guar_a?n_tee is desirable or even_ essential
only requiring information about direct neighbors of each peer. Many p2p applications utilizing random walks. For instarece
Our approach is guided by the Metropolis-Hastings algoritm  random membership subset service desires uniformly random
for Monte Carlo Markov Chain sampling. Our contributions  node sampling for the maintenance of representative mem-
are three-fold. First, we analyze the convergence time of ®1 - pership subsets [15], [16], [22], [24], [25], [38]. As aneth
random walk node visitation probability distribution on co mmon - ' o P ! .
p2p network topologies. Second, we analyze the fault tolenze e>_<amp|e, Ob_l?Ct SearCh_W'th certain bias (each nodg istsedrc
of our random walks in dynamic networks with potential With probability proportional to the square-root of its ¢ent
walker losses. Third, we present the effectiveness of rando popularity) is known to achieve low search latency among
walks in assisting three realistic network applications: endom index-free searches [11], [28].

membership subset management, search, and load balancing. ; ; ; .
Both search and load balancing desire random walks with biasd In this paper, we investigate an approach to support ran

node visitation distributions to achieve application-speific goals. dpm Walks that u_n_lque_ly ‘?O”Yerge to application-desiredeno
Our analysis, simulations, and Internet experiment demonsate  Visitation probability distributions. At each step, the Iiex

the advantage of our random walks compared with alternative randomly chooses its next hop following certain probatidis
topology-independent index-free approaches. preference determined with the assistance of the Metrspoli
Hastings algorithm [21], [32]. In this approach, the random
walk movement at each step only requires local information
and information concerning direct neighbors.

Random walk is a way to sample network nodes — Our contribution in this paper is three-fold. First, we stud
at each step, a walker randomly chooses its next hop ttee convergence time of our random walks for achieving the
visit (among direct neighbors of the current node) follogvintargeted node visitation probability distribution. Thésimpor-
certain probabilistic preference for each neighbor. Ramdotant since random walks can take significant warm-up time to
walk is particularly attractive in large-scale, dynamicepe converge to the desired node visitation distribution. Wevjite
to-peer (p2p) networks. In these networks, nodes can janalytical bounds for the random walk convergence time on
and leave dynamically without centralized control, and th&everal common p2p network topologies: k-dimensional tori
network topology itself can also change over time. Rando@hord topology [43], random powerlaw topology, and random
walk requires little global knowledge or state maintenaaicd regular topology. In addition to the analytical bounds, wsoa
it can function on almost all connected network topologieproduce simulation results under some typical networkpsetu
In these aspects, it is superior to systems with sophisticat Our second contribution is an analysis of the fault toleeanc
index states or rigid network structuresg, distributed hash of random walk based node sampling. Random walk is in-
tables (DHTSs) [35], [37], [43]. Compared with index-freedeo herently robust since it requires no global state mainteaan
traversal schemes like network flooding, random walk is irHowever, a walker may be lost due to node failures or
herently scalable in that its network communication ovarthe departures in a dynamic network. We propose two methods
does not increase as the network size grows. to recover walker losses: one employs periodic walker call-

backs to detect walker losses; the other enforces a bounded
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given random walk convergence time and node failure mod§g9], [44]. Typically, such work is motivated by Adamiet
Particularly for the second method, we derive an optimal.’s discovery that the high-degree nodes (super-peers) in
walker lifetime to maximize its fault tolerance. powerlaw graphs may be utilized by random walks to achieve
Our third contribution concerns application studies. Ursearch performance scaling sub-linearly with the network
structured p2p applications often require a node samplisge [1]. Specifically, Gia uses random walks biased towards
service that can achieve guaranteed node visitation lolistri high-capacity peers to enhance the search performance of
tions with high scalability and robustness. Specificalyne Gnutella [10]. Lv et al. also use capacity-biased random
applications may desire uniform node visitation probapili walks to speed up the search process in Gnutella [29].
distribution while others may want non-uniform distritrts Cooper improves the search performance of random walks
to achieve application-specific goals. We present the effday always forwarding walkers to the neighbors with the
tiveness of random walks in assisting three realistic netwomost documents [12]. This may increase the probability of
applications: random membership subset managementhseafioding matches since the walkers tend to quickly cover a
and load balancing. Our results show that our convergendage volume of data. Loguinoet al. suggest that unbalanced
guaranteed random walks can achieve desired applicatimone partitioning in DHTs may be addressed by using zone
goals or high performance in a topology-independent indesize biased random walks (split the largest zone found upon
free fashion. peer joining, and merge with the smallest zone discovered
The rest of this paper is organized as follows. Section Upon peer departure) [27]. Adaptive probabilistic seartRS)
discusses existing study on random works in p2p networksses feedback from previous searches (maintained in local
Section Il provides the theoretical foundation for guaema index tables) to direct random walkers [44]. In summary, the
unique convergence of random walk node visitation prolitgbil setup of these biased random walks are guided by heuristics
distribution. Sections IV and V analyze two important issuederived from network topologies or application-level tech
concerning our proposed random walks — convergence timigues. Although these empirical methods may achieve thette
and fault tolerance — respectively. Section VI presents tlpiantitative performance than unguided random walksegttser
effectiveness of our approach and application-specifieissn little understanding on their analytical properties bessathey
the context of three application studies. Section VIl dibesr lack a guarantee on converged node visitation distribstion
a prototype implementation and Internet experiment of our We are aware of a recent work by Stauffer and Barbosa on
proposed convergence-guaranteed random walks. Sectlbn \robabilistic random flooding [42]. Both random walks and
concludes the paper with a summary of our results. random partial flooding can achieve probabilistic nodetaisi
tions. Like random walks, flooding is robust and requires/ver
limited index information. However, Stauffer and Barbasa’
work on probabilistic random flooding [42] only attempts to
Random walks have been used in many p2p applicatioaghieve uniform visitation. In comparison, our guided ramd
including search [18], [19], [28], topology constructiob8], walks can converge to arbitrary (potentially non-uniformople
[26], [31], and peer sampling [6]. For example, Eval.find visitation probabilities with proved convergence. Furthee
that random walk based search is preferable to floodingebasgould like to point out that the “node visitation probalbylit
search in unstructured p2p networks [28]. Gkantsielisal. for our random walks differs from that of typical flooding.
report that random walks are particularly better than flogdi Our random walks are concerned with the steady-state node
in two application scenarios, when topologies are clustere visitation probability of each walk step. In probabilisfiood-
when multiple requests are issued for the same query [18]g [42], the node visitation probability often refers toeth
Their subsequent work shows that hybrid search schemelsance for a node to be eventually visited in a flooding sessio
which combine short random walks with local flooding, maguch semantic difference makes flooding most appropriate
lead to further performance improvement over pure floodinfgr information dissemination while our random walks can
or random walks in clustered topologies [19]. Law and Sisupport additional applications such as membership subset
propose a low-overhead distributed algorithm for consdingc management and continuous load statistics maintenance.
well-connected topologies, where a new peer is connected
to existing nodes chosen by running random walks for a
certain number of steps [26]. In addition, Bharaméteal.
use a random walk based peer sampling algorithm that allows
each node to estimate system-wide metries( global load Let G = (V,FE) be an undirected connected graph. A
distribution) based on peer samples [6]. However, randomndom walkon G starts at a nodeg, which is either fixed
walks in these approaches do not follow any topology-drivesy drawn according to some initial distributiomy. If the
or application-specific guidance — at each step the walkemdom walk is at node; at time stept, then it moves to a
chooses from current outgoing links with equal probalei§iti neighborv,, 1 of nodev, at stept+1, chosen randomly with a
Such unguided random walks always visit nodes with probeertain probability distribution. Letr; denote the distribution
bilities proportional to their degrees and cannot supptiteo of nodewv;, so thatm (i) = Prob(v, = i) for eachi € V.
application-specific node sampling distributions. Let P = (P, ;),i,j € V, denote the transition matrix of the
There has been some attempts to exploit the applicabiligndom walk —P; ; is the probability that the random walk
of biased random walks in p2p systems [10], [12], [27]noves from nodée to nodej in one step.P; ; = 0 if nodesi,
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Ill. FOUNDATION FOR GUARANTEED RANDOM WALK
CONVERGENCE



a and Pii = 1= ic neighborss) Dig- @ 1S @ laziness factor
1-a 1-a (between 0 and 1) to guarantee unigue convergence. In our
0 o D configuration, the random walk movement at each step only
requires the knowledge on network degrees and desire@visit
a

1 tion probabilities of the current node and its direct neigtsh

Fig. 1.  An illustration on how self-loops achieve unique \engence of
random walks. IV. RANDOM WALK CONVERGENCETIME

Although our random walks are guaranteed to uniquely

_ . . converge to the desired node visitation probability disttion,
J are not adjacent%;l'lhe dynamics of the random walk followgg, convergence is not immediate after a random walk is
Tl = 7”1;: moP K ' build h i _ Iinitiated. For instance, after one step of the walk, it is not
Our random walks build on the Metropolis-Hastings algqggibje for the walker to go beyond the direct neighbors

gorlthm [21], [32_],__ a standard approach to assign SR the starting node. The convergence time indicates when
transition probabilities to Monte Carlo Markov Chains sucg newly initiated random walk starts visiting nodes in the

that they converge to any specified probability distribngio desired probability distribution. It also affects the randwalk

_Theor.em 1: 3], [32] Let « be the desireq probability recovery from walker losses (examined later in Section W). |
distribution. Letd; denote the degree of node For each s section, we study the convergence time of random walk
neighbor; of nodes, let node visitation probability distribution.

A. Preliminary and Our Approach

Pi,j = {
We first introduce a metric for measuring the difference
and Pi; =1 =3 c neighbors(i) Lij- ThenT is a converged petween two probability distributions.
probability distribution of the random walk with transitio  Definition 1: The differencebetween two arbitrary proba-
matrix P. bility distributions,z andy, is defined aglz,y| = 3 >, |zi —
It is easy to show thatr is a converged distribution by y;|. The factorl is to ensure that the maximum difference does
verifying 7 P = =. We also use a laziness factor in our randoot exceed..
walk configuration to introduce self-loops at each nodeoWhi  Assuming thatr is the desired distribution and, is the
ensures that is the unique converged distribution accordingandom walk node visitation distribution at stepthe extent
to Doeblin [14]. to which the convergence is achieved at stejs measured
Theorem 2: [14] If P is irreducible and aperiodic, thenby |7, 7||. |7, 7|| = 0 obviously represents complete con-
™ converges to a unique stationary distributionsuch that vergence. The factot ensures thafm, || never exceed.
wP = 7, independent of the initial distribution,. Fast convergence means that;, 7| goes down quickly as
Here P is irreducibleif and only if for anys, j, there exists grows.
at such that(P*); ; > 0. P is aperiodicif and only if forany ~ Definition 2: For e > 0, the convergence times defined as
i,j the greatest common divisor of the sgt: (P'); ; > 0} 7(¢) = min{t : V¢’ > t, ||z, 7| < €}.
is 1. Intuitively, irreducibility means that any two nodes are The convergence time measures the timerfoto converge
mutually reachable by random walk&periodicitymeans that to 7. With these metrics, the convergence time of a random
a random walk does not periodically commute between amalk is bounded as follows.
two nodes. Aperiodicity can be achieved by introducing-self Theorem 3: [13] Let 7y, = min ;>0 7(i), thent(e) <
loop transitions of some positive probability on each nod& ;' log((mmine)™!). HereAp is the eigengap of the random
For example, if a random walk with transition probabilitiesvalk transition probability matrixP.
defined in the left diagram of Figure 1 starts from node 0, It is known thatP has|V| eigenvalues\;, \s, ..., A|v| Such
then it always stays at node 1 after an odd number of stepat 1 = A\, > |\ > ... > |A\jv(|. The eigengap of is
and visits node 0 after an even number of steps. Consequerdbfined asAp = 1 — |X2|, which provides a bound for the
such a random walk oscillates between node O and 1 agshvergence time. A larger eigengap means shorter conver-
does not have a unique converged distribution. However,génce time. However, for large-scale p2p network applices;
is easy to bring unique convergence to this random walk liye sizes of transition matrices are so large that it is very
just introducing a self-loop with probabilit) < o < 1 to difficult to compute exact eigenvalues and eigengaps. 8kver
each node as shown in the right diagram of Figure 1, aftgpproaches [13], [39], [40] have been proposed for estahtis
which the new random walk uniquely convergesstowith pounds for eigengaps of transition matrices. In this paper,
m(0) = w(1) = 0.5. compute the eigengap bounds by using ttamonical path
Putting them altogether, we configure the random wabpproach [39].
transition matrix in the following fashion. For each neighb  The main idea of the canonical path approach is as follows.
j of nodei, we set When there is a small cut in the random walk probability
{ N N transition flow graph, it takes a long time for the probatilit
Pi,j =
«
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in the probability transition graph provides a bound for theherell ) represent the,/p(G) nodes with the largest
convergence time. node visitation probabilities in the distribution

Let = be the unique converged distributio? is the By combining Theorem 3 and Theorem 4, we have:
transition matrix of the random walkG = (V,E) is the Theorem 5:The convergence time is bounded by

random walk probability transition graph corresponding®o 9

For distinct nodes;, y in the graphG, a canonical pathry,, D

refers to a path between y. I', a family of canonical paths,  7(¢) <1 —% Z 7(i) | -log((Tmine)™h)

includes exactly one path for each pair of distinct nodes Tmin i€l ey

I'={vay : 2,y € Vo # y}. Let Qe) = 7(x)Pry = The above result reveals that thé random walk convergence

7(y)Py,.. From the view of probability flows between nodestime bound depends on network topology properties such as
the pathry,, carries a probability flow ofr(x)m(y) andQ(e) graph diameter, maximum node degree, and the congestion of
represents the capacity of the edgeA canonical path family the graph. It also relies on the skewness pfhe targeted node

I" represents a routing scheme for every pair of distinct nodesitation probability distribution — the more skeweds, the

in the network. Thecongestiorof T is defined as larger the time bound is (since the total probabilitylbf o)
1 becomes larger). For example,sfis a uniform distribution,
p(I') = meaX@ Z m(x)7(y), (1) then the convergence time bound is
Yxy D€

2

@ <i-2me S )| log((Mame) )

and thecongestiorof the graphG is defined as

p(G) = min p(T"), wherep(T) =max > 1. (2) Tmin - \ierl o
Yy D€
- | - | - Dmar 2O o (i) )
In principle, a canonical path family with low congestion = n
means that the random walk transition probability graphsdoe p(G)

— -1
not have stringent bottlenecks for probability flows anddeen =1 Dpaz - ~log((Tmin€) ™)

the random walks can converge quicklyl') measures the g another example, if is a highly skewed distributiore(g,
maximum per-edge flow-to-capacity ratio of a Specific canoby,eq gistribution) with the total probability ofl = close

ical path family I'. p(I") is the maximum number of pa_thsto 1, then the convergence time can be bounded as follows
that is routed over an edge for the canonical path farily ;
%arger than previous example)

It is obvious that the worst routing scheme may lead to

congestion ofn? for a network withn nodes — when the 2

flow between every two nodes must go through the same _ &) <1- Dimaz Z 7(0) | - log((mmme) ™)
edge. It is also obvious that the mini;num congestion on a T Tmin el

network withn nodes andE| edges is%|, when every edge G

is equally congestegh(G) chooses the canonical path family <I- Drmax log((Tmin€) 1)

with the minimum number of per-edge routing paths. Note that Tmin

p(G) is an inherent property of the network topologyand ] ]
is independent of the random walk node visitation distitnut B- ASymptotic Convergence Time Bounds for Common P2P

. Topologies
For random walks configured based on the Metropolis- Using the canonical path approach explained above, here
Hastings algorithm (Theorem 1), we have (foe (i, 7)). we derive bounds for the convergence time of two commonly
S used cgnvergengg—guaranteed rar_ldom waII_<s in various p2p
Q) = 7(i)Py; = d; if d < 4 topologies. Specifically, we examine four kinds of network
0. wy) if Fd@ > ﬂ;.j)_ topologies as listed below.
’ ' ’ o Tori. Tori-like structures have been used for self-
Hence we have 1 D organizing Content Addressable Networks (CAN) [35].
max —— < % Structures like 2-d tori are also common in
¢ Q) Tmin geographically-constrained networks (where nodes’
where D,,,,.. is the maximum node degree. transmission ranges are limited by geographical

The canonical path family with the minimum congestion on  distances) such as wireless ad hoc networks.
a given random walk transition probability graph provides a « Chord topologieg43]. An n-node ring-like network with
lower bound for the eigengap of the corresponding transitio  each node also connected to (besides its direct neighbors

matrix P: on the ring) its 2-hop neighbors, 4-hop neighbors,z-.,
Theorem 4: [39] Let [ represent the network diameter. Let ~ hop neighbors on the ring.
D4z be the maximum node degree. « Random powerlaw graph®easurement results on many

existing p2p systems [41] observed powerlaw node degree
1 1 Tmin 1 S .
Ap>— = >_. . — distributions. It is known that powerlaw node degree
Foming pT) = 1 Dinax (Dien - (1)) distributions may occur when each network node is




connected to some other nodes chosen randomly witktwork topology and the targeted node visitation prolitgbil
probability biased towards their degrees [5], [9]. distribution. In principle, topologies with higher contieiy
« Random graphsRandom graphs model those networlor target visitations with more uniform distribution alldaster
applications in which each node is connected to soneenvergence. Second, we derived analytical bounds foiorand
random nodes chosen uniformly at random [38]. walk convergence time on common p2p network topologies
Table | shows the network diameterd @nd congestions and target visitation probability distributions. Our qtigative
(p(G) as defined in Equation 2) of these network topologiesimulation validates the analytical bounds although, dutbe
Based on Theorem 5 and Table I, the convergence time lighitations of current bounding techniques, the boundsnare
random walks with two commonly targeted node visitatiofight in some cases.
distributions (one is uniform while the other is Zipf's dist Note that the derived convergence time is represented in
bution) can be bounded as shown in Table II. the number of walk steps. In practice, the convergence delay
In general, tori have the largest diameter and congestibn vin absolute time may be of more direct interests. Given the
ues and hence the slowest convergence. The other thre@topobnvergence delay in random walk steps, we can achieve de-
gies are known to possess low diameters and low congestiired absolute convergence time by adjusting the time iwe
properties, which leads to quick convergence. In addition adjacent walk steps. Therefore faster convergence time can
the network topology, the desired sampling distributiosoal be achieved with faster-paced walks (and consequently more
affects the random walk convergence time in that edges withocessing and network overhead).
small transition probabilities (associated with nodeswihall
visitation probabilities) may slow down random walks. The
problem may become more severe when these edges happen
to be bottlenecks for random walk movements as revealed byRandom walks in p2p networks must tolerate network faults
edge congestion. Table Il shows that the convergence tiféd dynamic network changes. These include node or link
grows as the targeted distribution becomes more skeired, failures, dynamic node arrival/departure, and networlotogy

V. RANDOM WALK FAULT TOLERANCE

(Cien w(i))? changes. Compared to network management with sophiglicate
— 9 pecomes higher. index states or rigid network structures.§, DHTs [35],

[37], [43]), random walks are inherently more fault toletran
C. Simulation Results since it requires little state maintenance. For our corsecg-

As a complement to the analytical results, we providguaranteed random walks, the only required state at each nod
simulation results to quantitatively assess the convemgerconsists of the network degree and visitation probabilitits
time under common network topologies and node visitatiadirect neighbors. Consequently, our random walks candteer
distributions. For our simulation, we measure the convecge network faults and changes as long as the required state at
time of a random walk a$(0.01), the number of walk steps each node (information concerning direct neighbors ondy) ¢
needed beford;, 7| drops below 0.01. be properly updated. However, one problem due to dynamic

Figure 2 presents the random walk convergence time umetwork changes warrants attention — a walker may be lost
der different network sizes, topologies, and node visitati if the node it currently resides at abruptly departs from the
distributions. The results show that the convergence tifne wetwork (or simply fails). To maintain continuous random
different network topologies follows the order of “2-d tori walks, walker losses must be promptly discovered and new
> “random powerlaw”> “random regular”> “Chord”. This walkers must be initiated.
mostly matches the order of their network diameters andNote that we assume fail-stop node failure model in this
congestion properties shown in Table I. However, it is wortbtudy. Under the fail-stop model, a node fails by simply
noting that Chord networks unexpectedly outperform randogstopping its function. We do not consider other failure msde
powerlaw and random regular topologies. This is because thech as Byzantine node failures (in which a failed node may
average node degree of Chord topologies ) is higher than do arbitrary things) or malicious nodes.
that of these random topologies (a constant). More per-node
links decrease congestion properties and reduce diameters

Figure 2 also shows that the convergence time tends to gré}v
linearly with the network size, which falls within the antibal We describe two methods to recover from walker losses:

convergence time bounds derived in Table II. In particutee,  , Callback. Each walker makes periodic callbacks to the
quantitatively measured convergence time grows signifigan  originating node. If a sufficient number of callbacks are
slower than the analytical bounds on 2-d tori and random not received in a row, the walker is considered lost and
powerlaw graphs. This is mainly because current bounding 3 new walker will be initiated.

techniques may not be able to achieve tight convergence timg Expiration. Each random walker is associated with a
bounds for random walks on all topologies and node visitatio  certain Time-To-Live (or lifetime). The walker will stop

Walker Loss Recovery Methods

distributions. propagating (or expire) when the lifetime ends. The
walker originating node keeps a timer that alerts at the
D. Summary end of walker lifetime. A new walker will be initiated at

We summarize our results on random walk convergence such time. If a walker is lost before its lifetime ends, its
time as follows. First, the convergence time depends on the replacement is not initiated until that time.



k-d tori Chord random random
powerlaw graphs
Diameter nx logn O(logn) O(logn)
[27] with high prob. [8] | with high prob. [7]
Congestion|| O(n'*%) | O(n -logn) O(n - (logn)?) O(n -logn)
p(Q) with high prob. [17]| with high prob. [17]

TABLE |
THE DIAMETERS AND CONGESTION PROPERTIES OF SEVERAL COMMON N®ORK TOPOLOGIES™T IS THE NUMBER OF NODES IN THE NETWORK

k-d tori Chord random random
powerlaw graphs
Random walks O(n* -log 2) O((logn)® - log 2) O((logn)3 - n= -log 2) O((logn)? -log 2)

for uniform distributions

Zipf-biased random walks{ O(n!*# -logn - log 2) | O(n- (logn)* - log 2) O(n'*= - (logn)? - log 2) | O(n- (logn)* - log 2)

wherer (i) o 1

TABLE I
THE CONVERGENCE TIME 7(€), OF TWO RANDOM WALKS ON COMMON F2P TOPOLOGIESWE ALSO ASSUME THAT THE RANDOM POWERLAW GRAPH
FOLLOWS A DEGREE DISTRIBUTION OFP (k) o< K~ %, FOR WHICH THE MAXIMUM NODE DEGREE ISO(né) WITH HIGH PROBABILITY FOR LARGEN'S.
IT IS KNOWN THAT o RANGES FROM2 TO 3 IN MANY REAL -WORLD APPLICATIONS[4].

A) Random walks for Uniform Distributions B) Random walks for Zipf Distributions
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Fig. 2. Random walk convergence time on different netwozksi topologies and node visitation distributions. We opelbgies with an average node degree
of 4. In the simulation, the random powerlaw graph is gemerdty linking each new node to existing nodes chosen randarithy probability proportional

to their degrees. Such a preferential link creation proégdsiown to generate topologies with powerlaw degree thstions [5], [9]. We generate random
graphs by a simple process of linking each node to some othdgsnchosen uniformly at random.

The main weakness with the Callback method lies in th@evious walker has not been lost, thus requiring additiona
overhead of callbacks. Note that some random walk basethdom walk convergence time to reach desired node sampling
applications require callback messages as part of the-applistribution. An additional problem with this scheme isttita
cation semantics (such as membership subset managemesmy be hard for the walker to track the elapsed time since
and load balancing as described later in Section VI). Fds initiation. The difficulty arises in networks where nadgo
these applications, periodic walker callbacks for losgdiébdn not have synchronized clocks and network latencies between
can be piggybacked in application callback messages ammtes are unknown.
consequently they are almost free.

Unlike Callback, the Expiration method requires no add- Analysis and Quantitative Results
ditional network overhead. However, its recovery of walker We analyze the availability of converged random walks un-
losses may not be prompt — if a walker is lost soon afteter dynamic network conditions with potential walker lasse
it leaves the originating node, a replacement walker will n&Ve define a metric ofvailability as the proportion of time
be initiated until the full expiration timer. At the other &n during which the random walk is existent and has already
the Expiration method forces walker re-initiation evenhiet converged to the desired node visitation probability distr



tion. As defined in Section IV-A, a random walk converges
when its current node visitation probability distributidiffers
from the desired distribution by no more than a given eeror
We analyze the availability for the two walker loss recovery
methods — Callback and Expiration.

The availability under walker losses certainly depends on
how long a walker is lost since its initiation. We ugét) to
denote the probability density function for a walker losteaf
t unit of time since its launch. Our analysis contains three
parts. In part one, we derive the availability result for tihe
walker loss recovery methods with no assumptionfdét). In

Too long a walker lifetime is also undesirable because
a lost walker may take a long time to recover. We want
to find an optimall’ that maximizes the availability of
converged random walks. We follow the assumption of
part two thatf(¢) follows an exponential distribution
(assuming the failure model is memory-less). The opti-
mal T (calledT’) is the point at which the first derivative
of Equation (6) equals to 0. This means:

.
r_,
A

>Q

()

part two, we will refine the result with the assumption that 10 derive a closed-form solution, we use the approxima-
f(t) follows an exponential distribution (assuming the failure ~ tion of e” ~ 1+a+ 5, the first three items of the Taylor
model is memory-less). Part three is motivated by the diffjcu series ofe”. Given the approximation, we can simplify
of choosing the walker lifetime for the Expiration methode W Equation (7) and provide a closed-form solution:

will follow up the result in part two to derive the availalbyli T C

maximizing walker lifetime for this method. ST TVE Y (8)

1) We first define some r_lotatlo_ns. Let the walker con- Under the assumption of independent memory-less node
vergence delay be&" unit of time (assumed to be 3failure model, Figure 3 quantitatively shows the availipil
constant). For the Callback method, let the walker 105 4y walker loss recovery methods with a varying range
detection delay beD unit of time (assumed to be a,¢ /) The availability of the Callback method is also
c_on§tant). For .the Exp|rat|on method, let the Walkeéffected by the walker loss detection delay (represented by
lifetime be 1" unit of time. ) i D). We show three availability curves witth/A = 0.0,

We_ call a roun(_j as a duration OT tlr_n_e between tW?)//\ = 0.01, and D/X = 0.1 respectively. In practice, the
adjacent walker initiations. The availability of convedge, 4 er 10ss detection delay is mostly affected by the fremye
random walks is calculated as the mean available time .o\pack messages. If we assume the callback messages
during a round divided by the mean time of a round, s jmmediate and perfectly reliable, a walker loss is detec
For Callback, the availability is: after a single callback message fails to arrive. In this case
fc"o f)-(t—C)dt 3 the walker loss detection delal? is bounded by the interval
=70 T D) (3) length between two consecutive callback messages. For the
0 Expiration method, we show its availability under the o@im
For Expiration, the availability is 0.0 if” < C. Other- walker lifetime setup derived in Equation (8).
wise, the availability is: Results in Figure 3 indicate that, whéty A = 0.0001, the
T 0o availability of converged random walks under the Callback
Je JM)-(t=C)dt+ Jp J(O)- (T =C)dl ) metnod are 09999, 0.9900, and 0.9090 A — 0.0,
T D/X =0.01, andD/X = 0.1 respectively while the availabil-

2) In this part we assume each node follows a memority for the Expiration method is 0.9859. Whef/\ = 0.01,
less failure model with an exponential distribution fothe availability under the two methods are 0.9000-0.9900
the time to next failure. The probability density functiorand 0.8623 respectively. Whefi = )\, the availability under
for this distribution isefi“ where) is the average time the two methods are 0.3344-0.3679 and 0.1153 respectively.

to next failure (or MTTF). We also assume nodes faiDverall, Callback achieves better availability than Eafion

independently of each other. Then the walker loss tingdoes (except for very smadl' and largeD) but it incurs more
follows the same distribution as node failure +e., overhead due to callback messages.

f(t) = <5

=

In this case, for Callback, the availability in Equation (3. Summary

is refined to: o~ C/X Random walks are inherently robust since it requires lit-
m (5) tle state maintenance. However, node failures in a dynamic

network may lead to walker losses. We consider two meth-
In this case, for Expiration, the availability in Equa-ods to recover from walker losses — Callback and Expi-
tion (4) is refined to: ration. Callback detects walker losses more quickly at the
(e—c/k B e—T/k) cost of additional callback messages. Under given random
(6) walk convergence speed and node failure model, we analyze
T/ the availability of converged random walks under these two
3) For the Expiration method, the choice @f (walker methods. Particularly for the Expiration method, we derive
lifetime) may affect the availability of converged randonan optimal walker lifetime to maximize its fault tolerance.
walks. Too short a walk lifetime is undesirable because@ur quantitative results show that the availability is high
random walk may not have converged before it expire§€> 99% for Callback and>- 86% for Expiration) when the node




changing, random membership subset with uniform represen-
tation over network members.

Many existing random membership management algo-
rithms, such as Ipbcast [15], SCAMP [16], Saxons [38],
and Jelasityet al. [22], provide analytical and experimental
results on the membership information propagation speed.
However, no theoretical guarantee is given for the uniféymi

availability of converged random walks

Callback D/A=0.0 \ of their membership subsets. Kos&t al. proposed a random
02} ek Dot \ 1 membership subset service for tree-shaped network topolo-
— — — Expiration gies [25]. However, this algorithm cannot be applied to more
%001 Yo ool o1 o gen_erql mesh-like petwork _structL_Jres._Klng and S_f';ua pregos
CiA a distributed algorithm which, with high probability, aly&a

chooses a node uniformly at random from the set of nodes

Fig. 3. The availability of two walker loss recovery methodken walker in distributed hash tables [24]. However, their algorithriyo
may be lost due to node failures. Note that the X-axis is inltiyarithmic works for ring topologies.

scale. We assume nodes fail independently of each other aralse assume ] .
each network node follows a memory-less failure model witregponential We propose the first random membership subset manage-

distribution for the time to next failureX represents MTTF of node failures. ment algorithm with topology independence and proved uni-

C represents the convergence time for a newly initiated ranaalk. For . : . . -
the Callback method, we show three availability curves witiA = 0.0, for,mlty' Our algomhm maintains random memberShlp SU@Set
D/X =0.01, and D/X = 0.1 respectively (whereD represents the walker USiNg random walk samplers that converge to a uniform
loss detection delay). A curve with a smallBr is higher in the figure. distribution on arbitrary connected topologies. Accoglito

our approach described in Section Ill, we can guarantee

] ) . unigue convergence to a uniform distribution by configuring
failure MTTF is at least two orders of magnitude larger thaghe random walk in the following way. If the random walk

the random walk convergence time. When the node failufg 5t noder at time stept, then for each neighbay of z, it
MTTF is only one order of magnitude larger than the rando oy es toy with probability P, ,,, where

walk convergence time, Callback can still achieve over 90%

availability. po_ % . dif ?f dy > dy;

VI. APPLICATION STUDIES

In this section, we show how convergence-guaranteed ra\'wd Pl;” :f ! N %:bze neighbor ) PIdZ' Heredm,t_dy Idenote the
dom walks can assist realistic applications in unstructy2p numfelrl of neighbors (]2 node an Uh refspIJIec IVEly.
networks. Specifically, our random walks provide a distrdul A Tu Service may unction in the 1o owing way. For a
node sampling service with high scalability, robustness anode (calledi) requiring a random membership subset with

guaranteed node visitation distribution. Section VI-Actdses S'2€ ki, itinitiates k; random walksR;,y, Rz, ..., Rk, €ach.
random membership subset management, which desires a Bﬁi\-’v_h'ch converges f[o. a uniform node visitation probaplllty
form random walk node visitation probability to acquire rep dlstrlbupon. When V'?'te_d by a _random walki 1, node?
sentative subsets of the whole network members. Section \§P_nds Its .mem’bershlp mfor.mgtlore.g, . IP, address) toi.

B presents the results for random walk based object seark‘won recening s membershp |nf0rm§t|o_n, gpdates thét,h
Based on a known result [11], this application desires randd®'€ment of it local membership set withif j is not yet in
walks with a biased node visitation probability distritnati S€t _ _ _ _

— each node is probed with probability proportional to the Simulation Results: We run S|mulat|o_ns to validate the
square-root of its content popularity. Section VI-C prasenconvergence of our random membership management algo-
the results for random walk based load balancing. We shdli?™m on two common p2p topologies: random graphs and
that our scheme (based on linearly load-biased node sagyplifidom powerlaw graphs. Random graphs represent those p2p

achieves better load balancing than conventional altisesat tOPOl0gies where new links are made independent of existing
We provide simulation results to quantitatively measure tffl0de degrees. We generate random graphs by connecting

performance gain of convergence-guaranteed random wafi@ch néw nodes to some nodes selected uniformly at random
over alternative topology-independent index-free apghes. from existing nodes. Random powerlaw graphs represenéthos
networks where new links are more likely attached to nodes

o ) with large degrees. In our simulation, the random powerlaw

A. Application I: Random Membership Subset Managemer@raphs are generated by using the PLRG algorithm [20]. We
A membership service provides the list of members in @ase the random powerlaw graphs with expongnt= 0.8,

dynamic network and it is an important building block foffollowing Lv et al’s simulation setup [28].
distributed applications. When the overhead of maintajire We compare our degree-guided random walks against un-
full list of members is too high, random membership subsetd@iided random walks — at each step the walker chooses
a viable alternative that can satisfy the membership servitom current outgoing links with equal probabilities. Figs 4
needs of many applications [25]. For random membershimd 5 show the convergence results on random graphs and
subset management, each node maintains a small, dynamica@hdom powerlaw graphs respectively. For both topologias,



5 o:— e Unguided random walks 7 tency [_1_1]. Under _this principle, each object i_s probed with
50 —+—Convergence—guaranteed random walks prol?abmty proportional to the square root of |ts_ query pop
T o8 1 ularity. The square-root principle can be realized through
g 07 | data replication or topology adjustment. Specifically, adat
£ o6l replication adjusts peer content popularities [11], [28]ile
e topology adjustment changes peer visitation probalslifie]
2 05 under unguided random walks or flooding. However, these
é 0.4 1 techniques may not be feasible in p2p applications with
3 03f 1 large, dynamic datasets, where the maintenance of upto-da
2 0.2k | topologies or data replication copies often incur consiber
; o1l overhead.
= We seek to support efficient index-free search using
% 10 20 30 40 S0 60 70 80 90 100 popularity-biased random walks rather than biased rejitioca
Time t (in number of walk steps) or topology adjustments. Our goal is to achieve search time
Fig. 4. The convergence of random walk node visitation pbilig comparable with alternative search methods but at no cost of
distribution on random graphs (20000 nodes). data movement or topology changes. Based on the framework

in Section Ill, each query issues a random walker configured

1 ‘ ‘ ‘ ‘ ‘ : as follows. Letd; denote the number of network neighbors
= —o—Unguided random walks . ) ; .
£ o9 —+ Convergence—guaranteed random walks of peeri. Let pzldenote 'the conteqt pppulanty of peerlf a
2 oal random walker is at peérat a certain time step, then for each
2 - neighbor; of 4 it moves toj with probability P; ; after next
g 07 step, where:
S 06f 1 ‘
£ 1.1 if VPi < ¥Pi.
g 0.5+ B P L 2 d; d; — dj ’ (9)
s b 1.1 VP VP VP
% 0.4¢ 2 d; i d; dj -’
é 0.3y and the probability for the random walker does not move at
f 0.2f . the steme =1- Zke neighbor (i) P, ;. The peer content_
& 0.1f | popularity p; can be estimated as the number of queries
P B satisfied at peet divided by the total number of queries
0 10 20 30 40 50 60 70 80 90 100 received byi [12]. HenceP, ; is locally computable.

Time t (in number of walk steps) .
It is easy to see that the above random walk converges to

Fig. 5. The convergence of random walk node visitation podle 7 With (i) \/ZTz After convergence, our random walks
distribution on random powerlaw graphs (20000 nodes). achieve the minimum expected search time for the known
popularity distributionp [11]. Note that the convergence time

, , _is typically short compared with the expected object search
degree-guided random walks quickly converge to the desirgg,o (after convergence) on common p2p topologiesy,(
uniform node sampling distributior,g, |z, .|| drops below ranqom graphs and random powerlaw graphs), which are
0.01 within 40 walk steps. In comparison, unguided randopqwn to support fast random walk convergence due to their
walks do not converge to the uniform node sampling. This Ifigh expansions and low diameters.

bgcauge unguided rand.om walks are more Iiker_ to yisit nqdesTo speed up the search, multiple independent random walk-
with higher degrees while most network topologies (inagdi o5 can be used, with the expectation taindependent

the two experimented topologies) have skewed node degigRqom walkers aftefl” steps tend to cover nearly equal

distributions. number of nodes as one random walker aftef” steps [28].
Hence the search time can be reduced by roughiynes with
B. Application Il: Index-Free Object Search no extra communication overhead.

Many p2p search techniques utilize pre_constructed querySimulation Results: We compare the performance of our
routing indices about data locations to speed up the seacch gPopularity-biased random walks with two existing appraech
cess. The indices range from simple routing hints [36], [4410 achieve the square-root principle. Below are the specific
[46] in unstructured p2p networks to exact object locatiorAPProaches we consider in our simulation study.
used in distributed hash tables [35], [37], [43], which m&y b « Square-root replication Each object is replicated ran-
too expensive to maintain. In comparison, index-free searc  domly over the network with the number of replication
methods like query flooding and random walks are easier to copies proportional to the square-root of its popularity.
deploy and maintain. Without any guidance, however, these One unguided random walker is used for searching the
approaches often suffer from long search latency caused by network while we set the average number of replication
having to probe a large number of network nodes. copies as the number of random walkers used in the three

Cohen and Shenker showed that index-free searches guided approaches. This is intended to make a fair comparison
by the square-root principlecan achieve low search la- since the expected search time for square-root replication
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is inversely proportional to the average number of repli- Search time on random graphs
cation copies. For example, making replication copies at _ 24000f
every node obviously leads to 1-step search time.

« Square-root topologyJnguided random walkers are used
to search the network in this scheme. The degree of each
node is proportional to the square root of its content
popularity. To transform the original topology into this
square-root topology, we compute the node degree se-
quence and use the PLRG algorithm [20] to generate the
new randomized topology with the desired node degree

Unguided random walks
Square-root topology (B = 0.6)
Square-root biased walks (3 = 0.6) ||
Square-root replication ( = 0.6)
Square-root topology (B =1.2)
Square-root biased walks (8 = 1.2) ||
Square-root replication (f = 1.2)

20000

N
o
o
S
=)

EREERR]

Search time (in number of walk steps)

sequence.
o Square-root biased walk€Each query issues a number e
of random walkers that travel according to Equation (9). D e A e
Similar to unguided random walks, the random walkers 1234567 8091011121314151617181920
. N . . Search concurrency degree
coordinate with each other and terminate if others have .
Communication overhead on random graphs
found the target. 32000 ——————————————

o Unguided random walksEach query issues a number
of random walkers that, at each step, travel along each
outgoing link of the current node with equal probabil-
ities. The random walkers coordinate with each other
by periodically calling back the source to know whether
other walkers have found the target. If so, the remaining
walkers terminate themselves.

We simulate a system that contains 1,000,000 objects.
The number of queries is 100,000. In our simulation, query
popularities follow Zipf-like distributions (the frequen of
theith most popular query is proportional gb). Specifically,
we choose the exponert = 0.6 and 3 = 1.2 based on 05 345678 91011121314151617181920
Sripanidkulchai’'s measurement results on Gnutella trftEs Search concurrency degree
We use random graphs and random powerlaw graphs as net-

; ; ; ; ; ; ig. 6. The search time and communication overhead on rangi@phs
work topolog|es in our simulation. Their generation memoofzoooo nodes). The search concurrency degree representsiutmber of

are _the same as described in Section _Vl'A- ~ random walkers (or the average number of replication cofiesquare-root
Figures 6 and 7 present the search time and communicatiepiication).

overhead on different network topologies (random graphs

and random powerlaw graphs), query popularity distritngio

and the number of random walkerg)( We observe that associated with more random walkers — each walker incurs
unguided random walks have much lower performance th&gartain overhead during its convergence process and more
other three approaches guided by the square-root principlglkers require more overhead.

Furthermore, the three methods have similar performantte wi
small variations (average 14% difference for random grap%s
and 19% for random powerlaw graphs). Compared to the othér
two approaches, it is important to note that the random walk In p2p networks, load imbalance may be caused by factors
approach has the advantage of requiring no data movemestish as uneven distribution of data objects among nodes, het
or link changes. erogeneity in node capacities and data object sizes, asawell

Figures 6 and 7 also show the impact of query popularityetwork structure changes. Many existing p2p load balancin
distributions on the performance of the three search methlgorithms €.g, virtual servers [23], [43] and dynamic zone
ods guided by the square-root principle. We find that thHealancing [2], [30], [34], [35], [45]) require an underlgn
search performance for high-skewness popularity didtisis ~ distributed hash table (DHT) infrastructure. Hence theg ar
(8 = 1.2) is higher than that for low-skewness distributiongiot applicable to load balancing in unstructured p2p netaior
(8 = 0.6). This is because highly skewed query popularitwhere the overlay topology can be formed arbitrarily andrgue
distributions contain more heterogeneity to be exploited. mechanisms such as DHT may not be available.

Our simulation supports the following results: 1) At no cost Without the assistance of a structured network or DHT,
of topology maintenance and/or movement, our populariticarger and Ruhl [23] suggest to use uniform node sampling
biased random walks achieve search performance comparablsupport pair-wise load sharing. In each round, they lehea
with other approaches guided by the square-root principleode periodically balance its load with another node sathple
2) Using multiple random walkers can significantly reducwith uniform probability over all network nodes. They show
the search time, with slight increase in the communicatidghat their approach can reduce the maximum per-node load to a
overhead. Such increase is due to the convergence overheamstant times the average per-node load withitog n) load

28000f

24000f

20000}

The total number of messages
&
o
o
o

N
o
S

=)

Application Ill: Load Balancing
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Search time on random powerlaw graphs nodes with similar loads. We choose= 2 in our study.

28000 . . ..
—— Unguided random walks The key variant of pair-wise load sharing is how the random
24000 —+— Square-root topology (8=0.6) ~ | nodej is sampled. We sample nodes with probabilities pro-
—— Square-root biased walks (3 = 0.6) - . . .
o PG portional to their loads and perform load balancing opereti
—o— Square-root replication (B = 0.6) . . . . .
20000y _+ Square-root topology (B=1.2) || accordingly. Such a linearly load-biased sampling has quei
160001 —+— Square-root biased walks (3 = 1.2) | property that the probability to choose a node with load
—=~ Square-root replication (B = 1.2) k - L (assumingL is the average per-node load) is always

% regardless of the network-wide load distribution. Conse-

guently, this sampling scheme leads to faster load balgncin
than uniform sampling because it tends to discover oveddad
nodes more often. More importantly, this sampling distiital
- is superior to other biased distributions.q, quadratically
i e load-biased) in that it always favors nodes with above-ayer
1234567 891011121314151617181920 loads independent of global load distribution. We impleten
Search concurrency degree . R . .
linearly load-biased node sampling based on the framework i

12000¢

80001 ¥

sk

o
o
S
=)

Search time (in number of walk steps)

8

Communication overhead on random powerlaw graphs

35000 Section Ill, with the random walk configured as follows.
Let d(:) denote the number of neighbors of noddf the
30000¢ random walk is at node, then for each neighboy of 4, it
250001 moves toj with probability P; ; after next step, where:
1. ﬁ if %71)(“ < LOtz_d)(J)
20000y Pivj = 1. i . Load(j) if Loatli(i) S Loaé(j)
2 d(@y) Load() d(i) @) -

andB-,i =1- Zje neighbor () Pivj'

Each node issues a random walker that persistently runs
over the network as a node sampler. At each round, the random
walker reports its currently visited node as a node sampis to
O source node, which then performs a load balancing operation

1234508 @8 o ll121314151617181920 to balance the load between itself and the sampled riasle,
earch concurrency aegree . _ .
an operation moves“g—B load from a node with loadA to
Fig. 7. The search time and communication overhead on rarpwerlaw & node with loadB (A > B). Here the time period for each
graphs (20000 nodes). The search concurrency degree eefseie number sampling round needs to be long enough to avoid too frequent
f;ortape‘iﬁi'::‘a;’ivjr']')‘f’rs (or the average number of replication @fior square- |44 sharing operations since load movement typically iicu
substantial network bandwidth consumption. In additidrg t
random walkers from different nodes are independent and no

balancing roundsr( is the network size). Furthermore, theifSynchronization is needed between them.
result is asymptotically optimal because each load batgnci Simulation Results: We run simulations to compare the
operation between two nodes can at most reduce the per-niftié balancing performance of our linearly load-biaseabal
load by a half, and the maximum per-node load couldnbe N9 (based on random walks) against that of umfo_rm balancin
times higher than the average. proposed by Karger and Ruhl [23]. We c0n5|der. random
Intuitively, sampling with probabilities biased towardgraph and random powerlaw graph network topologies in our
highly loaded nodes are more likely to bring them into IoaatUdY- Their generation m_etho_ds are t_he same as descrlb_ed in
balancing operations than uniform sampling. We proposeS§Ct'0n VI-A. The comparison is done in terms of two metrics.
new load balancing algorithm that uses load-biased randome The maximum load imbalance factodefined as the
walks to sample nodes and subsequently moves their load to maximum per-node load divided by the average per-node
lightly loaded nodes. Although at the same asymptotic level load.
(which is optimal), our approach leads four times smaller ~ » Thenumber of hotspoisiefined as the number of nodes
load balancing time upper-bound than that of uniform node With load at least four times the average per-node load.
sampling in Karger and Ruhl’'s approach [23]. For the dethile We assume that the initial load at a node (before load

The total number of messages

analysis, please refer to [47]. balancing algorithms are employed) is chosen with a powerla
The basic framework for pair-wise load sharing is as foHistribution with exponent-3, mean value, and minimum
lows: valuel. The heavy-tail feature of powerlaw distribution means

that there may exist some highly loaded nodes in the network.
Let T be the length of a load balancing round (or the time
interval between two consecutive load balancing operation
initiated from one node). Each node starts running sampling
and load balancing algorithms at a time point chosen unifiprm
where the threshold avoids the load movement between twat random from the rang, 7] in our simulation.

(1]

In each round, every nodesamples a random nod
j # 1. They perform a load movement to balance their
loads if the load of one node is at leagtimes larger
than that of the other.




12

Load imbalance factor on random graphs Load imbalance factor on random powerlaw graphs
100 T T T 100 T T T

—o&— Uniform balancing L

—o&— Uniform balancing
90l —+— Linearly load-biased balancing|

90l —+— Linearly load-biased balancing|

The maximum load imbalance factor
The maximum load imbalance factor

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Time (in number of load balancing rounds) Time (in number of load balancing rounds)
Number of hotspots on random graphs Number of hotspots on random powerlaw graphs

400 400

—o— Uniform balancing
—*— Linearly load-biased balancing|

—e— Uniform balancing
—+— Linearly load-biased balancing|

350 350

The number of hotspots
The number of hotspots

4 5 6 7 8 9 10 4 5 6 7 8 9 10
Time (in number of load balancing rounds) Time (in number of load balancing rounds)

Fig. 8. The maximum load imbalance factor and the number &fgots on Fig. 9. The maximum load imbalance factor and the number tfguds on
random graphs (20000 nodes). random powerlaw graphs (20000 nodes).

Figures 8 and 9 compare the load imbalance reductigighbors. Such state can be robustly maintained throufgh so
speeds of the two load balancing approaches. Results sh@¥te based communications between network neighbors Mor
that our load-biased random walks reduce load imbalangﬁeciﬁca”y, neighboring nodes periodica”y update edtteio
significantly faster than uniform sampling based balanditg  with up-to-date network degrees. Dynamic state changes or
example, our load-biased random walks eliminate all hdSanessage losses can be S|mp|y recovered by later updates_
within 3 load balancing rounds while uniform balancing t&ke \we consider the network overhead of walker movements.
7 rounds. The performance difference is mainly due to thggure 10 illustrates the random walker data structure in ou
different speeds at which the three schemes discover gpghlementation and it is 28-byte large. Counting the addii

offload hotspots. 28-byte UDP/IP headers, a random walker with 10 seconds
per-step interval length will incur a small 45 bits/secoralker
VII. PROTOTYPEIMPLEMENTATION AND INTERNET movement overhead.
EXPERIMENT We conduct a simple experiment to demonstrate that our

We have made a prototype implementation of convergeng@ototype implementation functions as expected. Our exper
guaranteed random walks over Internet overlay networks. Thment uses 66 Planetlab [33] nodes over the Internet. The
implementation is encapsulated in an event-driven randorodes form a random-topology network with an average node
walk daemon at each node of the network. The daemdegree of 4 and a maximum node degree of 12. Our experi-
receives propagated random walkers and passes them to meght attempts to achieve uniform node visitation probgbili
hop (or keep them unmoved) at each step according to tiiistribution. Figure 11 illustrate the node visitation padility
appropriate transitional probabilities determined int®eclll.  distributions of our convergence-guaranteed random wedk.

A walker pauses for a certain time period after each stegach test, we let an arbitrarily chosen source send out @80 (t
We call this period the per-step interval length and it is entimes the node count) random walkers and we then track their
ployed to control the walker propagation speed and ass&mtiamovements at each step. We show the node visitation prob-
network overhead. The only non-local state that our randaoability distributions at different stages of walker movente

walk maintains at each node is the network degrees of {&eps 0-19, steps 20-39, and steps 40-59). Results suggest
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struct RandomAal ker {
int type; /+* type of wal ker: ungui ded, convergence-guaranteed, etc. */
struct in_addr source; /* the wal ker originating node */
int id; /+ wal ker id (distinguishing fromother wal kers fromthe sane source) */
doubl e i nterval; /* per-step interval length =/
unsi gned int step; /* nunber of steps since the beginning */
unsi gned int TTL; /* time-to-live in steps to expiration /
}

Fig. 10. The random walker data structure in our impleméoat

(A) Node visitation probability distribution for walker steps 0-19

6%

4%

2%

Visitation probability

0%
0 10 20 30 40 50 60

(B) Node visitation probability distribution for walker steps 20—-39
6% T T T T T T

A%E s

2% : : .

Visitation probability

0%
0 10 20 30 40 50 60

(C) Node visitation probability distribution for walker steps 40-59
6% T T T T T T

4% .

2% -

Visitation probability

0%
0 10 20 30 40 50 60
Network nodes

Fig. 11. Node visitation probability distributions of cargence-guaranteed random walks on a random topology \8itRl&netlab nodes. The converged
distribution is the uniform distribution.

that our convergence-guaranteed random walks can quickdylt tolerance of convergence-guaranteed random walles. W
achieve approximately uniform node visitation probalgit present both analytical and simulation results on the ramdo

(after only 20 walk steps). walk convergence time for different network sizes, common
p2p network topologies, and various targeted node visitati
VIIl. CONCLUSION probability distributions. We also derive results on ramdo

o , walk availability under dynamic network conditions withgo
As far as we know, this is the first work on the efjpie walker losses.

fectiveness and challenges in using convergence-gua@nte

random walks to provide p2p systems with application-djgeci  We evaluate the benefits of convergence-guaranteed random
probabilistic node sampling service. In particular, we usc walks configured according to our analytical results viseéhr

on two important issues that concern the usage of rand@®p applications: random membership management, index-
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