
Clustering Support and Replication
Management for Scalable Network Services

Kai Shen, Tao Yang, Member, IEEE, and Lingkun Chu

Abstract—The ubiquity of the Internet and various intranets has brought about widespread availability of online services and

applications accessible through the network. Cluster-based network services have been rapidly emerging due to their cost-

effectiveness in achieving high availability and incremental scalability. This paper presents the design and implementation of the

Neptune middleware system that provides clustering support and replication management for scalable network services. Neptune

employs a loosely connected and functionally symmetric clustering architecture to achieve high scalability and robustness. It shields

the clustering complexities from application developers through simple programming interfaces. In addition, Neptune provides

replication management with flexible replication consistency support at the clustering middleware level. Such support can be easily

applied to a large number of applications with different underlying data management mechanisms or service semantics. The system

has been implemented on Linux and Solaris clusters, where a number of applications have been successfully deployed. Our

evaluations demonstrate the system performance and smooth failure recovery achieved by proposed techniques.

Index Terms—Network services, programming support, replication management, failure recovery, load balancing.

�

1 INTRODUCTION

RECENT years have seen widespread availability of online
services and applications accessible through the net-

work. Examples include document search engines [6], [19],
online digital libraries [1], data mining on scientific data sets
[8], online discussion forums [25], and electronic commerce
[15]. Cluster-based network services have become particu-
larly popular due to their cost-effectiveness in achieving
high availability and incremental scalability, especially
when the system experiences high growth in service
evolution and user demands. Within a large-scale complex
service cluster, service components are usually partitioned,
replicated, and aggregated to fulfill external requests.
Despite its importance, service clustering to achieve high
scalability, availability, and manageability remains a chal-
lenging task for service designers. And, this is especially
true for services with frequently updated persistent data.
This paper recognizes the importance of service clustering
support and its challenges. The main goal of this study is to
answer the following question. Given a service application
running on a single machine with a modest amount of data, how
can such a service be expanded quickly to run on a cluster
environment for handling a large volume of concurrent request
traffic with large-scale persistent service data?

This paper examines the design and implementation of

the Neptune middleware system, which provides clustering

support and replication management for scalable network

services. The main design goal of the Neptune clustering

middleware is to support a simple, flexible, yet efficient

model in aggregating and replicating network service

components. Neptune employs a loosely connected and
functionally symmetric clustering architecture to achieve
high scalability and robustness. This architecture allows
Neptune service infrastructure to operate smoothly in the
presence of transient failures and service evolutions.
Additionally, Neptune provides simple programming
interfaces to shield application developers from clustering
complexities.

Replication of persistent data is crucial to load sharing
and achieving high availability. However, it introduces the
complexity of consistency management when service
requests trigger frequent updates on the persistent data.
Though large-scale network services often do not require
strong ACID consistencies [9], [21], it is important to
maintain eventual consistency [17] and prevent the loss of
any accepted updates. Besides, users of time-critical
services (e.g., auctions) demand certain guarantees to guard
against accessing stale data. This paper investigates
techniques in building a replication management frame-
work as part of the Neptune clustering middleware. This
work is closely related to a large body of previous research
in network service clustering and data replication. In
particular, recent projects have developed scalable replica-
tion support for specific cluster-based network services,
including distributed hashtable [22] and the e-mail service
[28]. The key contribution of our work is the support of
replication management at the clustering middleware level.
Such support can be easily applied to a large number of
applications with different underlying data management
mechanisms or service semantics.

The rest of this paper is organized as follows: Section 2
presents the Neptune clustering architecture. Section 3
describes Neptune’s multilevel service replication support.
Section 4 discusses the system implementation and service
deployments. Section 5 presents the performance evalua-
tion. Section 6 discusses the related work and Section 7
concludes this paper.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 14, NOVEMBER 2003 1

. K. Shen is with the Department of Computer Science, University of
Rochester, Rochester, NY 14627. E-mail: kshen@cs.rochester.edu.

. T. Yang and L. Chu are with the Department of Computer Science,
University of California, Santa Barbara, CA 93106. T. Yang is also with
Ask Jeeves. E-mail: {tyang, lkchu}@cs.ucsb.edu.

Manuscript received 8 Dec. 2002; revised 31 July 2003; accepted 3 Aug. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 118753.

1045-9219/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

2 NEPTUNE CLUSTERING ARCHITECTURE

Generally speaking, providing standard system compo-
nents at the middleware level to support service clustering
and replication tends to decrease the flexibility of service
construction. Neptune demonstrates that it is possible to
achieve these goals by taking advantage of the following
characteristics existing in many network services:

1. Information independence. Network services tend to
host a large amount of information addressing
different and independent categories. For example,
an auction site hosts different categories of items.
Every bid only accesses data concerning a single
item, thus providing an intuitive way to partition the
data.

2. User independence. Information accessed by different
users tends to be independent. Therefore, data may
also be partitioned according to user accounts. E-
mail service and Web page hosting are two such
examples.

With these characteristics in mind, Neptune targets parti-

tionable network services in the sense that persistent data
manipulated by such a service can be divided into a large
number of independent partitions and each service access
can be delivered independently on a single partition or each
access is an aggregate of a set of subaccesses, each of which
can be completed independently on a single partition.

Fig. 1 illustrates the service cluster architecture for an
online discussion group and a photo album service, similar
to the MSN Groups service [25]. The discussion group
service allows a group of users to post, read, and comment
on messages. The photo album service provides a shared
repository for a group of users to store, view, and edit photo
images. The service cluster delivers these services to wide-
area browsers and wireless clients through Web servers and
WAP gateways. Note that the image store is an internal
service in that it is only invoked by the photo album service
components to fulfill external photo album service requests.
In this example, all persistent service data is divided into
20 partitions according to user groups. All the components

(including protocol gateways) are replicated in the service
cluster.

Previous work has recognized the importance of provid-
ing software infrastructures for cluster-based network
services [17], [32]. Most of these systems rely on central
components to maintain the server runtime workload and
service availability information. In comparison, Neptune
employs a loosely connected and functionally symmetric
architecture in constructing the service cluster. This
architecture allows the Neptune service infrastructure to
operate smoothly in the presence of transient failures and
service evolutions. The rest of this section examines the
overall Neptune clustering architecture, its load balancing
support, and programming interfaces.

2.1 Overall Clustering Architecture

Neptune encapsulates an application-level network service
through a service access interface which contains several
RPC-like access methods. Each service access through one
of these methods can be fulfilled exclusively on one data
partition. Neptune employs a functionally symmetric ap-
proach in constructing the server cluster. Every node in the
cluster contains the same Neptune components and is
functionally equal to each other. Each cluster node can elect
to host service components with certain data partitions and
it can also access service components hosted at other nodes
in the cluster. Within a Neptune cluster, all the nodes are
loosely connected through a publish/subscribe channel. This
channel can be implemented using IP multicast or through
a highly available well-known central directory.

Fig. 2 illustrates the architecture of a Neptune node.
Since Neptune service clusters are functionally symmetric,
all the nodes are based on the same architecture. The key
components are described as follows: The request dispatcher
directs an incoming request to the hosted service instance
which contains a request queue and a pool of worker
threads or processes. When all worker threads or processes
are busy, subsequent requests will be queued. This scheme
allows a Neptune server to gracefully handle spikes in the
request volume while maintaining a desired level of
concurrency. The availability publisher periodically an-
nounces the locally hosted service component, the data
partitions, and the access interface to other nodes in the
cluster. The availability listener monitors those announce-
ments from other nodes and maintains a local service yellow
page containing available service components and their
locations in the cluster. The availability information in the
yellow page is kept as soft state such that it has to be
refreshed repeatedly to stay alive. This allows node failures

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 14, NOVEMBER 2003

Fig. 1. Architecture for a discussion group and a photo album service.

Fig. 2. Component architecture of a Neptune node.

and system upgrades to be handled smoothly without
complex protocol handshakes. For the load balancing
purpose, each node can poll the load indexes of other
nodes through a local load polling agent. The polls are
responded to by load index servers at the polled servers.
Neptune employs a random polling-based load balancing
policy, described in the next section. The request dispatcher,
request queue, thread/process pool, availability publisher,
and load index server can be considered as service-side
components in a service invocation, and they are in an
aggregate called the Neptune service module. Similarly, the
availability listener, service yellow page, and the load
polling agent together are called the Neptune client module.

Basically, each service access is initiated at the requesting
node with a service name, a data partition ID, a service
method name, and a read/write access mode.1 Then, the
Neptune client module transparently selects a service node
based on the service/partition availability, access mode,
consistency requirement, runtime workload, and the load
balancing policy. Upon receiving the access request, the
Neptune server module in the chosen node dispatches a
service instance to fulfill the service access. In the case of
service replication, further request propagations may occur
due to consistency management. Details on this will be
discussed in Section 3.

In a Neptune-enabled service cluster, the application-
level service programmer only needs to implement the
stand-alone application components. The aggregation of
multiple data partitions or application components as well
as data replication are supported transparently by Neptune
clustering modules. For the service cluster shown in Fig. 1,
each photo album service instance locates and accesses an
image store service instance through the local Neptune
client module. In addition, each gateway node relies on its
own Neptune client module to export the discussion group
and photo album services to external users. Overall,
Neptune’s loosely connected and functionally symmetric
architecture provides the following advantages:

. Scalability and robustness. The functionally symmetric
architecture removes scaling bottlenecks from the
system. It also exhibits strong robustness in the face
of random or targeted failures because a failure of
one node is no more disastrous than that of any
other.

. Manageability. Neptune allows service infrastructure
to operate smoothly through service evolutions. For
instance, new nodes can be added into the cluster by
simply announcing locally hosted service compo-
nents, data partitions, and the access interfaces.
Therefore, the process of increasing system capacity
or upgrading service features can be completed
transparently to the on-going operations in the
system.

2.2 Cluster Load Balancing

Neptune employs a random polling-based load balancing
policy for the cluster-wide request distribution. For every
service access, the service client polls several randomly
selected servers for load information and then directs the

service access to the server responding with lightest load.
The load index we use is the total number of active and
queued service accesses at each server. Prior studies have
suggested the resource queue lengths can be an excellent
predictor of service response time [16], [34]. The random
polling policy fits seamlessly into Neptune’s functionally
symmetrical architecture because it does not require any
centralized components. The load balancing is conducted
by polling agents and load index servers, both of which
exist at each node. An important parameter for a random
polling policy is the poll size. Mitzenmacher demonstrated,
through analytical models, that a poll size of two leads to an
exponential improvement over pure random policy, but a
poll size larger than two leads to much less substantial
additional improvement [24]. By limiting the poll size, we
can ensure the polling overhead for each service access does
not increase with the growth of the system size, which is
important for the system scalability.

In practice, Neptune’s cluster load balancing support is
based on a randompolling policywith a poll size of three. On
top of the basic random polling policy, we also made an
enhancement by discarding slow-responding polls. Through
a ping-pong test on two idle machines in a Linux cluster
connected by a switched 100Mbps Ethernet, we measured
that a UDP-based polling roundtrip cost is around 290�s.
However, it may takemuch longer than that for a busy server
to respond to a polling request. Such polling delays can affect
the service response time and this impact is more severe for
fine-grain services with small service processing time. With
this in mind, we enhanced the basic polling policy by
discarding polls not responded to within 10ms, which is the
smallest timeout granularity supported by the select system
call in Linux. Intuitively, this results in a trade off between
spending less time waiting for polls and acquiring more
polled information. In addition, slow-responding polls
deliver inaccurate load information due to long delays.
Discarding those slow-respondingpolls can avoidusing such
stale load information, serving as an additional advantage.
This again tends to bemore significant for fine-grain services.

2.3 Neptune Programming Interfaces

Neptune supports two communication schemes between
clients and service instances inside the cluster: a request/
response scheme and a stream-based scheme. In the request/
response scheme, the client and the service instance commu-
nicate with each other through a request message and a
response message. For the stream-based scheme, Neptune
sets up a bidirectional stream between the client and the
service instance as a result of the service invocation. Stream-
based communication can be used for asynchronous service
invocation and it also allows multiple rounds of interaction
between the client and the service instance. Neptune only
supports stream-based communication for read-only service
accesses due to the difficulty of replicating and logging
streams. Below, we briefly describe the interfaces between
Neptune and service modules at both the client and the
service sides for the request/response communication
scheme. The complete programming interface can be found
in the Neptune programming guide [12].

. At the client side, Neptune provides a unified
interface to service clients for seeking location-
transparent request/response service access. It is

SHEN ET AL.: CLUSTERING SUPPORT AND REPLICATION MANAGEMENT FOR SCALABLE NETWORK SERVICES 3

1. We classify a service access as a read access (or read, in short) if it does
not change the persistent service data, or as a write access (or write, in short)
otherwise.

shown below in a language-neutral format:
NeptuneRequest (NeptuneHandle, ServiceName,

PartitionID, ServiceMethod, AccessMode, Re-

questMsg, ResponseMsg);
A NeptuneHandle should be used in every service
request for a client session. It maintains the
information related to each client session and we
will discuss it further in Section 3.2. The meanings of
other parameters are straightforward.

. At the service side, all the service method imple-
mentations need to be registered at the service
deployment phase. This allows the Neptune service
module to invoke the corresponding service instance
when a request is received.

3 REPLICATION MANAGEMENT

In this section, we investigate techniques in providing
scalable replication support for cluster-based network
services. The goal of this work is to provide simple, flexible,
and yet efficient service replication support for network
services with frequently updated persistent data. This
model should make it simple to deploy existing applica-
tions and shield application programmers from the com-
plexities of replication consistency and fail-over support. It
also needs to have the flexibility to accommodate a variety
of data management mechanisms that network services
typically rely on. In order to support applications with
different service semantics and consistency requirements,
Neptune employs a multilevel replication consistency
scheme. The rest of this section describes the underlying
assumptions of our work, Neptune’s replication consistency
support, and its failure recovery model.

3.1 Assumptions for Replication Management

We assume all hardware and software system components
follow the fail-stop failure model and network partitions do
not occur inside the service cluster. Following this principle,
each component will simply terminate itself when an
unexpected situation occurs. Nevertheless, we do not
preclude catastrophic failures in our model. In other words,
persistent data can survive through a failure that involves a
large number of components or even all nodes. The
replication consistencywill bemaintained after the recovery.
This is important because software failures are often not
independent. For instance, a replica failure triggered by high
workload results in even higher workload in the remaining
replicas and may cause cascading failures of all replicas.

Neptune supports atomic execution of service operations
through failures only if each underlying service component
can ensure atomicity in a stand-alone configuration. This
assumption can be met when the persistent data is
maintained in transactional databases or transactional file
systems. To facilitate atomic execution, we assume that each
service component provides a CHECK callback so that the
Neptune service module can check if a previously spawned
service instance has been successfully completed. The
CHECK callback is very similar to the REDO and UNDO
callbacks that resource managers provide in the transaction
processing environment [9], [21]. It is only invoked during
the node recovery phase and we will discuss its usage and a
potential implementation further in Section 3.3.

We also assume that the service abort happens either at
all replicas or not at all, which frees Neptune from
coordinating service aborts. Note that a server failure does
not necessarily cause the active service request to abort
because it can be logged and successfully reissued when the
failing server recovers. This assumption can be met when
service aborts are only related to the state of service data,
e.g., violations of data integrity constraints. In other words,
we do not consider the situation in which a service aborts
due to insufficient disk space. This assumption is not crucial
to Neptune’s fundamental correctness, but it greatly
simplifies our implementation. Without such an assump-
tion, a proper UNDO mechanism will be required to
maintain replication consistency.

3.2 Multilevel Replication Consistency Model

In general, data replication is achieved through either eager
or lazy write propagations [3], [13], [20]. Eager propagation
keeps all replicas exactly synchronized by acquiring locks
and updating data at all replicas within a globally
coordinated transaction. In comparison, lazy propagation
allows lock acquisitions and data updates to be completed
independently at each replica. Previous work shows that
synchronous eager propagation leads to high deadlock rates
when the number of replicas increases [20]. The DDS project
uses this synchronous approach and they rely on the
timeout abort and client retry to resolve the deadlock issue
[22]. Neptune’s consistency model extends the previous
work in lazy propagation with a focus on high scalability
and runtime fail-over support. Lazy propagation introduces
the problems of out-of-order writes and reading stale data
versions. In order to support applications with different
service semantics and consistency requirements, Neptune
employs a flexible three-level replication consistency
scheme to address these problems. In particular, Neptune’s
highest consistency level provides a staleness control which
contains a quantitative staleness bound and a guarantee of
progressive version delivery for each client’s perspective.

Level 1: Write-anywhere replication for commutative writes.
In this level, each write is initiated at any replica and is
propagated to other replicas asynchronously. When writes
are commutative, eventually the persistent data will
converge to a consistent state after all outstanding writes
are completed. The append-only discussion groups in
which users can only append messages satisfy this
commutativity requirement. Another example is a certain
kind of e-mail service [28] in which all writes are total-
updates, so out-of-order writes could be resolved by
discarding all but the newest. The first level of replication
consistency is intended to take advantage of application
characteristics and to achieve high performance in terms of
scalability and fail-over support.

Level 2: Primary-secondary replication for ordered writes. In
this consistency level, writes for each data partition are
totally ordered. A primary-copy node is assigned to each
replicated data partition, and other replicas are considered
as secondaries. All writes for a data partition are initiated at
the primary, which asynchronously propagates them in an
FIFO order to the secondaries. At each replica, writes for
each partition are serialized to preserve the order. Serial-
izing writes simplifies the write ordering for each partition,
but it results in a loss of write concurrency within each
partition. Since many network services have a large number

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 14, NOVEMBER 2003

of data partitions due to the information and user
independence, there should be sufficient write concurrency
across partitions. Besides, concurrency among read opera-
tions is not affected by this scheme. Level two consistency
provides the same client-viewed consistency support as
level one without requiring writes to be commutative. As a
result, it could be applied to more services.

Level 3: Primary-secondary replication with staleness control.
Level two consistency is intended to solve the out-of-order
write problem resulting from lazy propagation. This
additional level is designed to address the issue of reading
stale data versions. The primary-copy scheme is still used to
order writes in this level. In addition, we assign a version
number to each data partition and this number increments
after each write. The staleness control provided by this
consistency level contains two parts:

1. Soft quantitative bound. Each read is serviced at a
replica that is at most a certain amount of time
(x seconds) stale compared to the primary version.
The quantitative staleness between two data ver-
sions is defined by the elapsed time between the two
corresponding writes accepted at the primary. Thus,
our scheme does not require a global synchronous
clock. Currently, Neptune only provides a soft
quantitative staleness bound and its implementation
is described later in this section.

2. Progressive version delivery. From each client’s point
of view, the data versions used to service her read
and write accesses should be monotonically non-
decreasing. Both guarantees are important for
services like online auction in which users would
like to get as recent information as possible and they
do not expect to see declining bidding prices.

We describe our implementation for the two staleness
control guarantees in level three consistency. The quantita-
tive bound ensures that all reads are serviced at a replica of
at most x seconds stale compared to the primary version. In
order to achieve this, each replica publishes its current
version number as part of the service availability announce-
ment and the primary publishes its version number at
x seconds ago in addition. With this information, the
Neptune client module can ensure that all reads are only
directed to replicas within the specified quantitative
staleness bound. Note that the published replica version
number may be stale depending on the service publishing
frequency, so it is possible that none of the replicas has a
high enough version number to fulfill a request. In this case,
the read is directed to the primary, which always has the
latest version. Also, note that the “x seconds” is only a soft
bound because the real guarantee depends on the latency,
frequency, and intermittent losses of service availability
announcements. However, these problems are insignificant
in a low latency, reliable local area network.

The progressive version delivery guarantees that: 1) After
a client writes to a data partition, she always sees the result
of this write in her subsequent reads. 2) A user never reads
a version that is older than another version she has seen
before. In order to accomplish these guarantees, each
service invocation returns a version number to the client
side. For a read, this number stands for the data version
used to fulfill this access. For a write, it stands for the latest
data version as a result of this write. Each client keeps this

version number in a session handle (a.k.a., NeptuneHandle)
and carries it in each service invocation. The Neptune client
module can ensure that each client read access is directed to
a replica with a published version number higher than any
previously returned version number.

As mentioned in Section 2, Neptune targets partitionable
network services in which service data can be divided into
independent partitions. Therefore, Neptune’s consistency
model does not address data consistency across partition
boundaries. Note that a consistency level is specified for
each service and, thus, Neptune allows coexistence of
services with different consistency levels.

3.3 Failure Recovery

In this section, we focus on the failure detection and
recovery for the primary-copy scheme that is used in level
two/three consistency schemes. The failure management
for level one consistency is much simpler because the
replicas are more independent of each other.

In order to recover lost propagations after failures, each
Neptune service node maintains a REDO write log for each
data partition it hosts. Each log entry contains the service
method name, partition ID, the request message, along with
an assigned log sequence number (LSN). The write log
consists of a committed portion and an uncommitted
portion. The committed portion records those writes that
are already completed, while the uncommitted portion
records the writes that are received but not yet completed.

Neptune assigns a static priority for each replica of a data
partition. The primary is the replica with the highest
priority. When a node failure is detected, for each partition
that the faulty node is the primary of, the remaining replica
with the highest priority is elected to become the new
primary. This election algorithm is the same as the classical
Bully Algorithm [18] with the exception that each replica
has a priority for each data partition it hosts. This fail-over
scheme also requires that the elected primary does not miss
any write that has committed in the failed primary. To
ensure that, before the primary executes a write locally, it
has to wait until all other replicas have acknowledged the
reception of its propagation. If a replica does not acknowl-
edge in a timeout period, this replica is considered to have
failed due to our fail-stop assumption and, thus, this replica
can only rejoin the service cluster after going through a
recovery process.

When a node recovers after its failure, the underlying
single-site service component first recovers its data into a
consistent state. Then, this node will enter Neptune’s three-
phase recovery process as follows:

Phase 1: Internal synchronization. The recovering node first
synchronizes its write log with the underlying service
component. This is done by using registered CHECK
callbacks to determine whether each write in the uncom-
mitted log has been completed by the service component.
The completed writes are merged into the committed
portion of the write log and the uncompleted writes are
reissued for execution.

Phase 2: Missing write recovery. In this phase, the
recovering node announces its priority for each data
partition it hosts. For each partition for which the recover-
ing node has a higher priority than the current primary, this
node will bully the current primary into a secondary as
soon as its priority announcement is heard. Then, it contacts

SHEN ET AL.: CLUSTERING SUPPORT AND REPLICATION MANAGEMENT FOR SCALABLE NETWORK SERVICES 5

the deposed primary to recover the writes that it missed
during its down time. For each partition for which the
recovering node does not have a higher priority than the
current primary, this node simply contacts the primary to
recover the missed writes.

Phase 3: Operation resumption. After the missed writes are
recovered, this recovering node resumes normal operations
by publishing the services it hosts and accepting requests
from the clients.

Note that, if the recovering node has the highest priority
for some data partitions it hosts, there will be no primary
available for those partitions during phase two of the
recovery. This temporary blocking of writes is essential to
ensure that the recovering node can bring itself up-to-date
before taking over as the new primary. We will present the
experimental study for this behavior in Section 5.3. We also
want to emphasize that a catastrophic failure that causes all
replicas for a certain partition to fail requires special
attention. No replica can successfully complete phase two
recovery after such a failure because there is no preexisting
primary in the system to recover missed writes. In this case,
the replica with newest version needs to be manually
brought up as the primary and then all other replicas can
proceed according to the standard three-phase recovery.

Before concluding the discussion on our failure recovery
model, we describe a possible implementation of the
CHECK callback facility. We require the Neptune service
module to pass the LSN with each request to the service
instance. Then, the service instance fulfills the request and
records this LSN on persistent storage. When the CHECK
callback is invoked with an LSN during a recovery, the
service component compares it with the LSN of the latest
completed service access and returns appropriately. As we
mentioned in Section 3.1, Neptune provides atomic execu-
tion through failures only if the underlying service
component can ensure atomicity on single-site service
accesses. Such support can ensure the service access and
the recording of LSN take place as an atomic action. A
transactional database or a transactional file system can be
used to achieve atomicity for single-site service accesses.

4 SYSTEM IMPLEMENTATION AND SERVICE

DEPLOYMENTS

Neptune has been implemented on Linux and Solaris
clusters. The publish/subscribe channel in this implementa-
tion is realized using IP multicast. Each multicast message
contains the service announcement and node runtime CPU
and I/O workload, acquired through the /proc file system in
Linux or the kstat facility in Solaris. We limit the size of each
multicast packet to be within an Ethernet maximum
transmission unit (MTU) in order to minimize the multicast
overhead. We let each node send the multicast message once
every second and the published information is kept as soft
state in the service yellow page of each node, expiring in five
seconds. Thatmeans a faulty nodewill be detectedwhen five
of its multicast messages are not heard in a row. This “soft
state”-based node aliveness information can be inaccurate at
times, especially for servers that keep going up anddown.As
a result, service connection setup may fail due to false node
aliveness information.Neptuneattempts three retries in these
cases, after which failing nodes are excluded from local

service yellow page. Those failing nodes will be added back
when future availability announcements are heard.

Inside each service node, hosted services can be
compiled into a dynamically linked library. They are linked
into Neptune process space at runtime and run as threads.
Alternatively, each service instance could run as a separate
OS process, which provides better fault isolation and
resource control at the cost of degraded performance. In
choosing between thread and process-based deployment,
the rule of thumb is to pick threads for simple and short-
running services while using processes for complex and
large services.

Overall, this implementation incurs moderate overhead.
For instance, we implemented an echo service on top of a
Neptune-enable Linux cluster connected by a switched
100 Mbps Ethernet. The echo service simply responds to the
client with a message identical to the request message. The
response time of such an echo service is measured at
1; 128�s, excluding the polling overhead incurred in service
load balancing. Taking away the TCP roundtrip time with
connection setup and teardown, which is measured at
1; 031�s, Neptune is responsible for an overhead of 97�s in
each service invocation. So far, we have deployed a
document search engine, an online discussion group, an
auction, and a persistent cache service on Neptune clusters,
described as follows. Document search serves read-only
user requests, thus it is not concerned with the issue of
replication consistency.

. Document search takes in a group of encoded query
words, checks a memory mapped index database,
and returns the identifications of the list of docu-
ments matching the input query words. Neptune has
been deployed at Web search engines Teoma [29]
and Ask Jeeves [6]. As of Summer 2003, a Neptune-
enabled Linux/Solaris cluster at Ask Jeeves contains
over 1,200 SMP servers and maintains a search index
of more than 1 billion Web documents.

. Online discussion group handles three types of
requests for each discussion topic: viewing the list
of message headers (ViewHeaders), viewing the
content of a message (ViewMsg), and adding a new
message (AddMsg). Both ViewHeaders and ViewMsg
are read-only requests. The messages are maintained
and displayed in a hierarchical format according to
the reply-to relationships among them. The discus-
sion group uses MySQL database to store and
retrieve messages and topics.

. A prototype auction service is also implemented on
MySQL database. Level three consistency with
proper staleness bound and progressive version
delivery is desirable for this service because auction
users are sensitive to data staleness.

. Persistent cache supports two service methods: stor-
ing a key/data pair into the persistent cache
(CacheUpdate) and retrieving the data for a given
key (CacheLookup). The persistent cache uses an
MD5-based hashing function to map the key space
into a set of buckets. We use themmap utility to keep
an in-memory reference to the disk data and we
purge the updates and the corresponding LSN into
the disk at every 10th CacheUpdate invocation. The

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 14, NOVEMBER 2003

LSN is used to support the CHECK callback that we
discussed in Section 3.3. The persistent cache is
typically used as an internal utility, providing a
scalable and reliable data store for other services.
The level two consistency can be used for this
service, which allows high throughput at the cost of
intermittent false cache misses.

5 PERFORMANCE EVALUATION

Our evaluation examines theperformance-scalability, impact
of workload variation, and fault tolerance for Neptune’s
replication management. In addition, we also provide a
performance evaluation on Neptune’s cluster load balancing
support.All theevaluationsareconductedonarack-mounted
Linux cluster with 30 dual 400MHz Pentium II nodes, each of
whichcontains512MBor1GBmemory.EachnoderunsLinux
2.2.15 andhas two100MbpsEthernet interfaces. The cluster is
connected by a Lucent P550 Ethernet switch with 22Gbps
backplane bandwidth. MySQL 3.23.22-Beta is used for the
discussion group and auction services. We note that MySQL
databasedoesnothavefull-fledgedtransactional support,but
its latest version supports “atomic operations,” which is
enough for Neptune to provide cluster-wide atomicity. Our
persistent cache is built on a regular file system without
atomic recovery support. We believe such a setting is
sufficient for illustrative purposes.

This paper is focused on the clustering support and
replication management within local-area server clusters.
Networking issues between protocol gateways and wide-
area clients are out of the scope of this study. Therefore, our
experiments target the performance evaluation between
client nodes and service nodes inside a Neptune service
cluster. All the experiments presented in this section use up
to 16 service nodes and six client nodes.

We use synthetic workloads in our evaluations on
replication management. Two types of workloads are
generated for this purpose: 1) Balanced workloads, where
service requests are evenly distributed among data parti-
tions are used to measure the best case scalability. 2) Skewed
workloads are used to measure the system performance
when some particular partitions draw a disproportional
number of service requests. In our performance report, the
system throughput is measured as the maximum request
rate at which more than 98 percent of client requests can be
successfully completed within two seconds.

5.1 Replication Management under
Balanced Workload

We use the discussion group to study the system scalability
under balanced workload. We vary the replication degree,
the number of service nodes, the write percentage, and
consistency levels in this evaluation. The replication degree
is the number of replicas for each partition. The write
percentage indicates the proportion of writes in all requests.
We use two write percentages in our evaluation: 10 percent
and 50 percent. We measure all three consistency levels in
this study. Level one consistency requires writes to be
commutative and, thus, we use a variation of the original
service implementation to facilitate it. For the purpose of
performance comparison with other consistency levels, we
keep the changes to a minimum. For level three consistency,
we choose one second as the staleness bound. We also
notice that the performance of level three consistency is

affected by the request rate of individual clients. This is
because a higher request rate from each client means a
higher chance that a read has to be forwarded to the
primary node to fulfill progressive version control which, in
turn, restricts the system load balancing capabilities. We
choose a very high per-client request rate (one request per
second) in this evaluation to measure the worst-case
scenario.

The number of discussion groups in our synthetic
workload is 400 times the number of service nodes. Those
groups are in turn divided into 64 partitions. These
partitions and their replicas are evenly distributed across
service nodes in this evaluation. Each request is sent to a
discussion group chosen according to an even distribution.
The distribution of different requests (AddMsg, ViewHea-
ders, and ViewMsg) is determined based on the write
percentage.

Fig. 3 shows the scalability of discussion group service at
various configurations. Each subfigure illustrates the
system performance under no replication (NoRep) and
replication degrees of two, three, and four. The NoRep
performance is acquired through running a stripped down
version of Neptune that does not incur any replication
overhead except logging. The single node performance
under no replication is 152 requests/second for 10 percent
writes and 175 requests/second for 50 percent writes. Note
that a read is more costly than a write because ViewHeaders
displays the message headers in a hierarchical format
according to the reply-to relationships, which may invoke
expensive SQL queries.

We can draw the following conclusions based on the
results in Fig. 3:

1. When the number of service nodes increases, the
throughput steadily scales across all replication
degrees.

2. Service replication comes with an overhead because
every write has to be executed more than once. Not
surprisingly, this overhead is more significant under
higher write percentage. In general, a nonreplicated
service performs twice as fast as its counterpart with
a replication degree of four at 50 percent writes.
However, Section 5.2 shows that replicated services
can outperform nonreplicated services under
skewed workloads due to better load balancing.

3. All three consistency levels perform very similarly
under balanced workloads. This means level one
consistency does not provide a significant perfor-
mance advantage and our staleness control does not
incur significant overhead either.

5.2 Impact of Partition Imbalance for
Replication Management

This section studies the performance impact of partition
imbalance. Each skewed workload in this study consists of
requests that are chosen froma set of partitions according to a
Zipf distribution. Each workload is also labeled with a
partition imbalance factor,which indicates theproportionof the
requests that are directed to themost popular partition. For a
service with 64 partitions, a workload with an imbalance
factor of 1/64 is completely balanced. A workload with an
imbalance factor of 1 is the other extreme inwhich all requests
are directed to one single partition.

Fig. 4a shows the impact of partition imbalance on
services with different replication degree for the discussion

SHEN ET AL.: CLUSTERING SUPPORT AND REPLICATION MANAGEMENT FOR SCALABLE NETWORK SERVICES 7

group service. The 10 percent write percentage, level two
consistency, and eight service nodes are used in this
experiment. We see that, even though service replication
carries an overhead under balanced workload (imbalance
factor = 1/64), replicated services can outperform non-
replicated ones under skewed workload. Specifically, under
the workload where all requests are directed to one single
partition, the service with a replication degree of four
performs almost three times as fast as its nonreplicated
counterpart. This is because service replication provides
better load sharing by spreading hot-spots over several
service nodes, which completely amortizes the overhead of
extra writes in achieving the replication consistency.

We learned from Section 5.1 that all three consistency
levels perform very closely under balanced workload.
Fig. 4b illustrates the impact of workload imbalance on
different consistency levels. The 10 percent write percen-
tage, a replication degree of four, and eight service nodes
are used in this experiment. The performance difference
among three consistency levels becomes slightly more
prominent when the partition imbalance factor increases.
Specifically, under the workload where all requests are
directed to one single partition, level one consistency yields
12 percent better performance than level two consistency
which, in turn, performs 9 percent faster than level three
consistency with staleness control at one second. Based on
these results, we learned that: 1) The freedom of directing
writes to any replica in level one consistency only yields
moderate performance advantage and 2) our staleness
control scheme carries an insignificant overhead, even
though it appears slightly larger for skewed workload.

5.3 Replication Management during
Failure Recoveries

Fig. 5 depicts the behavior of a Neptune-enabled discussion
group service during three node failures in a 200-second
period. Eight service nodes, level two consistency, and a

replication degree of four are used in the experiments.

Three service nodes fail simultaneously at time 50. Node 1

recovers 30 seconds later. Node 2 recovers at time 110 and

node 3 recovers at time 140. It is worth mentioning that a

recovery may take much longer than 30 seconds in practice,

especially when large data files need to be loaded over the

network as part of such recovery. However, we believe

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 14, NOVEMBER 2003

Fig. 3. Scalability of the discussion group service under balanced workload. (a) Level 1, 50 percent writes, (b) Level 2, 50 percent writes, (c) Level 3,

50 percent writes, (d) Level 1, 10 percent writes, (e) Level 2, 10 percent writes, and (f) Level 3, 10 percent writes.

Fig. 4. Impact of partition imbalance on an 8-node system. (a) Impact on
replication degrees and (b) impact on consistency levels.

those variations do not affect the fundamental system
behavior illustrated in this experiment. We observe that the
system throughput goes down during the failure period. A
sharp performance drop at the beginning of the failure
period is caused by the temporary loss of primaries, which
is remedied after the elections of new primaries. And, we
also observe a tail of errors and timeouts trailing each node
recovery. This is caused by the overhead of synchronizing
lost updates as part of the recovery. Overall, the service
quickly stabilizes and resumes normal operations after the
recoveries.

5.4 Replication Performance of Auction and
Persistent Cache

In this section, we present the performance of replication
management for the Neptune-enabled auction and persis-
tent cache service. Our test workload for auction is based on
the published access trace from eBay between 29 May and
9 June 1999. Excluding the requests for embedded images,
we estimate that about 10 percent of the requests are for
bidding, and 3 percent are for adding new items. More
information about this analysis can be found in our earlier
study on dynamic Web caching [36]. We choose the number
of auction categories to be 400 times the number of service
nodes. Those categories are in turn divided into 64 parti-
tions. Each request is made for an auction category selected
from a population according to an even distribution. We
choose level three consistency with staleness control at one
second in this experiment. This consistency level fits the
auction users’ needs to acquire the latest information. Fig. 6a
shows the performance of a Neptune-enabled auction
service. In general, the results match the performance of
the discussion group with 10 percent writes in Section 5.1.
However, we do observe that the replication overhead is
smaller for the auction service. The reason is that the trade
off between the read load sharing and extra write overhead
for service replication depends on the cost ratio between a
read and a write. Most writes for the auction service are
bidding requests which incur small overhead.

Fig. 6b illustrates the performance of the persistent cache
service. Level two consistency and 10 percent write
percentage are used in the experiment. The results show
large replication overhead caused by extra writes. This is
because CacheUpdate may cause costly disk accesses, while
CacheLookup can usually be fulfilled with in-memory data.

5.5 Evaluation on Cluster Load Balancing

This section shows a performance evaluation on Neptune’s
cluster-wide load balancing support. We use read-only

services in this study to minimize the impact of replication
management on the load balancing performance. This
evaluation is based on two service traces from the Web
search engine Teoma [29]. Both traces were collected across
a one-week time span in late July 2001. One of the services
provides the translation between query words and their
internal representations. It has a mean service time of
22.2 ms and we call it the Fine-Grain trace. The other service
supports a similar translation for Web page descriptions. It
has a mean service time of 208.9 ms and we call it the
Medium-Grain trace. In addition to the two traces, we also
include a synthetic workload with Poisson process arrivals
and exponentially distributed service times. We call this
workload Poisson/Exp. The service processing for Poisson/
Exp is emulated using a CPU-spinning microbenchmark
that consumes the same amount of CPU time as the
intended service time.

Fig. 7 shows the mean response time for using different
load balancing policies. The random polling policies with

SHEN ET AL.: CLUSTERING SUPPORT AND REPLICATION MANAGEMENT FOR SCALABLE NETWORK SERVICES 9

Fig. 5. Behavior of the discussion group service during three node failure and recoveries. Eight service nodes, level two consistency, and a

replication degree of four are used in this experiment.

Fig. 6. Replication performance for auction and persistent cache.

(a) Auction and (b) number of service nodes.

the poll size of 2, 3, 4, and 8 are compared with the random
and ideal approach in a 16-server system. The ideal
performance in this study is measured through a centra-
lized load index manager which keeps track of all server
load indexes. In terms of server load level, we consider a
server has reached full load (100 percent) when around
98 percent of client requests are successfully completed
within two seconds. Then, we use this as the basis to
calculate the client request rate for various server load
levels. We observe that the results for Medium-Grain trace
and Poisson/Exp workload largely confirm Mitzenma-
cher’s analytical results [24]. For the Fine-Grain trace,
however, we notice that a poll size of 8 exhibits far worse
performance than policies with smaller poll sizes and it is
even slightly worse than the pure random policy. This is
caused by excessive polling overhead coming from two
sources: 1) longer polling delays resulting from larger poll
size and 2) less accurate server load information due to
longer polling delay. And, those overheads are more severe
for fine-grain services. Our conclusion is that a small poll
size (e.g., 2 or 3) provides sufficient information for load
balancing. And, an excessively large poll size may even
degrade the performance due to polling overhead, espe-
cially for fine-grain services.

Table 1 shows the performance improvement of discard-
ing slow-responding polls. The experiments are conducted
with a poll size of 3 and a server load level of 90 percent.
The result on the Medium-Grain trace shows a slight
performance degradation due to the loss of load informa-
tion. However, the results on both Fine-Grain trace and
Poisson/Exp workload exhibit sizable improvement. Over-
all, the enhancement of discarding slow-responding polls
can improve the load balancing performance by up to
8.3 percent. Note that the performance results shown in
Fig. 7 are not with discarding slow-responding polls.

6 RELATED WORK

Our work is built upon a large body of previous research in
network service clustering and replication management in
distributed systems. We describe the work related to this
paper in the following categories.

6.1 Software Infrastructure for Cluster-Based
Network Services

Previous work has addressed the scalability and availability
issues in providing clustering support for network service
aggregation and load balancing [17], [32]. For instance, the
TACC project employs a two-tier architecture in which the
service components called “workers” run on different back-
ends, while incoming requests to workers are controlled by
front-ends [17]. Most of these systems employ two-tier
clustering architectures and rely on centralized components
to maintain the server runtime workload and service
availability information. In comparison, Neptune employs
a loosely connected and functionally symmetric architecture
to achieve high scalability and robustness. This architecture
allows the Neptune service infrastructure to operate
smoothly in the presence of transient failures and service
evolutions.

6.2 Replication Consistency

Replication of persistent data is crucial to load sharing and
achieving high availability. The earlier analysis by Gray
et al. shows that the synchronous replication based on eager
update propagations leads to high deadlock rates [20]. A
recent study by Anderson et al. confirms this using
simulations [4]. The asynchronous replication based on
lazy propagations has been used in Bayou [27]. Adya and
Liskov have studied a type of lazy consistency in which
server data is replicated in a client cache [2]. The serial-
izability for lazy propagations with the primary-copy
method is further studied by a few other research groups
[4], [13], and their work addressed causal dependence for
accessing multiple objects. The recent work by Yu and
Vahdat provides a tunable framework to exploit the trade
off among availability, consistency, and performance [33].
Neptune’s replication consistency maintenance differs from
the previous work in providing flexible replication con-
sistency at the clustering middleware level. In particular,
Neptune’s multilevel replication consistency model sup-
ports data staleness control at its highest level.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 14, NOVEMBER 2003

Fig. 7. Performance of cluster load balancing on a 16-server system. (a) Medium-grain trace, (b) Poisson/Exp with a mean service time of 50 ms, and

(c) fine-grain trace.

TABLE 1
Performance Gains of Discarding Slow-Responding Polls

Neptune’s data staleness control is similar to the session
guarantees in the Bayou project [30]. Bayou’s session
guarantee supports the following properties for operations
belonging to the same client session: “read your writes,”
“monotonic reads,” “writes follow reads,” and “monotonic
writes.” The first two guarantees are covered in Neptune’s
“progressive version delivery.” The other two properties
are inherently supported by level two and three of
Neptune’s replication consistency model. Additionally,
our “soft quantitative bound” enforces a soft bound on
the data staleness in time quantities. Both “soft quantitative
bound” and “progressive version delivery” are important
for staleness-sensitive services like auction.

6.3 Replication Support for Network Services
and Database Systems

The Ivory system provides automatic state replication for
dynamic Web services through Java bytecode rewriting [10]
and the Porcupine project developed a large-scale cluster-
based e-mail service with replicated mailboxes [28].
Replication models for these systems are intended for
services with only commutative updates for which ordered
updates are unnecessary. Recently, the DDS project ad-
dressed replication of persistent data with a carefully built
data management layer that encapsulates scalable replica-
tion consistency and fail-over support [22]. While this
approach has been demonstrated for services with simple
processing logic like distributed hash tables, constructing
such a data management layer could be difficult for
applications with complex data management logic.

Traditional databases and transaction processing sys-
tems enforce ACID consistencies in replication management
through global synchronous locking [9], [21], [31]. Recent
database systems from Oracle, Sybase, and IBM support
lazy updates for data replication and they rely on user-
specified rules to resolve conflicts. Neptune differs from
those systems by supporting replication management in the
clustering middleware level. The key advantage is that such
a support can be easily applied to a large number of
applications with different underlying data management
mechanisms. Our work demonstrates this wide applicabil-
ity can be achieved along with flexible replication consis-
tency, performance scalability, and failure recovery support
for cluster-based network services.

6.4 Clustering Load Balancing

A large body of work has been done to optimize HTTP
request distribution among a cluster of Web servers [5],
[11], [23], [26]. Most load balancing policies proposed in
such a context rely on the premise that all network packets
go through a single front-end dispatcher or a TCP-aware
(layer 4 or above) switch so that TCP level connection-based
statistics can be accurately maintained. However, clients
and servers inside the service cluster are often connected by
high-throughput, low-latency Ethernet (layer 2) or
IP (layer 3) switches, which do not provide any TCP level
traffic statistics. Our study in this paper shows that an
optimized random polling policy that does not require
centralized statistics can deliver good load balancing
performance.

Previous research has proposed and evaluated various
load balancing policies for distributed systems [7], [14], [24],
[35]. Those studies are mostly designed for coarse-grain

distributed computation and they often ignore fine-grain

jobs by simply processing them locally. Built on top of these

previous results, our study finds that the random polling

policy with a small poll size performs well for cluster-based

network services. In addition, we find that the technique of

discarding slow-responding polls can further improve the

performance for fine-grain services.

7 CONCLUDING REMARKS

Building large-scale network services with the ever-increas-

ing demand on scalability and availability is a challenging

task. This paper investigates techniques in building the

Neptune middleware system. Neptune provides clustering

support and replication management for scalable network

services. The system has been implemented on Linux and

Solaris clusters where a number of applications have been

successfully deployed.
Neptune provides multilevel replication consistency for

cluster-based network services with performance scalability

and fail-over support. This work demonstrates that a

flexible replication management framework can be built at

the clustering middleware level. In terms of service

guarantees, our level three consistency ensures that client

accesses are serviced progressively within a specified soft

staleness bound, which is sufficient for many network

services. Nevertheless, the current three consistency levels

are not meant to be complete. Additional consistency levels

can be incorporated into Neptune’s replication consistency

model when needed.

ACKNOWLEDGMENTS

This work was supported in part by US National Science

Foundation grants ACIR-0082666, ACIR-0086061, ACIR-

0234346, and CCR-0306473.

REFERENCES

[1] The Alexandria Digital Library Project, http://www.alexan
dria.ucsb.edu, 2003.

[2] A. Adya and B. Liskov, “Lazy Consistency Using Loosely
Synchronized Clocks,” Proc. ACM Symp. Principles of Distributed
Computing, pp. 73-82, Aug. 1997.

[3] D. Agrawal, A. El Abbadi, and R.C. Steinke, “Epidemic
Algorithms in Replicated Databases,” Proc. 16th Symp. Principles
of Database Systems, pp. 161-172, May 1997.

[4] T. Anderson, Y. Breitbart, H.F. Korth, and A. Wool, “Replication,
Consistency, and Practicality: Are These Mutually Exclusive?”
Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 484-495,
June 1998.

[5] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel, “Scalable
Content-Aware Request Distribution in Cluster-Based Network
Services,” Proc. USENIX Ann. Technical Conf., June 2000.

[6] Ask Jeeves Search, http://www.ask.com, 2003.
[7] A. Barak, S. Guday, and R.G. Wheeler, The MOSIX Distributed

Operating System: Load Balancing for UNIX, Springer-Verlag, 1993.
[8] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, B.A. Rapp,

and D.L. Wheeler, “GenBank,”Nucleic Acids Research, vol. 30, no. 1,
pp. 17-20, 2002.

[9] P. Bernstein and E. Newcomer, Principles of Transaction Processing.
Morgan Kaufmann, 1997.

[10] G. Berry, J. Chase, G. Cohen, L. Cox, and A. Vahdat, “Toward
Automatic State Management for Dynamic Web Services,” Proc.
Network Storage Symp., Oct. 1999.

SHEN ET AL.: CLUSTERING SUPPORT AND REPLICATION MANAGEMENT FOR SCALABLE NETWORK SERVICES 11

[11] E.V. Carrera and R. Bianchini, “Efficiency vs. Portability in
Cluster-Based Network Servers,” Proc. Eighth ACM Symp. Princi-
ples and Practice of Parallel Programming, pp. 113-122, June 2001.

[12] L. Chu, K. Shen, and T. Yang, “A Guide to Neptune: Clustering
Middleware for Online Services,” part of the Neptune software
distribution, http:/www.cs.ucsb.edu/projects/neptune, Apr.
2003.

[13] P. Chundi, D.J. Rosenkrantz, and S.S. Ravi, “Deferred Updates
and Data Placement in Distributed Databases,” Proc. 12th Int’l
Conf. Data Eng., pp. 469-476, Feb. 1996.

[14] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “Adaptive Load
Sharing in Homogeneous Distributed Systems,” IEEE Trans.
Software Eng., vol. 12, no. 5, pp. 662-675, May 1986.

[15] eBay Online Auctions, http://www.ebay.com, 2003.
[16] D. Ferrari, “A Study of Load Indices for Load Balancing Schemes,”

Technical Report CSD-85-262, EECS Dept., Univ. of California
Berkeley, Oct. 1985.

[17] A. Fox, S.D. Gribble, Y. Chawathe, E.A. Brewer, and P. Gauthier,
“Cluster-Based Scalable Network Services,” Proc. 16th ACM Symp.
Operating System Principles, pp. 78-91, Oct. 1997.

[18] H. Garcia-Molina, “Elections in a Distributed Computing Sys-
tem,” IEEE Trans. Computers, vol. 31, no. 1, pp. 48-59, Jan. 1982.

[19] Google Search, http://www.google.com, 2003.
[20] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The Dangers of

Replication and a Solution,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 173-182, June 1996.

[21] J. Gray and A. Reuter, Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[22] S.D. Gribble, E.A. Brewer, J.M. Hellerstein, and D. Culler,
“Scalable, Distributed Data Structures for Internet Service Con-
struction” Proc. Fourth USENIX Symp. Operating Systems Design
and Implementation, Oct. 2000.

[23] G.D.H. Hunt, G.S. Goldszmidt, R.P. King, and R. Mukherjee,
“Network Dispatcher: A Connection Router for Scalable Internet
Services,” Proc. Seventh Int’l World Wide Web Conf., Apr. 1998.

[24] M. Mitzenmacher, “On the Analysis of Randomized Load
Balancing Schemes,” Proc. Ninth ACM Symp. Parallel Algorithms
and Architectures, pp. 292-301, June 1997.

[25] MSN Groups Service, http://groups.msn.com, 2003.
[26] V.S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W.

Zwaenepoel, and E. Nahum, “Locality-Aware Request Distribu-
tion in Cluster-Based Network Servers,” Proc. Eighth ACM Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 205-216, Oct. 1998.

[27] K. Petersen, M.J. Spreitzer, D.B. Terry, M.M. Theimer, and A.J.
Demers, “Flexible Update Propagation for Weakly Consistent
Replication,” Proc. 16th ACM Symp. Operating Systems Principles,
pp. 288-301, Oct. 1997.

[28] Y. Saito, B.N. Bershad, and H.M. Levy, “Manageability, Avail-
ability, and Performance in Porcupine: A Highly Scalable, Cluster-
Based Mail Service,” Proc. 17th ACM Symp. Operating Systems
Principles, pp. 1-15, Dec. 1999.

[29] Teoma Search, http://www.teoma.com, 2003.
[30] D.B. Terry, A.J. Demers, K. Petersen, M.J. Spreitzer, M.M.

Theimer, and B.B. Welch, “Session Guarantees for Weakly
Consistent Replicated Data,” Proc. Int’l Conf. Parallel and Dis-
tributed Information Systems, pp. 140-149, Sept. 1994.

[31] WebLogic and Tuxedo Transaction Application Server White
Papers, http://www.bea.com/products/tuxedo/papers.html,
2003.

[32] J. Robert von Behren, E.A. Brewer, N. Borisov, M. Chen, M. Welsh,
J. MacDonald, J. Lau, S. Gribble, and D. Culler, “Ninja: A
Framework for Network Services,” Proc. USENIX Ann. Technical
Conf., June 2002.

[33] H. Yu and A. Vahdat, “Design and Evaluation of a Continuous
Consistency Model for Replicated Services,” Proc. Fourth USENIX
Symp. Operating Systems Design and Implementation, Oct. 2000.

[34] S. Zhou, “An Experimental Assessment of Resource Queue
Lengths as Load Indices,” Proc. Winter USENIX Technical Conf.,
pp. 73-82, Jan. 1987.

[35] S. Zhou, “A Trace-Driven Simulation Study of Dynamic Load
Balancing,” IEEE Trans. Software Eng., vol. 14, no. 9, pp. 1327-1341,
Sept. 1988.

[36] H. Zhu and T. Yang, “Class-Based Cache Management for
Dynamic Web Contents,” Proc. IEEE INFOCOM, Apr. 2001.

Kai Shen received the BS degree in computer
science and engineering from Shanghai Jiaotong
University, China, in 1996, and the PhD degree in
computer science from the University of Califor-
nia, Santa Barbara, in 2002. He is currently an
assistant professor in the Department of Com-
puter Science at the University of Rochester,
Rochester, New York. His research interests are
in the areas of parallel and distributed systems,
computer networks, and Web searching.

Tao Yang received the BS degree in computer
science from Zhejiang University, China, in
1984, and the MS and PhD degrees in computer
science from Rutgers University, in 1990 and
1993, respectively. He is an associate professor
at the Department of Computer Science, Uni-
versity of California, Santa Barbara. His main
research interests have been parallel and dis-
tributed systems, high performance scientific
computing, cluster-based network services,

and Internet search. He has published more than 70 refereed
conference papers and journal articles. Dr. Yang has also been the
chief scientist and vice president of Research and Development at
Teoma Technologies from 2000 to 2001 and the chief scientist at Ask
Jeeves since 2001, where he has directed research of large-scale
Internet search and led the development of the Teoma search engine
running on giant SMP clusters. Dr. Yang was an associate editor for
IEEE Transactions on Parallel and Distributed Systems from 1999 to
2002, and served on the program committee of many high performance
computing conferences. He received the Research Initiation Award from
the US National Science Foundation in 1994, the Computer Science
Faculty Teacher Award in 1995 from the UCSB College of Engineering,
the CAREER Award from the US National Science Foundation in 1997,
and the Noble Jeeviant Award from AskJeeves in 2002. He is a member
of the IEEE.

Lingkun Chu received the BS and MS degrees
in computer science from Zhejiang University,
China, in 1996 and 1999, respectively. He is a
PhD candidate in the Department of Computer
Science, University of California, Santa Barbara.
He is currently working with Professor Tao Yang
in the area of parallel and distributed systems,
with a particular focus on cluster-based network
services.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 14, NOVEMBER 2003

