
Adaptive Algorithms for Cache�e�cient Trie Search

Anurag Acharya� Huican Zhu� Kai Shen

Dept� of Computer Science

University of California� Santa Barbara� CA �����

Abstract

In this paper� we present cache�e�cient algorithms for trie search� There are three key
features of these algorithms� First� they use di�erent data structures �partitioned�array� B�
tree� hashtable� vectors� to represent di�erent nodes in a trie� The choice of the data structure
depends on cache characteristics as well as the fanout of the node� Second� they adapt to changes
in the fanout at a node by dynamically switching the data structure used to represent the node�
Third� the size and the layout of individual data structures is determined based on the size of the
symbols in the alphabet as well as characteristics of the cache�s�� We evaluate the performance
of these algorithms on real and simulated memory hierarchies� Our evaluation indicates that
these algorithms out�perform alternatives that are otherwise e�cient but do not take cache
characteristics into consideration� A comparison of the number of instructions executed indicates
that these algorithms derive their performance advantage primarily by making better use of the
memory hierarchy�

� Introduction

Tries are widely used for storing and matching strings over a given alphabet� Applications include
dictionary lookup for text processing ��� �� �� ��� ��	� itemset lookup for mining association rules in
retail transactions ��� �	� IP address lookup in network routers ���� ��	 and partial match queries ��
�
��	� There has been much work on reducing the storage requirement and the instruction count for
tries � for example �
� �� �� �� �
� ��� ��	� These algorithms� however� do not take the memory
hierarchy into account� Given the depth of memory hierarchies on modern machines� good cache
performance is critical to the performance of an algorithm�

In this paper� we present cache�e�cient algorithms for trie search� There are three key features
of these algorithms� First� they use di�erent data structures �partitioned�array� B�tree� hashtable�
vector� to represent di�erent nodes in a trie� The choice of the data structure depends on cache
characteristics as well as the fanout of the node� Second� they adapt to changes in the fanout at
a node by dynamically switching the data structure used to represent the node� Third� the size
and the layout of individual data structures is determined based on the size of the symbols in the
alphabet as well as characteristics of the cache�s��

We evaluate the performance of these algorithms on real and simulated memory hierarchies�
To evaluate their performance on real machines� we ran them on three di�erent machines with
di�erent memory hierarchies �Sun Ultra��� Sun Ultra�
�� and SGI Origin������� To evaluate the
impact of variation in cache characteristics on the performance of these algorithms� we simulated
architectures that di�ered in cache line size and cache associativity��

�Appendix A provides a brief introduction to caches in modern machines�

�



To drive these experiments� we used two datasets from di�erent application domains and with
di�erent alphabet sizes� The �rst dataset was from the text processing domain and consisted of a
trie containing all the words in the Webster�s Unabridged Dictionary� Against this dictionary� we
ran searches using all the words in Herman Melville�s Moby Dick� This dataset had an alphabet
of �� symbols �lower and upper case English characters� hyphen and apostrophe�� The second
dataset was from the datamining domain� For this application� the alphabet consists of items
that can be purchased in a grocery store �beer� chips� bread etc� and a string consists of a single
consumer transaction �the set of items purchased at one time�� The task is to determine the
set of items �referred to as itemsets that are frequently purchased together� Tries are used in
this application to store the candidate itemsets and to help determine the frequent itemsets� The
dataset used in our experiments was generated using the Quest datamining dataset generator which
we obtained from IBM Almaden ��
	� This dataset generator has been widely used in datamining
research ��� �� ��� ��� �
	� The alphabet for this dataset contained ������ symbols �corresponding
to ������ items��

Our evaluation indicates that these algorithms out�perform alternatives that are otherwise ef�
�cient but do not take cache characteristics into consideration� For the dictionary dataset� our
algorithm was ��� times faster on the SGI Origin����� and � times faster on both the Sun Ultras
compared to the ternary search tree algorithm proposed by Bentley and Sedgewick ��	� For the
datamining dataset� our algorithm was ������
 times faster than a B�tree�trie and ������� times
faster than a hashtable�trie� A comparison of the number of instructions executed indicates that
the algorithms presented in this paper derive their performance advantage primarily by making
better use of the memory hierarchy�

The paper is organized as follows� A brief review of tries and modern memory hierarchies can
be found in Appendix A� Section � presents the intuition behind our algorithms and describes them
in some detail� Section 
 describes our experiments and Section � presents the results� Section �
presents related work and Section � presents a summary and conclusions�

� Algorithms

The design of the algorithms presented in this paper is based on three insights� First� there is
a large variation in the fanout of the nodes in a trie� The nodes near the root usually have a
large fanout� the nodes further from the root have a smaller fanout� This suggests that di�erent
data structures might be suitable for implementing di�erent nodes in a trie� Second� only the �rst
memory reference in a cache line has to wait for data to be loaded into the cache� This suggests
that the data structures should be designed so as to pack as many elements in a cache line as
possible�� Third� at each level of a trie� at most one link is accessed �the link to the successor if
the match can be extended� no link if the match cannot be extended�� This suggests that for nodes
with a large fanout� the keys and the links should be stored separately� This avoids reduces the
number of links loaded and avoids loading any links for unsuccessful searches�

We present two algorithms� The �rst algorithm is for tries over large alphabets which require
an integer to represent each symbol� The second algorithm is for tries over small alphabets whose
symbols can be represented using a character�

�Some memory hierarchies return the �rst reference �rst and load the rest of the cache line later� For such memory
hierarchies� subsequent memory references may also need to wait�

�



keykeykeykey

ptr ptr ptr ptr

�a� Partitioned�array �b� B�tree �c� Hashtable

Figure �� Data structures used to represent trie nodes for large alphabets�

��� Algorithm for large alphabets

This algorithm assumes that individual symbols are represented by integers and uses three alterna�
tive data structures� a partitioned�array� a bounded�depth B�tree and a hashtable� for representing
trie nodes� It selects between them based on the fanout of the node and the cache line size�

The partitioned�array structure consists of two arrays � one to hold the keys and the other to
hold the corresponding links� Each array is sized to �t within a single cache line� This assumes
that integers and links are of the same size� For architectures on which links and integers are
not the same size� the array containing the links is allowed to spread over multiple cache lines�
The bounded�depth B�tree structure uses partitioned�arrays to represent individual nodes� The
hashtable structure uses chains of partitioned�arrays to handle collisions� Figure � illustrates all
three structures�

When a new node is created� the partitioned�array structure is used� As the fanout of a node
increases� new keys are inserted into the partitioned�array� When the fanout of a node increases
beyond the capacity of a partitioned�array� the partitioned�array is converted into a B�tree� Since
partitioned�arrays are used to represent B�tree nodes� this conversion is cheap� Subsequent in�
sertions into the node result in new keys being added to the B�tree� The bounded�depth B�tree
structure is used as long as its depth is less than a threshold� In the experiments reported in this
paper� we used a depth bound of four levels� When the fanout of the node increases such that
the keys no longer �t within the bounded�depth B�tree� the B�tree is converted into a hashtable�
This conversion requires substantial rearrangement� However� with a suitable depth bound for the
B�tree� this conversion will be rare� Furthermore� since the hashtable uses the same basic data
structure �the partitioned�array�� it will be able to re�use the memory �and possibly cache lines�
that were used by the B�tree�

��� Algorithm for small alphabets

This algorithm assumes that individual symbols are represented by characters and uses partitioned�
arrays of di�erent sizes ��������� and an m�way vector �where m is the size of the alphabet� to
represent trie nodes� When a new node is created� a partitioned�array with just a single entry is
used� As new keys are inserted� the partitioned�array is grown by doubling its size� When the
number of keys exceeds a threshold� the partitioned�array is converted into an m�way vector �in
order to reduce search time�� In our algorithm� the threshold is selected by dividing the cache line
size by the size of each link� For this algorithm� we use the size of links to size the partitioned�array
instead of the size of the keys� This is because a large number of keys �t into cache lines available on






Machine Cache line size L� size L� size Proc� Clock Memory BW
Sun Ultra�� 	��byte �
KB �MB �
�MHz ���MB
s

�direct�mapped� �direct�mapped�
Sun Ultra�	� 	��byte 	�KB �MB ���MHz ���MB
s

�direct�mapped� �direct�mapped�
SGI Origin����� 
��byte 	�KB �MB ���MHz ��
MB
s

�direct�mapped� ���way assoc�

Table �� Details of the real memory hierarchies used in experiments� The associativity of each
cache is in parentheses� The memory bandwidth numbers have been measured using the STREAM
copy benchmark written by John� McCalpin �http���www�cs�virginia�edu�stream�

current machines �
��byte����byte� and using link�arrays with 
���� slots would greatly increase
the space requirement for these nodes� The m�way vector consists of a link array that is indexed
by the key� Conversion between these alternatives is cheap and requires only re�allocation of the
space required to hold the arrays and copying the contents�

� Experimental setup

We evaluated the performance of these algorithms on real and simulated memory hierarchies�
To evaluate their performance on real machines� we ran them on three di�erent machines with
di�erent memory hierarchies � a Sun Ultra��� a Sun Ultra�
�� and an SGI Origin������ Table �
provides details about these machines� We ran each experiment �ve times and selected the lowest
time to account for potential interference due to daemons and other processes running during the
experiments�

To evaluate the impact of variation in cache characteristics on the performance of these algo�
rithms� we simulated architectures that di�ered in cache line size �
�����byte� and cache associa�
tivity �direct�mapped���way���way���way�� We used the msim simulator ���	 and assumed a 
�KB
L� cache and a �MB L� cache� We assumed zero delay fetching data from L� cache� a � cycle delay
from L� cache and a 
� cycle delay from main memory�

To drive these experiments� we used two datasets from di�erent application domains and with
di�erent alphabet sizes� The �rst dataset was from the text processing domain and consisted of a
trie containing all the words in the Webster�s Unabridged Dictionary�� The words were inserted in
the order of their occurrence in the dictionary� Against this dictionary� we ran searches using all
the words ����


� in Herman Melville�sMoby Dick�� The words were searched for in their order of
occurrence� This dataset had an alphabet of �� symbols �lower and upper case English characters�
hyphen and apostrophe�� The average length of the words in the trie was ��� characters and the
average length of the words in Moby Dick was ��� characters�

For this dataset� we used the algorithm for small alphabets and compared its performance to
that of the ternary search tree proposed by Bentley and Sedgewick ��	�� Bentley et al demonstrate
that ternary search trees are somewhat faster than hashing for an English dictionary and up to
�ve times faster than hashing for the DIMACS library call number datasets ��	� Clement et al ���	

�An online version is available at ftp���uiarchive�cso�uiuc�edu�pub�etext�gutenberg�etext����
�An online version is available at ftp���uiarchive�cso�uiuc�edu�pub�etext�gutenberg�etext���moby�zip�
�We obtained the code for the ternary search tree algorithm from http���www�cs�princeton�edu��rs�strings��

�



analyze the ternary search tree algorithm as a form of trie and conclude that it is an e�cient data
structure from an information�theoretic point of view�

The second dataset was from the datamining domain and consisted of sets of retail transactions
generated by Quest datamining dataset generator which we obtained from IBM Almaden ��
	� For
this application� the alphabet consists of the items that can be purchased in a grocery store and a
string consists of a single retail transaction� Recall that the task is to determine the set of items
that are frequently purchased together� Tries are used in this application to store the candidate
itemsets and to help determine the frequent itemsets� The alphabet for this dataset contained
������ symbols �corresponding to ������ items�� the average length of each string �i�e�� the average
number of items purchased per transaction� was � with a maximum length of ��� We created four
pairs of transaction�sets� One transaction�set in each pair was used to construct the trie and the
other was used for searching the trie� In each pair� the transaction�set used to search the trie
was four times as large as the transaction�set used to create the trie and included it as a subset�
The trie for the �rst pair of transaction�sets contained ������ transactions� the trie for the second
pair of transaction�sets contained ������ transactions� the trie for the third pair of transaction�sets
contained ������ transactions� and the trie for the fourth pair of transaction�sets contained �������
transactions� Compactly represented� these transactions can be stored in �MB� �MB� �MB and
�MB respectively� For the machines used in our experiments� this corresponds to ����cache size�
cache size� ��cache size and ��cache size� This allowed us to explore the space of ratios between
the cache size and the dataset size�

For this dataset� we used the algorithm for large alphabets and compared its performance
against two alternatives� The �rst algorithm was a non�adaptive variant of our algorithms which
used B�trees for all nodes �we refer to this as the B�tree�trie algorithm�� This algorithm does not
bound the depth of the B�tree� Our goal in this comparison was to determine how much advantage is
provided by adaptivity� The second algorithm used variable�sized hashtables for all nodes �we refer
to this as the hashtable�trie algorithm�� The hashtable used for the root node had ���� buckets�
the hashtables used for nodes at every subsequent level reduced the number of buckets by a factor
of two� We selected this algorithm for our experiments as an algorithm similar to this is proposed
by several researchers for maintaining frequent itemsets for mining association rules ��� �� ��	�

� Results

Figure � compares the performance of the adaptive algorithm with that of the ternary search tree
for the dictionary dataset� The adaptive algorithm signi�cantly outperforms the ternary search tree
on all three machines � by a factor of ��� on the Origin����� and by a factor of � on the Ultra��
and the Ultra�
��

Figure 
 compares the performance of the adaptive algorithm with that of the B�tree�trie and
the hashtable�trie algorithms for the datamining dataset� We note that the adaptive algorithm is
faster than both the alternatives for all inputs �by a factor of ������
 over B�tree�trie and a factor
of ������� over hashtable�trie�� Note that the speedup falls o� as the dataset size grows to several
times the cache size� This indicates that the input is not localized to a small part of the trie�

There are three possible reasons for the performance advantage of the adaptive algorithms
over the non�adaptive algorithms� ��� they execute fewer instructions� or ��� they spend less time
waiting for data to be loaded into cache� or �
� both� For each of the dataset�platform�algorithm
combination� we determined the number of instructions executed� For this� we built a cost model
for each platform�algorithm combination and inserted code to its implementation to maintain an
instruction counter� To build the cost model for each platform�algorithm combination� we disas�

�



0

500

1000

1500

2000

2500

Ultra-2 Ultra-30 Origin 2000

Machine type

Se
ar

ch
 ti

m
e 

(m
s)

Ternary

Adaptive

Figure �� Performance of the adaptive algorithm and the ternary search tree for the dictionary
dataset�

0

2

4

6

8

10

12

Ultra-2 Ultra-30 Origin
2000

S
e
a
rc

h
 t

im
e
 (

s
e
c
) Adapt(20k)

Btree(20k)

Adapt(40k)

Btree(40k)

Adapt(80k)

Btree(80k)

Adapt(160k)

Btree(160k)

0

2

4

6

8

10

12

Ultra-2 Ultra-30 Origin
2000

S
e
a
rc

h
 t

im
e
 (

s
e
c
) Adapt(20k)

Htable(20k)

Adapt(40k)

Htable(40k)

Adapt(80k)

Htable(80k)

Adapt(160k)

Htable(160k)

�a� Adaptive vs B�tree�trie �b� Adaptive vs hashtable�trie

Figure 
� Performance of the adaptive algorithm� the B�tree�trie and the hashtable�trie for the
datamining dataset�

sembled the optimized binary code for that platform�algorithm combination and determined the
number of instructions in each basic block�

For the dictionary dataset� we found that the ternary search tree executes about �� billion in�
structions whereas the adaptive algorithm executes about �� billion instructions� Figure � compares
the number of instructions executed by all three algorithms �adaptive� B�tree�trie and hashtable�
trie� for the four datamining inputs� We note that the adaptive algorithm executes about the same
number of instructions as the hashtable�trie and close to half the number of instructions executed
by the B�tree trie� We also compared the amount of space used by the di�erent algorithms� For
the dictionary dataset� the ternary search tree used ��� MB �
��K nodes� and the adaptive al�
gorithm used ���MB ����K nodes��� Table � presents the space used by di�erent algorithms for
the datamining dataset� From these results� we conclude that the adaptive algorithms derive their
performance advantage primarily by making better use of the memory hierarchy�

One of the main features of the adaptive algorithms is that they change the representation of a
node as its fanout changes� Figure � presents the distribution of the di�erent representations used

�These numbers are for the Sun Ultras�

�



0

100

200

300

400

500

20K 40K 80K 160K

Data size

In
st

ru
ct

io
n

 
co

u
n

t(
1,

00
0,

00
0) Btree

Adaptive

Htable

Figure �� Number of instructions executed by di�erent algorithms for the datamining dataset�

Num Transactions � ��K ��K ��K �
�K
Adaptive 	�
MB ���MB �	�
MB ���	MB
B�tree�trie �MB ����MB ����MB 
��	MB
Hashtable�trie 	
MB 
�MB ��MB ���MB

Table �� Space used by di�erent algorithms for the datamining dataset�

0%

20%

40%

60%

80%

100%

Tota
l

L1 L3 L5 L7 L9 L1
1

L1
3

L1
5

L1
7

L1
9

Trie level

N
od

e 
di

st
ri

bu
tio

n size=54

size=8

size=4

size=2

size=1

0%

20%

40%

60%

80%

100%

Total L1 L3 L5 L7 L9

Trie level

No
de

 d
is

tri
bu

tio
n

Htable

Btree

Array

�a� Dictionary dataset �b� Datamining dataset

Figure �� Distribution of the data structures used by the adaptive algorithms� For the datamining
dataset� the graphs present the distribution for the input with ���K transactions�

for both datasets� The �rst bar in both graphs depicts the distribution of the three data structures
in the entire trie� the bars to its right provide a level�by�level breakdown� We note that there is a
wide variation in the distribution of data structures �and therefore fanout� on di�erent levels and
that on the whole� tries for both datasets are dominated by nodes with very small fanouts�

�



0
100
200
300
400
500
600
700

20K 40K 80K 160K

Data size

N
o

. c
yc

le
s 

(1
,0

00
,0

00
)

Line=32

Line=64

0
100
200
300
400
500
600
700

20K 40K 80K 160K

Data size

N
o.

 c
yc

le
s 

(1
,0

00
,0

00
)

Assoc=1

Assoc=2

Assoc=4

Assoc=8

�a� Variation in line size �b� Variation in associativity

Figure �� Impact of variation in cache characteristics on the performance of the adaptive algorithm�
For the results presented in �a�� both L� and L� are assumed to be direct�mapped� for the results
presented in �b�� the cache line size is assumed to be 
��bytes and L� is assumed to be direct�
mapped�

��� Impact of variation in cache characteristics

To evaluate the impact of variation in cache characteristics� we used the msim memory hierarchy
simulator� Figure ��a� examines the variation in simulated execution time as the cache line size
changes� We used 
�B and ��B as the alternatives as these are considered the most suitable cache
line sizes� Smaller cache lines result in more frequent fetches from the main memory� larger cache
lines require the processor to wait longer� In addition� larger cache lines are more likely to result in
unnecessary data movement from�to the main memory� For this experiment� we assumed that both
L� and L� caches were direct�mapped� We note that the performance of the adaptive algorithm
does not change much with a change in the cache line size� This is not surprising as the line size is
an explicit parameter of the algorithm�

Figure ��b� examines the variation in simulated execution time as the cache associativity
changes� For this experiment� we assumed 
��byte cache lines� and a direct�mapped L� cache�
We varied the associativity of the L� cache with direct�mapped� ��way� ��way and ��way associa�
tive con�gurations� Note that most modern L� caches are direct�mapped and L� caches are either
direct�mapped or ��way associative� We note that the the performance of the adaptive algorithm
is insensitive to changes in cache associativity�

� Related work

Previous work on adapting trie structures has taken one of four approaches� The �rst approach
focuses on reducing the number of instructions executed by reducing the number of nodes and
levels in the trie ��� �� �� ��� �
� ��	� The second approach views tries as collections of m�way
vectors and focuses on reducing the space used by these vectors using a list�based representation
or a sparse�matrix representation �
� ��� ��	� The third approach focuses on the data structures
used to represent trie nodes with the goal of reducing both the space required and the number of
instructions executed ��� 
	� Finally� there has been much recent interest in optimizing the tries used
for address lookups in network routers ���� ��� ��	� The algorithms proposed by these researchers

�



focus on reducing the number of memory accesses by reducing the number of levels in the trie and
the fanout at individual nodes� Our approach is closest to these in that we share their goal of
reducing memory accesses� however� there are two main di�erences� First� these algorithms assume
that the �symbols� to be matched at each level �so to speak� are not �xed and that the strings that
form the trie can be arbitrarily subdivided� This assumption is correct for application that they
focus on � IP address lookup in network routers�� We assume a �xed alphabet which is applicable
to most other applications tries are used for� Second� these algorithms focus on re�structuring the
trie� while we focus on selecting the data structure for individual nodes�

� Summary and conclusions

In this paper� we presented cache�e�cient algorithms for trie search� The key features of these
algorithms are� ��� they use multiple alternative data structures for representing trie nodes� ���
they adapt to changes in the fanout at a node by dynamically switching the data structure used to
represent the node� �
� they determine the size and the layout of individual data structures based
on the size of the symbols in the alphabet as well as characteristics of the cache�s��

Our evaluation indicates that these algorithms out�perform alternatives that are otherwise ef�
�cient but do not take cache characteristics into consideration� A similar conclusion is reached by
Lamarca�Ladner in their paper on cache�e�cient algorithms for sorting ���	�

For the dictionary dataset� our algorithm was ��� times faster on the SGI Origin����� and �
times faster on both the Sun Ultras compared to the ternary search tree algorithm proposed by
Bentley and Sedgewick ��	� For the datamining dataset� our algorithm was ������
 times faster
than a B�tree�trie and ������� times faster than a hashtable�trie� A comparison of the number of
instructions executed indicates that the algorithms presented in this paper derive their performance
advantage primarily by making better use of the memory hierarchy�

References

��� R� Agrawal� T� Imielinski� and A� Swami� Mining association rules between sets of items in large data
bases� In Proc� of the ACM SIGMOD Conference on Management of Data� pages �����
� Washington�
D�C�� May ���	�

��� R� Agrawal and R� Srikant� Fast algorithms for mining association rules� In Proceedings of the ��th

International Conference on Very Large Databases� �����

�	� E� Ai�Sunwaiyel and E� Horowitz� Algorithms for trie compaction� ACM Transactions on Database

Systems� �������	�
	� �����

��� J� Aoe� K� Marimoto� and T� Sato� An e�cient implementation of trie structure� Software Practice and
Experience� ������
������� �����

��� J� Aoe� K� Morimoto� M� Shishibori� and K� Park� A trie compaction algorithm for a large set of keys�
IEEE Transactions on Knowledge and Data Engineering� ��	����
���� ���
�

�
� A� Appel and G� Jacobson� The world�s fastest scrabble program� Communications of the ACM�
	����������� �����

��� J� Bentley and R� Sedgewick� Fast algorithms for sorting and searching strings� In Proceedings of

SODA���� �����

�IP addresses �currently� are ���bits long and arbitrary�length pre�xes can appear in network routing tables�






��� A� Blumer� J� Blumer� D� Haussler� and R� McConnel� Complete inverted �les for e�cient text retrieval
and analysis� Journal of the ACM� 	��	��������� �����

��� H� Clampett� Randomized binary searching with tree structures� Communications of the ACM�
��	���
	��� ��
��

���� J� Clement� P� Flajolet� and B� Vallee� The analysis of hybrid trie structures� Technical Report 	����
INRIA� Nov �����

���� M� Degermark� A� Brodnik� S� Carlsson� and S� Pink� Small forwarding tables for fast routing lookups�
Computer Communication Review� October �����

���� J� Dundas� Implementing dynamic minimal�pre�x tries� Software Practice and Experience� ������������
��� �����

��	� P� Flajolet and C� Puech� Partial match retrieval of multidimensional data� Journal of the ACM�
		����	������� ���
�

���� G� Gonnet and R� Baeza�Yates� Handbook of Algorithms and Data Structures� in Pascal and C� Addison�
Wesley� second edition� �����

���� E� Han� V� Karypis� and V� Kumar� Scalable parallel data mining for association rules� In Proceedings

of SIGMOD���� �����

��
� J� Hennessy and D� Patterson� Computer Architecture� A Quantitative Approach� Morgan Kaufman�
second edition� ���
�

���� D� Knuth� The Art of Computer Programming� volume 	� Sorting and Searching� Addison�Wesley�
���	�

���� A� Lamarca and R� Ladner� The in�uence of caches on the performance of sorting� In Proceedings of

SODA���� �����

���� C� Lucchesi and T� Knowaltowski� Applications of �nite automata representing large vocabularies�
Software Practice and Experience� �	�������	�� ���	�

���� K� Maly� Compressed tries� Communications of the ACM� ���������� ���
�

���� S� Nilsson and G� Karlsson� Fast address lookup for internet routers� In Proceedings of IEEE Broadband

Communications���� �����

���� J� Peterson� Computer Programs for Spelling Correction� Lecture Notes in Computer Science� Springer
Verlag� �����

��	� IBM Quest Data Mining Project� The Quest retail transaction data generator�� ���
�

���� R� Rivest� Partial match retrieval algorithms� SIAM Journal on Computing� �������� ���
�

���� S� Sharma and A� Acharya� The msim memory hierarchy simulator� Personal Communication� �����

��
� S� Venkatachary and G� Varghese� Faster IP Lookups Using Controlled Pre�x Expansion� In Proceedings
of SIGMETRICS���� pages ����� �����

���� M� Waldvogel� G� Varghese� J� Turner� and B� Plattner� Scalable high speed IP routing lookups� In
Proceedings of SIGCOMM���� �����

���� M� Zaki� M� Ogihara� S� Parthasarthy� and W� Li� Parallel data mining for association rules on shared�
memory multi�processors� In Proceedings of Supercomputing���� ���
�

���� M� Zaki� S� Parthasarathy� and W� Li� A localized algorithm for parallel association mining� In Pro	

ceedings of the �th Annual ACM Symposium on Parallel Algorithms and Architectures� �����

�Available at http���www�almaden�ibm�com�cs�quest�syndata�html�

��



a d

t i o

d g t

n

Figure �� Example of a trie� A shaded box next to a key indicates that a string ends at that key�
For example� the shaded box next to n at the second level indicates that the string �an� ends at
that node�

A Background

A�� Tries

Knuth ���	 de�nes a trie as an m�way tree whose nodes are m�place vectors with components
corresponding to individual symbols in the alphabet� Each node on level l represents the set of all
strings that begin with certain sequence of l symbols� the node speci�es anm�way branch depending
on the �l � ��th symbol� Figure � presents a trie that contains the words and� an� at� dig and dot�

The search for a string in a trie starts from the root node and proceeds as a descent in the tree
structure� At each level� the fanout of the node is examined to determine if the the next symbol in
the string appears as a label for one of the links� The search is successful is all the symbols in the
strings are matched� the search is unsuccessful if at any node� the next symbol in the string does
not appear as a label for one of the outgoing links�

A�� Modern memory hierarchies

Modern memory hierarchies attempt to bridge the di�erence between processor cycle time and
memory access time by inserting one to three caches �referred to as L�� L� and L
� between the
processor and the main memory� In contemporary systems� data in the L� cache can typically be
accessed in a single processor cycle� data in the L� cache in ���
 processor cycles and data in the
main memory in ������ processor cycles�

The size of caches grows with their distance from the processor � the caches closer to the
processor are smaller than the caches further in the hierarchy� In contemporary systems� the L�
cache is typically between �KB and 
�KB� the L� cache is between 
�KB and �MB and the L

cache �if it exists� is multiple megabytes� Modern memory hierarchies satisfy the inclusion property
� i�e�� the cache at level i contains all the data contained in the cache at level �i� ���

Caches are divided into lines� a reference to any memory location in a cache line results in the
entire line being brought in from the next level in the memory hierarchy� Newer implementations
include an optimization that brings in referenced memory location �rst and allows the processor
to resume execution while the rest of the cache line is being brought in� Larger cache lines are
useful for programs with strong spatial locality� however� each cache miss takes longer to satisfy�
Typically� cache lines are 
� or �� bytes long�

Associativity of a cache is de�ned to be the number of locations in this cache that a memory
location in the next level in the memory hierarchy can be mapped to� A cache that has m such
locations is referred to as m�way associative� Caches with �m � �� are referred to as direct�mapped�
caches with �m � num lines in cache� are referred to as fully associative� Caches in modern
memory hierarchies are� typically� either direct�mapped or ��way associative�

For more information on modern memory hierarchies� see ���	�

��


