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Abstract

Virtual machine (VM) memory allocation and VM
consolidation can benefit from the prediction of VM page
miss rate at each candidate memory size. Such predic-
tion is challenging for the hypervisor (or VM monitor)
due to a lack of knowledge on VM memory access pat-
tern. This paper explores the approach that the hypervi-
sor takes over the management for part of the VM mem-
ory and thus all accesses that miss the remaining VM
memory can be transparently traced by the hypervisor.

For online memory access tracing, its overhead should
be small compared to the case that all allocated mem-
ory is directly managed by the VM. To save memory
space, the hypervisor manages its memory portion as an
exclusive cache (i.e., containing only data that is not in
the remaining VM memory). To minimize I/O overhead,
evicted data from a VM enters its cache directly from
VM memory (as opposed to entering from the secondary
storage). We guarantee the cache correctness by only
caching memory pages whose current contents provably
match those of corresponding storage locations. Based
on our design, we show that when the VM evicts pages in
the LRU order, the employment of the hypervisor cache
does not introduce any additional I/O overhead in the
system.

We implemented the proposed scheme on the Xen
para-virtualization platform. Our experiments with mi-
crobenchmarks and four real data-intensive services
(SPECweb99, index searching, TPC-C, and TPC-H) il-
lustrate the overhead of our hypervisor cache and the
accuracy of cache-driven VM page miss rate prediction.
We also present the results on adaptive VM memory al-
location with performance assurance.

1 Introduction

Virtual machine (VM) [2,8,22] is an increasingly pop-
ular service hosting platform due to its support for fault
containment, performance isolation, ease of transparent
system management [4] and migration [7]. For data-
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Figure 1:Virtual machine architecture on which the hypervi-
sor manages part of the VM memory. Less VM direct memory
results in more hypervisor-traceable data accesses.

intensive services, the problem of VM memory alloca-
tion arises in the context of multi-VM memory sharing
and service consolidation. To achieve performance iso-
lation with quality-of-service (QoS) constraints, it is de-
sirable to predict the VM performance (or page miss rate)
at each candidate memory size. This information is also
called page miss ratio curve [27].

Typically, the hypervisor (or the VM monitor) sees all
VM data accesses that miss the VM memory in the form
of I/O requests. Using the ghost buffer [12, 17] tech-
nique, it can predict the VM page miss rate for memory
sizes beyond its current allocation. However, since data
accesses that hit the VM memory are not visible to the
hypervisor, it is challenging to estimate VM page miss
rate for memory sizes smaller than its current allocation.
An intuitive idea to predict more complete VM page miss
rate information is the following (illustrated in Figure 1).
The hypervisor takes over the management for part of the
VM memory and thus all accesses that miss the remain-
ing VM directly-managed memory (orVM direct mem-
ory) can be transparently traced by the hypervisor. By
applying the same ghost buffer technique, the hypervi-
sor can now predict VM performance for memory sizes
beyond the VM direct memory size.

To be able to apply online, our VM memory access
tracing technique must be efficient. More specifically,
the hypervisor memory management should deliver com-
petitive performance compared to the original case that
all allocated VM memory is directly managed by the VM
OS. In order to avoid double caching, we keep the hy-
pervisor memory as an exclusive cache to the VM direct



memory. Exclusive cache [5,12,25] typically admits data
that is just evicted from its upper-level cache in the stor-
age hierarchy (VM direct memory in our case). It is effi-
cient for evicted VM data to enter directly into the hyper-
visor cache (as opposed to loading from secondary stor-
age). However, this may introduce caching errors when
the VM memory content does not match that of corre-
sponding storage location. We ensure the correctness of
our cache by only admitting data that has provably the
same content as in the corresponding storage location.
We achieve this by only accepting evicted pages before
reuse to avoid data corruptions, and by maintaining two-
way mappings between VM memory pages and storage
locations to detect mapping changes in either direction.

Based on our design, our hypervisor exclusive cache is
able to manage large chunk of a VM’s memory without
increasing the overall system page faults (or I/O over-
head). However, the cache management and minor page
faults (i.e., data access misses at the VM direct memory
that subsequently hit the hypervisor cache) incur some
CPU overhead. We believe that the benefit of predicting
accurate VM page miss ratio curve outweighs such over-
head in many situations, particularly for data-intensive
services where I/O is a more critical resource than CPU.
Additionally, when the hypervisor cache is employed for
acquiring VM memory access pattern and guiding VM
memory allocation, it only needs to be enabled intermit-
tently (when a new memory allocation is desired).

2 Related Work

VM memory allocation Virtual machine (VM) tech-
nologies like Disco [3, 9], VMware [8, 22, 23], and
Xen [2] support fault containment and performance iso-
lation by partitioning physical memory among multiple
VMs. It is inherently challenging to derive good mem-
ory allocation policy at the hypervisor due to the lack of
knowledge on VM data access pattern that is typically
available to the OS. Cellular Disco [9] supports memory
borrowing from cells rich of free memory to memory-
constrained cells. However, cells in their context are VM
containers and they are more akin to physical machines
in a cluster. Their work does not address policy issues for
memory allocation among multiple VMs within a cell.

In VMware ESX server, Waldspurger proposed a sam-
pling scheme to transparently learn the proportion of
VM memory pages that are accessed within a time pe-
riod [23]. This result can be used to derive a working set
estimation and subsequently to guide VM memory allo-
cation. This sampling approach requires very little over-
head but it is less powerful than VM memory allocation
based on accurate VM page miss ratio curve.

1. The sampling approach may not be able to support
memory allocation with flexible QoS constraint.

One possible allocation objective is to minimize a
system-wide page miss rate metric with the con-
straint that no VM may have more thanδ% increase
in page misses compared to its baseline allocation.

2. Although the sampling approach can estimate the
amount of memory accessed within a period of time
(i.e., the working set), the working set may not al-
ways directly relate to the VM’s performance be-
havior. For example, it is known that the working
set model may over-estimate the memory need of a
program with long sequential scans [6,18].

We will elaborate on these issues in Section 4.2 and ex-
perimentally demonstrate them in Section 6.5.

Exclusive cache management Wong and Wilkes [25]
argued that exclusive lower-level caches are more effec-
tive than inclusive ones (by avoiding double caching).
This is particularly the case when lower-level caches are
not much larger than upper-level ones in the storage hi-
erarchy. To implement an exclusive cache, they intro-
duced a DEMOTE operation to notify lower-level caches
about data evictions from upper-level caches. To achieve
cache correctness, they assume the evicted data contains
exactly the same content as in the corresponding storage
location. They do not address how this is achieved in
practice.

Chenet al. [5] followed up Wong and Wilkes’s work
by proposing a transparent way to infer upper-level
cache (memory page) evictions. By intercepting all I/O
reads/writes, they maintain the mapping from memory
pages to storage blocks. A mapping change would indi-
cate a page reuse which infers an eviction has occurred
earlier. Joneset al. [12] further strengthened the trans-
parent inference of page reuses by considering additional
issues such as storage block liveness, file system jour-
naling, and unified caches (virtual memory cache and
file system buffer cache). In these designs, the exclu-
sive cache is assumed to be architecturally closer to the
lower-level storage devices and data always enters the
cache from the storage devices. In our context, however,
it is much more efficient for evicted data to enter the hy-
pervisor cache directly from VM memory. This intro-
duces potential correctness problems when the entering
VM memory content does not match the storage content.
In particular, both Chenet al. [5] and Joneset al. [12]
detect page reuses and then infer earlier evictions. At
page reuse time, the correct content for the previous use
may have already been zero-cleaned or over-written —
too late for loading into the hypervisor cache.

Hypervisor-level cache As far as we know, existing
hypervisor-level buffer cache (e.g, Copy-On-Write disks
in Disco [3] and XenFS [24]) is used primarily for the
purpose of keeping single copy of data shared across



multiple VMs. At the absence of such sharing, one com-
mon belief is that buffer cache management is better left
to the VM OS since it knows more about the VM it-
self. In this paper, we show that the hypervisor has suf-
ficient information to manage the cache efficiently since
all accesses to the cache are trapped in software. More
importantly, the cache provides a transparent means to
learn the VM data access pattern which in turn guides
performance-assured memory allocation.

OS-level program memory need estimation Zhouet
al. [27] and Yanget al. [26] presented operating sys-
tem (OS) techniques to estimate program memory need
for achieving certain desired performance. The main
idea of their techniques is to revoke access privilege
on (infrequently accessed) partial program memory and
trap all accesses on this partial memory. Trapped data
accesses are then used to estimate program page miss
ratio or other performance metric at different memory
sizes. While directly applying these OS-level tech-
nique within each VM can estimate VM memory need,
our hypervisor-level approach attains certain advantages
while it also presents unique challenges.
• Advantages: In a VM platform, due to potential lack

of trust between the hypervisor and VMs, it is more
appropriate for the hypervisor to collect VM mem-
ory requirement information rather than let the VM
directly report such information. Further, given the
complexity of OS memory management, separating
the memory need estimation from the OS improves
the whole system modularity.

• Challenges: Correctly maintaining the hypervisor
exclusive cache is challenging due to the lack of
inside-VM information (e.g., the mapping infor-
mation between memory pages and correspond-
ing storage locations). Such information is read-
ily available for an OS-level technique within each
VM. Further, the employment of a hypervisor
buffer cache potentially incurs more management
overhead. More careful design and implementation
are needed to keep such overhead small.

3 Hypervisor-level Exclusive Cache

Our hypervisor-level cache has several properties that
are uncommon to general buffer caches in storage hier-
archies. First, its content is exclusive to its immediate
upper-level cache in the storage hierarchy (VM direct
memory). Second, this cache competes for the same
physical space with its immediate upper-level cache.
Third, data enters this cache directly from its immediate
upper-level cache (as opposed to entering from its imme-
diate lower-level cache in conventional storage systems).
These properties combined together present unique chal-

lenges for our cache design. In this section, we present
the basic design of our hypervisor-level exclusive cache,
propose additional support to ensure cache correctness,
discuss the transparency of our approach to the VM OS,
and analyze its performance (cache hit rate) and manage-
ment overhead.

3.1 Basic Design

The primary design goals of our hypervisor cache are
that: 1) it should try not to contain any data that is already
in VM memory (or to be exclusive); and 2) it should try
to cache data that is most likely accessed in the near fu-
ture. To infer the access likelihood of a page, we can use
the page eviction order from the VM as a hint. This is
because the VM OS would only evict a page when the
page is believed to be least useful in the near future.

For write accesses, we can either support delayed
writes (i.e., writes are buffered until the buffered copies
have to be evicted) or write-through in our cache man-
agement. Delayed writes reduce the I/O traffic, however
delayed writes in the hypervisor cache are not persistent
over system crashes. They may introduce errors over sys-
tem crashes when the VM OS counts the write comple-
tion as a guarantee of data persistence (e.g., in file system
fsync()). Similar problems were discussed for delayed
writes in disk controller cache [16]. On the other hand,
the SCSI interface allows the OS to individually spec-
ify I/O requests with persistence requirement (through
the force-unit-access or FUA bit). In general, we believe
delayed writes should be employed whenever possible
to improve performance. However, write-through might
have to be used if persistence-related errors are not toler-
able and we cannot distinguish those writes with persis-
tence requirement and those without.

In our cache management, all data units in the hy-
pervisor cache (typically memory pages) are organized
into a queue. Below we describe our management pol-
icy, which defines actions when a read I/O request, a VM
data eviction, or a write I/O request (under write-through
or delayed write) reaches the hypervisor. A simplified
illustration is provided in Figure 2.

• Read I/O request=⇒ If it hits the hypervisor cache,
then we bring the data from the hypervisor cache to
VM memory and return the I/O request. To avoid
double caching at both levels, we move it to the
queue head (closest to being discarded) in the hy-
pervisor cache or explicitly discard it. If the request
misses at the hypervisor cache, then we bring the
data from external storage to the VM memory as
usual. We donot keep a copy in the hypervisor
cache.

• VM data eviction=⇒ We cache the evicted data at
the queue tail (furthest away from being discarded)
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Figure 2: A simplified illustration of our hypervisor cache
management.

of the hypervisor cache. In this way, the hypervisor
cache discards data in the same order that the VM
OS evicts them. If the hypervisor cache and the VM
memory are not strictly exclusive, it is also possible
for the evicted data to hit a cached copy. In this case,
we simply move the cached copy to the queue tail.

• Write I/O request (write-through)=⇒ We write the
data to the external storage as usual. If the request
hits the hypervisor cache, then we also discard the
hypervisor cache copy. We do not need to keep an
updated copy since the VM memory should already
contain it.

• Write I/O request (delayed write)=⇒ Each write
I/O request is buffered at the hypervisor cache
(marked as dirty) and then the request returns. The
data is added at the hypervisor cache queue tail. If
the request hits an earlier cached unit on the same
storage location, we discard that unit. Although the
write caching creates temporary double buffering
in VM memory and hypervisor cache, this double
buffering is of very short duration if the VM OS also
employs delayed writes (in this case a write is typ-
ically soon followed by an eviction). Dirty cached
data will eventually be written to the storage when
they reach the queue head to be discarded.

To support lookup, cached entries in the hypervisor
cache are indexed according to their mapped storage lo-
cations. Therefore we need to know the mapped stor-
age location for each piece of evicted data that enters the
cache. Such mapping can be constructed at the hyper-
visor by monitoring I/O requests between VM memory
pages and storage locations [5]. Specifically, an I/O (read
or write) between pagep and storage locations estab-
lishes a mapping between them (calledP2Smapping). A
new mapping for a page replaces its old mapping. Addi-
tionally, we delete a mapping when we are aware that it
becomes stale (e.g., when a page is evicted or released).
We distinguish page release from page eviction in that
page eviction occurs when the VM runs out of mem-
ory space while page release occurs when the VM OS

Read or write (p1, s1)

VM page 

address

Storage

location

add p1 s1

Eviction or release (p2)
delete p2 s2

… ... … ...

… ... … ...
… ... … ...

… ... … ...

Figure 3: An illustration of the VM page to storage location
mapping table (or P2S table in short).

feels it is not useful. For example, a page in file system
buffer cache is released when its mapped storage loca-
tion becomes invalid (e.g., as a result of file truncation).
Although both page eviction and release should delete
the page to storage location mapping, only evicted data
should enter the hypervisor cache. Figure 3 provides an
illustration of the VM page to storage location mapping
table.

3.2 Cache Correctness

Since the hypervisor cache directly supplies data to a
read request that hits the cache, the data must be exactly
the same as in the corresponding storage location to guar-
antee correctness. To better illustrate our problem, below
we describe two realistic error cases that we experienced:

Missed eviction/release:Pagep is mapped to storage
locations and the hypervisor is aware of this map-
ping. Later,p is reused for some other purpose
but the hypervisor fails to detect the page eviction
or release. Also assume this reuse slips through
the detection of available reuse detection techniques
(e.g., Geiger [12]). Whenp is evicted again and
the hypervisor captures the eviction this time, we
would incorrectly admit the data into the cache with
mapped storage locations. Later read ofs will hit
the cache and return erroneous data.

Stale page mapping:The VM OS may sometimes keep
a page whose mapping to its previously mapped
storage location is invalid. For instance, we ob-
serve that in the Linux 2.6 ext3 file system, when a
meta-data block is recycled (due to file deletion for
example), its memory cached page would remain
(though inaccessible from the system). Since it is
inaccessible (as if it is a leaked memory), its consis-
tency does not need to be maintained. At its evic-
tion time, its content may be inconsistent with the
storage location that it was previously mapped to.
Now if we cache them, we may introduce incorrect
data into the hypervisor cache. The difficulty here
is that without internal OS knowledge, it is hard to
tell whether an evicted page contains a stale page
mapping or not.
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Figure 4:Service throughput reduction and real device I/O in-
crease of the hypervisor cache management when new cached
data is always loaded from the storage. Results are for a trace-
driven index searching workload (described in Section 6.1).
Due to such large cost, our cache management allows evicted
VM data to enter the cache directly from VM memory.

We identify two sufficient conditions that would meet
our cache correctness goal:

Condition 1 (admission): Each time we cache a page,
we guarantee it contains the same content as in the
corresponding storage location.

Condition 2 (invalidation): The hypervisor captures all
I/O writes that may change storage content. If we
have a cached copy for the storage location being
written to, we remove it from the hypervisor cache.

The invalidation condition is easy to support since the hy-
pervisor typically captures all I/O requests from VMs to
storage devices. The challenge lies in the support for the
admission condition due to the limited amount of infor-
mation available at the hypervisor. Note that the admis-
sion condition is trivially satisfied if we always load new
data from the storage [5,12]. However, this is inappropri-
ate in our case due to its large cost. To illustrate the cost
when data enters the cache from the storage, Figure 4
shows the substantial performance reduction and I/O in-
crease for a trace-driven index searching workload.

Our correctness guarantee is based on a set of as-
sumptions about the system architecture and the VM
OS. First, we assume that the hypervisor can capture all
read/write I/O operations to the secondary storage. Sec-
ond, we assume the hypervisor can capture every page
eviction and release (before reuse) in the VM. Third, we
assume no page is evicted from the VM while it is dirty
(i.e., it has been changed since last time it was written to
the storage). While the first and the third assumptions are
generally true without changing the VM OS, the second
assumption needs more discussion and we will provide
that later in Section 3.3.

In addition to these assumptions, we introduce a re-
verse mapping table that records the mapping from stor-
age locations to VM pages (or S2P table). Like the P2S
mapping table described in Section 3.1, a mapping is es-
tablished in the S2P table each time a read/write I/O re-
quest is observed at the hypervisor. A new mapping for
a storage location replaces its old mapping. Each time

a pagep is evicted from the VM memory, we check the
two mapping tables. Letp be currently mapped to stor-
age locations in the P2S table ands be mapped to page
p′ in the S2P table. We admit the evicted page into the
hypervisor cache only ifp = p′. This ensures thatp is
the last page that has performed I/O operation on storage
locations.

Correctness proof: We prove that our approach can
ensure the admission condition for correctness. Consider
each pagep that we admit into the hypervisor cache with
a mapped storage locations. Since we check the two
mapping tables before admitting it, the most recent I/O
(read or write) that concernsp must be ons and the
reverse is also true. This means that the most recent
I/O operation aboutp and the most recent I/O opera-
tion abouts must be the same one. At the completion
of that operation (no matter whether it is a read or write),
p ands should contain the same content. Below we show
that neither the storage content nor the page content has
changed since then. The storage content has not changed
since it has not established mapping with any other page
(otherwise the S2P table would have shown it is mapped
to that page). The page content has not changed because
it has not been reused and it is not dirty. It is not reused
since otherwise we should have seen its eviction or re-
lease before reuse and its mapping in the P2S table would
have been deleted. Note our assumption that we can cap-
ture every page eviction and release in the VM.

3.3 Virtual Machine Transparency

It is desirable for the hypervisor cache to be imple-
mented with little or no change to the VM OS. Most of
our design assumptions are readily satisfied by existing
OSes without change. The only non-transparent aspect
of our design is that the hypervisor must capture every
page eviction and release (before reuse) in the VM. A
possible change to the VM OS is to make an explicit trap
to the hypervisor at each such occasion. The only infor-
mation that the trap needs to provide is the address of the
page to be evicted or released.

The suggested change to the VM OS is semantically
simple and it should be fairly easy to make for existing
OSes. Additionally, the eviction or release notification
should not introduce additional fault propagation vulner-
ability across VM boundaries. This is because the only
way this operation can affect other VMs’ correctness is
when multiple VMs are allowed to access the same stor-
age locations. In this case a VM can always explicitly
write invalid content into these shared locations. In sum-
mary, our suggested change to the VM OS fits well into
a para-virtualization platform such as Xen [2].

We also provide some discussions on the difficulty
of implementing a hypervisor-level exclusive cache in a



fully transparent way. Earlier transparent techniques [5,
12] can detect the eviction of a page after its reuse. How-
ever, reuse time detection is too late for loading evicted
data directly from VM memory to the hypervisor cache.
At reuse time, the original page content may have al-
ready be changed and some OSes would have zeroed the
page before its reuse. Further, it is not clear any avail-
able transparent technique can capture every page reuse
without fail (no false negative).

3.4 Performance and Management Overhead

The primary goal of the hypervisor cache is to allow
transparent data access tracing. Yet, since it competes
for the same physical space with the VM direct memory,
its employment in an online system should not result in
significant VM performance loss. This section analyzes
the cache hit rate and management overhead of our hy-
pervisor cache scheme compared to the original case in
which all memory is directly managed by the VM.

Caching performance We compare the overall system
cache hit rate of two schemes: the first contains a VM
memory ofX pages with an associated hypervisor cache
of Y pages (calledHcachescheme); the other has a VM
memory ofX+Y pages with no hypervisor cache (called
VMonlyscheme). Here we consider an access to be a hit
as long as it does not result in any real device I/O. We
use an ideal model in which the VM OS employs per-
fect LRU cache replacement policy. Under this model,
we show that Hcache and VMonly schemes achieve the
same cache hit rate on any given data access workload.
Our result applies to both read and write accesses if we
employ delayed writes at the hypervisor cache. Other-
wise (if we employ write-through) the result only applies
to reads.

Consider a virtual LRU stack [15] that orders all pages
according to their access recency — a page is in the
k-th location from the top of the stack if it is thek-th
most recently accessed page. At each step of data ac-
cess, the VM memory under the VMonly scheme con-
tains the topX + Y pages in the virtual LRU stack. For
the Hcache scheme, the topX pages in the stack are in
the VM memory while the nextY pages should be in the
hypervisor cache. This is because our hypervisor cache
is exclusive to the VM memory and it contains the most
recently evicted pages from the VM memory (accord-
ing to the cache management described in Section 3.1).
So the aggregate in-memory content is the same for the
two schemes at each step of data access (as shown in
Figure 5). Therefore VMonly and Hcache should have
the identical data access hit/miss pattern for any given
workload and consequently they should achieve the same
cache hit rate.

The above derivation assumes that the hypervisor

VM memory

of X+Y pages

… ...
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LRU stack

stack
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VM memory

of X pages

VMonly Hcache

Hypervisor cache 

of Y pages

queue

tail

queue

head

Figure 5: In-memory content for VMonly and Hcache when
the VM OS employs perfect LRU replacement.

cache is strictly exclusive to the VM memory and all
evicted pages enter the hypervisor cache. These assump-
tions may not be true in practice for the following rea-
sons. First, there is a lag time between a page being
added to the hypervisor and it is being reused in the VM.
The page is doubly cached during this period. Second,
we may prevent some evicted pages from entering the
hypervisor cache due to correctness concern. However,
these exceptions are rare in practice so that they do not
visibly affect the cache hit rate (as demonstrated by our
experimental results in Section 6.3).

Management overhead The employment of the hy-
pervisor cache introduces additional management (CPU)
overhead, including the mapping table lookup and simple
queue management in the hypervisor cache. Addition-
ally, the handling of page eviction and minor page fault
(i.e., data access misses at the VM memory that subse-
quently hit the hypervisor cache) requires data transfer
between the VM memory and the hypervisor cache. Page
copying can contribute a significant amount of overhead.
Remapping of pages between the VM and the hypervisor
cache may achieve the goal of data transfer with much
less overhead. Note that for minor page faults, there may
also be additional CPU overhead within the VM in terms
of page fault handling and I/O processing (since this ac-
cess may simply be a hit in VM memory if all memory
is allocated to the VM).

For the employment of the hypervisor cache, the ben-
efit of transparent data access is attained at the additional
CPU cost. More specifically, when we move awayY

pages from the VM memory to the hypervisor cache,
we can transparently monitor data accesses on these
pages while at the same time we may incur overhead
of cache management and minor page faults on them.



Note that the monitoring of theseY pages provides more
useful information than monitoringY randomly chosen
pages [23]. This is because the pages in the hypervisor
cache are those that the VM OS would evict first when
its memory allocation is reduced. Access statistics on
these pages provide accurate information on additional
page misses when some memory is actually taken away.

4 Virtual Machine Memory Allocation

With the hypervisor management for part of the VM
memory, we discuss our ability to predict more complete
VM page miss ratio curve and consequently to guide
VM memory allocation. We then provide an example
of complete-system workflow for our guided VM mem-
ory allocation. We also discuss a potential vulnerability
of our adaptive memory allocation to VM manipulation.

4.1 VM Miss Ratio Curve Prediction

To best partition the limited memory for virtual ma-
chines (VMs) on a host or to facilitate VM consolidation
over a cluster of hosts, it is desirable to know each VM’s
performance or page miss rate at each candidate alloca-
tion size (called miss ratio curve [27]). Joneset al. [12]
showed that the miss ratio curve can be determined for
memory sizes larger than the current memory allocation
when all I/O operations and data evictions of the VM
are traced or inferred. Specifically, the hypervisor main-
tains a ghost buffer (a simulated buffer with index data
structure but no actual page content) [17]. Ghost buffer
entries are maintained in the LRU order and hypotheti-
cal hit counts on each entry are tracked. Such hit statis-
tics can then be used to estimate the VM page hit rate
when the memory size increases (assuming the VM em-
ploys LRU page replacement order). To reduce ghost
buffer statistics collection overhead, hit counts are typi-
cally maintained on segments of ghost buffer pages (e.g.,
4 MB) rather than on individual pages.

Our hypervisor cache-based scheme serves as an im-
portant complement to the above VM miss ratio predic-
tion. With the hypervisor management for part of the
VM memory, we can transparently trace all VM data ac-
cesses that miss the remaining VM direct memory. This
allows the hypervisor to apply the ghost buffer technique
to predict VM page miss rate at all memory sizes beyond
the VM direct memory size (which is smaller than the
currently allocated total VM memory size). In particular,
this approach can predict the amount of performance loss
when some memory is taken away from the VM.

4.2 Memory Allocation Policies

With known miss ratio curve for each VM at each
candidate memory allocation size, we can guide multi-

VM memory allocation with flexible QoS constraint and
strong performance assurance. Let each VM on the host
start with a baseline memory allocation, the general goal
is to adjust VM memory allocation so that the overall
system-wide overall page misses is reduced while cer-
tain performance isolation is maintained for each VM.
Within such a context, we describe two specific alloca-
tion policies. The purpose of the first policy is to il-
lustrate our scheme’s ability in supporting flexible QoS
constraint (that a sampling-based approach is not ca-
pable of). The second policy is a direct emulation of
a specific sampling-based approach (employed in the
VMware ESX server [23]) with an enhancement.

Isolated sharing We dynamically adjust memory allo-
cation to the VMs with the following two objectives:

• Profitable sharing: Memory is divided among mul-
tiple VMs to achieve low system-wide overall page
misses. In this example, we define the system-wide
page miss metric as the geometric mean of each
VM’s miss ratio (its number of page misses under
the new memory allocation divided by that under
its baseline allocation). Our choice of this metric
is not necessary. We should also be able to support
other system-wide performance metrics as long as
they can be calculated from the predicted VM miss
ratio curves.

• Isolation constraint: If a VM’s memory allocation
is less than its baseline allocation, it should have a
bounded performance loss (e.g., no more thanδ%
in additional page misses) compared to its perfor-
mance under the baseline allocation.

We describe our realization of this allocation policy.
One simple method is to exhaustively check all can-
didate allocation strategies for estimated system-wide
performance metric and individual VM isolation con-
straint compliance. The computation overhead for such
a method is typically not large for three or fewer VMs
on a host. With three VMs sharing a fixed total memory
size, there are two degrees of freedom in per-VM mem-
ory allocation. Assuming 100 different candidate mem-
ory sizes for each VM, around 10,000 different whole-
system allocation strategies need to be checked.

The search space may become too large for exhaus-
tive checking when there are four or more VMs on the
host. In such cases, we can employ a simple greedy al-
gorithm. At each step we try to move a unit of memory
(e.g., 4 MB) from the VM with the least marginal per-
formance loss to the VM with the largest marginal per-
formance gain if the adjustment is considered profitable
(it reduces the estimated system-wide page miss metric).
The VM that loses memory must still satisfy the isola-
tion constraint at its new allocation. The algorithm stops
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Figure 6:An example workflow of hypervisor cache-based data access tracing and multi-VM memory allocation.

when all profitable adjustments would violate the isola-
tion constraint. Other low-overhead optimization algo-
rithms such as simulated annealing [13] may also be ap-
plied in this case. Further exploration falls beyond the
scope of this paper.

Note that in all the above algorithms, we do not phys-
ically move memory between VMs when evaluating dif-
ferent candidate allocation strategies. For each allocation
strategy, the performance (page miss rate) of each VM
can be easily estimated by checking the predicted VM
page miss ratio curve.

VMware ESX server emulation The VMware ESX
server employs a sampling scheme to estimate the
amount of memory accessed within a period of time (i.e.,
the working set). Based on the working set estimation, a
VM whose working set is smaller than its baseline mem-
ory allocation is chosen as avictim — having some of
its unneeded memory taken away (according to an idle
memory tax parameter). Those VMs who can benefit
from more memory then divide the surplus victim mem-
ory (according to certain per-VM share).

We can easily emulate the above memory allocation
policy. Specifically, our per-VM page miss ratio curve
prediction allows us to identify victim VMs as those
whose performance does not benefit from more memory
and does not degrade if a certain amount of memory is
taken away. Since the VM page miss ratio curve con-
veys more information than the working set size alone
does, our scheme can identify more victim VMs appro-
priately. Consider a VM that accesses a large amount of
data over time but rarely reuses any of them. It would
exhibit a large working set but different memory sizes
would not significantly affect its page fault rate. Such
problems with the working set model were well docu-
mented in earlier studies [6,18].

4.3 An Example of Complete-System Workflow

We describe an example of complete-system work-
flow. We enable the hypervisor cache when a new mem-
ory allocation is desired. At such an occasion, we trans-
fer some memory from each VM to its respective hy-
pervisor cache and we then perform transparent data ac-

cess tracing at the hypervisor. With collected traces and
derived miss ratio curve for each VM, we determine a
VM memory allocation toward our goal. We then release
the memory from victim VM’s hypervisor cache to the
beneficiary VM. We finally release memory from all the
hypervisor caches back to respective VMs. Figure 6 il-
lustrates this process.

Our scheme requires a mechanism for dynamic mem-
ory adjustment between the VM memory and hypervisor
cache. The ballooning technique [23] can serve this pur-
pose. The balloon driver squeezes memory out of a VM
by pinning down some memory so the VM cannot use it.
The memory can be released back by popping the bal-
loon (i.e., un-pinning the memory).

The size of the hypervisor cache depends on our need
of VM page miss rate information. Specifically, more
complete page miss rate information (starting from a
smaller candidate memory size) demands a smaller VM
direct memory (and thus a larger hypervisor cache).
When the predicted page miss rate information is used to
guide VM memory allocation, our desired completeness
of such information depends on the adjustment threshold
(the maximum amount of memory we are willing to take
away from the VM).

For the purpose of acquiring VM data access pattern
and guiding memory allocation, the hypervisor cache
can release memory back to the VM as soon as an ap-
propriate VM memory allocation is determined. Since
a new memory allocation is typically only needed once
in a while, the management overhead of the hypervisor
cache is amortized over a long period of time. However,
if the management overhead of the hypervisor cache is
not considered significant, we may keep the hypervisor
cache permanently so we can quickly adjust to any new
VM data access behaviors.

It should be noted that there is an inherent delay in our
allocation scheme reacting to VM memory need changes
— it takes a while to collect sufficient I/O access trace
for predicting VM page miss ratio curve. As a result, our
scheme may not be appropriate for continuously fluctuat-
ing memory re-allocations under very dynamic and adap-
tive VM workloads.



4.4 Vulnerability to VM Manipulation

One security concern with our adaptive memory al-
location is that a selfish or malicious VM may exag-
gerate its memory requirement to acquire more memory
allocation than needed. This might appear particularly
problematic for our VM memory requirement estima-
tion based on VM-provided page eviction information.
More specifically, a selfish or malicious VM may artifi-
cially boost page eviction events so that the hypervisor
would predict higher-than-actual VM memory require-
ment. However, we point out that the VM may achieve
the same goal of exaggerating its memory requirement
by artificially adding unnecessary I/O reads. Although
we cannot prevent a VM from exaggerating its memory
requirement, its impact on other VMs’ performance is
limited as long as we adhere to an appropriate perfor-
mance isolation constraint.

5 Prototype Implementation

We made a proof-of-concept prototype implementa-
tion of the proposed hypervisor cache on Xen virtual
machine platform (version 3.0.2) [2]. On this platform,
the VMs are called xenU domains and the VM OS is a
modified Linux 2.6.16 kernel. The hypervisor includes
a thin core (called “hypervisor” in Xen) and a xen0 do-
main which runs another modified Linux 2.6.16 kernel
(with more device driver support).

Our change to the xenU OS is small, mostly about
notifying the hypervisor for page evictions. Since an
evicted page may be transferred into the hypervisor
cache, we must ensure that the page is not reused until
the hypervisor finishes processing it. We achieve this by
implementing the page eviction notification as a new type
of I/O request. Similar to a write request, the source page
will not be reused until the request returns, indicating the
completion of the hypervisor processing.

The hypervisor cache and mapping tables are en-
tirely implemented in the xen0 domain as part of the
I/O backend driver. This is to keep the Xen core sim-
ple and small. The storage location in our imple-
mentation is represented by a triplet (major device

number, minor device number, block address

on the device). The cache is organized in a queue
of pages. Both the cache and mapping tables are indexed
with hash tables to speed up the lookup. Our hypervisor
cache supports both delayed writes and write-through.

The main purpose of our prototype implementation is
to demonstrate the correctness of our design and to illus-
trate the effectiveness of its intended utilization. At the
time of this writing, our implementation is not yet fully
optimized. In particular, we use explicit page copying
when transferring data between the VM memory and the

Primitive operations Overhead

Mapping table lookup 0.28µs
Mapping table insert 0.06µs
Mapping table delete 0.06µs
Cache lookup 0.28µs
Cache insert (excl. page copying) 0.13µs
Cache delete 0.06µs
Cache move to tail 0.05µs
Page copying 7.82µs

Table 1:Overhead of primitive cache management operations
on a Xeon 2.0 GHz processor.

hypervisor cache. A page remapping technique is used in
Xen to pass incoming network packet from the privileged
driver domain (xen0) to a normal VM (xenU). However,
our measured cost for this page remapping technique
does not exhibit significant advantage compared to the
explicit page copying, which is also reported in an ear-
lier study [11].

Table 1 lists the overhead of primitive cache manage-
ment operations on a Xeon 2.0 GHz processor. Each
higher-level function (read cache hit, read cache miss,
write cache hit, write cache miss, eviction cache hit, and
eviction cache miss) is simply the combination of several
primitive operations. Page copying is the dominant cost
for read cache hit and eviction cache miss. The cost for
other functions is within 1µs.

6 Evaluation

We perform experimental evaluation on our prototype
hypervisor cache. The purpose of our experiments is
to validate the correctness of our cache design and im-
plementation (Section 6.2), evaluate its performance and
management overhead (Section 6.3), validate its VM
miss ratio curve prediction (Section 6.4), and demon-
strate its effectiveness in supporting multi-VM mem-
ory allocation with flexible QoS objectives (Section 6.5).
The experimental platform consists of machines each
with one 2.0 GHz Intel Xeon processor, 2 GB of physi-
cal memory, and two IBM 10 KRPM SCSI drives.

6.1 Evaluation Workloads

Our evaluation workloads include a set of microbench-
marks and realistic applications/benchmarks with signif-
icant data accesses. All workloads are in the style of on-
demand services.

Microbenchmarks allow us to examine system behav-
iors for services of specifically chosen data access pat-
terns. All microbenchmarks we use access a dataset of
500 4 MB disk-resident files. On the arrival of each re-
quest, the service daemon spawns a thread to process it.
We employ four microbenchmarks with different data ac-
cess patterns:



• Sequential: We sequentially scan through all files
one by one. We repeat the sequential scan after
all files are accessed. Under LRU page replace-
ment, this access pattern should result in no cache
hit when the memory size is smaller than the total
data size.

• Random: We access files randomly with uniform
randomness — each file has an equal probability of
being chosen for each access.

• Zipf : We access files randomly with a Zipf distribu-
tion — file i (1 ≤ i ≤ 500) is accessed with a prob-
ability proportional to 1

iα
. The exponentα = 1.0 in

our test.
• Class: We divide files into two classes: one tenth

of all files are in the popular class and the rest are
in the normal class. Each file in the popular class is
10 times more likely to be accessed than each file in
the normal class.

Each microbenchmark also has an adjustable write ratio.
The write ratio indicates the probability for each file ac-
cess to be a write. A read file access reads the entire file
content in 64 KB chunks. A write file access overwrites
the file with new content of the same size. Writes are
also performed in 64 KB chunks.

In addition to the microbenchmarks, our experiments
also include four realistic data-intensive services.

• SPECweb99:We implemented the static content
portion of the SPECweb99 benchmark [19] using
the Apache 2.0.44 Web server. This workload con-
tains 4 classes of files with sizes at 1 KB, 10 KB,
100 KB, and 1,000KB respectively and the total
dataset size is 4.9 GB. During each run, the four
classes of files are accessed according to a distribu-
tion that favors small files. Within each class, a Zipf
distribution with exponentα = 1.0 is used to access
individual files.

• Index searching:We acquired a prototype of the in-
dex searching server and a dataset from the Web
search engine Ask Jeeves [1]. The dataset con-
tains the search index for about 400,000 Web pages.
It includes a 66 MB mapping file that maps MD5-
encoded keywords to proper locations in the search
index of 2.4 GB. For each keyword in an input
query, a binary search is first performed on the
mapping file and then search indexes of query key-
words are then accessed. The search query words
in our test workload are based on a one-week trace
recorded at the Ask Jeeves site in 2002.

• TPC-C: We include a local implementation of
the TPC-C online transaction processing bench-
mark [20]. TPC-C simulates a population of ter-
minal operators executing Order-Entry transactions
against a database. In our experiments, the TPC-C

benchmark runs on the MySQL 5.0.18 database
with a database size of 2.6 GB.

• TPC-H: We evaluate a local implementation of
the TPC-H decision support benchmark [21]. The
TPC-H workload consists of 22 complex SQL
queries. Some queries require excessive amount of
time to finish and they are not appropriate for in-
teractive on-demand services. We choose a sub-
set of 17 queries in our experimentation: Q2, Q3,
Q4, Q5, Q6, Q7, Q8, Q9, Q11, Q12, Q13, Q14,
Q15, Q17, Q19, Q20, and Q22. In our experiments,
the TPC-H benchmark runs on the MySQL 5.0.18
database with a database size of 496 MB.

6.2 Cache Correctness

We augment the microbenchmarks to check the cor-
rectness of returned data from the hypervisor cache. We
do so by maintaining a distinct signature for each 1 KB
block of each file during the file creations and overwrites.
Each file read access checks the signatures of returned
content, which would fail if the content were incorrectly
cached. We tested the four microbenchmarks at three dif-
ferent write ratios (0%, 10%, and 50%) and a variety of
VM memory and hypervisor cache sizes. We found no
signature checking failures over all test runs.

We also ran tests to check the necessity of our
cache correctness support described in Section 3.2. We
changed the hypervisor so that it does not capture all
page eviction/release or that it does not check the reverse
mapping from storage locations to VM memory pages
when admitting evicted data. We detect incorrect con-
tent for both cases and we traced the problems to the er-
ror cases described in Section 3.2.

6.3 Performance and Management Overhead

We evaluate the cache performance and manage-
ment overhead of our hypervisor exclusive cache. For
each workload, we configure the total available mem-
ory (combined size of the VM memory and hypervisor
cache) to be 512 MB. In the baseline scheme, all mem-
ory is directly managed by the VM and there is no hyper-
visor cache. We then examine the cases when we transfer
12.5%, 25%, 50%, and 75% of the memory (or 64 MB,
128 MB, 256 MB, and 384 MB respectively) to be man-
aged by the hypervisor cache. Note that some setting
(“75% memory to cache”) may not be typical in practice.
Our intention is to consider a wide range of conditions in
this evaluation.

We look at three performance and overhead metrics:
the overall service request throughput (Figure 7), the I/O
overhead per request (Figure 8), and CPU overhead in
hypervisor cache management (Figure 9). Here the I/O
overhead only counts those page I/Os that reach the real
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Figure 7:Service request throughput of different hypervisor caching schemes normalized to that of no cache.
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Figure 8:The I/O overhead per request of different schemes normalized to that of no cache.

storage device (i.e., those that miss both VM memory
and the hypervisor cache). Note that since we intend to
compare the overhead when finishing the same amount
of work, the page I/O overhead per request (or workload
unit) is a better metric than the page I/O overhead per
time unit. In particular, two systems may exhibit the
same page I/O overhead per time unit simply because
they are both bound by the maximum I/O device through-
put. For the same reason, we use a scaled CPU over-
head metric. The scaling ratio is the throughput under
“no cache” divided by the throughput under the current
scheme.

Among the eight workloads in our experimental setup,
TPC-H is unique in the sense that it is completely CPU-
bound with 512 MB memory. Below we analyze the re-
sults separately for it and the other workloads.

Seven non-CPU-bound workloads. In terms of ser-
vice throughput, the degradation compared to “no cache”
is less than 20% in all cases and no more than 9% exclud-
ing the extreme condition of “75% memory to cache”.
This is largely because the employment of our hyper-
visor cache does not significantly increase the system
I/O overhead (as shown in Figure 8). A closer exami-
nation discovers an I/O overhead increase of up to 13%
for SPECweb99. This is because our hypervisor cache
does not cache evicted VM data that is not in OS page
buffer, such as file meta-data likeinode and dentry
in Linux. Most files accessed by SPECweb99 are very
small and thus the effect of not caching file meta-data
is more pronounced. Note that the hypervisor caching
of file meta-data requires the understanding of file meta-
data memory layout, which would severely compromise
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Figure 9:CPU cost of hypervisor cache for four real services.
We do not show results for microbenchmarks since they do not
contain any realistic CPU workload.

the transparency of the hypervisor cache. Excluding
SPECweb99, the page fault rate varies between a 11%
decrease and a 5% increase compared to “no cache”
over all test cases. Now we consider the CPU overhead
incurred by cache management and minor page faults
(shown in Figure 9). Overall, the additional overhead
(compared to the “no cache” case) is up to 6.7% in all
cases and up to 3.2% excluding the extreme condition of
“75% memory to cache”. Its impact on the performance
of non-CPU-bound workloads is not substantial.

CPU-bound TPC-H. There is no real device I/O
overhead in all test cases and its performance difference
is mainly determined by the amount of additional CPU
overhead of the cache management. Such cost is negli-
gible for “12.5% memory to cache” and “25% memory
to cache”. It is more significant for “50% memory to
cache” and “75% memory to cache”, causing 14% and
54% throughput degradation respectively compared to
“no cache”. This is largely due to the costly page copy-
ing operations. Excluding the page copying overhead,
the expected CPU overhead at “75% memory to cache”
would be reduced from 41% to 4.7%. This indicates that



0 0.1 0.2 0.3 0.4 0.5
4

6

8

10

12

14
x 10

5

Write ratio

T
ot

al
 n

um
be

r 
of

 p
ag

e 
I/O

s

Zipf MB

 

 

No cache
write−through cache
write−back cache

Figure 10: Performance impact of write-through/write-back
caches in a system with 256 MB VM direct memory and
256 MB hypervisor cache. The y-axis shows the total num-
ber of page I/Os during the Zipf test with 2,000 file requests at
different write ratios.

the concern on CPU cost can be significantly alleviated
with an efficient page transfer mechanism.

As we discussed in Section 3.1, employing write-
through at the hypervisor cache maintains the persis-
tence semantic of the write completion. However, write-
through is not as effective as delayed writes in caching
the write I/O traffic. To illustrate the performance impli-
cation of two write strategies employed by the hypervisor
cache, we run the Zipf microbenchmark with different
write ratios ranging from 0 (read-only) to 0.5. The result
in Figure 10 indicates that write-through indeed yields
more I/O operations than the original system (around 7%
at 0.5 write ratio), whereas delayed writes does not in-
crease the number of page I/Os.

We summarize the performance and overhead results
as follows. The employment of hypervisor cache does
not increase the system I/O overhead (excluding an ex-
ceptional case). The CPU overhead for our current pro-
totype implementation can be significant, particularly at
the extreme setting of “75% memory to cache”. How-
ever, our results suggest that the CPU overhead does not
have large impact on the performance of services that are
not CPU-bound. We also expect that a more optimized
cache implementation in the future may reduce the CPU
cost.

6.4 Accuracy of Miss Ratio Curve Prediction

We perform experiments to validate the accuracy of
our VM miss ratio curve (page miss ratevs.memory size
curve) prediction. Joneset al. [12] have demonstrated
the prediction of VM miss ratio curve for memory sizes
larger than the current allocation. The contribution of our
hypervisor cache-based transparent data access tracing is
to predict VM miss ratio curve for memory sizes smaller
than the current allocation. In practice, we predict a miss

ratio curve that includes memory sizes both larger and
smaller than the current allocation. Such a curve can tell
the performance degradation when the memory alloca-
tion is reduced as well as the performance improvement
when the memory allocation is increased. Both pieces of
information are necessary to determine the VM memory
allocation with performance assurance.

We use a system configuration with a large hypervisor
cache to produce the VM miss ratio curve over a wide
range. With a memory allocation of 512 MB, 384 MB is
managed as the hypervisor cache and the VM memory
has 128 MB left. This setting allows us to predict the
VM miss ratio curve from the memory size of 128 MB.
Smaller hypervisor caches may be employed in practice
if we have a bound on the maximum amount of VM
memory reduction, or if the management overhead for
a large cache is considered too excessive. We validate
the prediction accuracy by comparing against measured
miss ratios at several chosen memory sizes. The valida-
tion measurements are performed on VM-only systems
with no hypervisor cache.

Figure 11 illustrates the prediction accuracy for the
eight workloads over memory sizes between 128 MB and
1024 MB. Results suggest that our prediction error is less
than 15% in all validation cases. Further, the error is less
than 9% for memory sizes smaller than the current allo-
cation (512 MB), which is the primary target of our hy-
pervisor cache-based miss ratio prediction. We believe
the prediction error is due to the imperfect LRU replace-
ment employed in the VM OS.

Since we know the microbenchmark data access pat-
terns, we can also validate their miss ratio curves with
simple analysis. Sequential MB has a flat curve since
there can be no memory hit as long as the memory size
is less than the total data size. Random MB’s data access
miss rate should be1 −

memory size
data size and therefore its

miss ratio curve is linear. Zipf MB and Class MB have
more skewed data access patterns than Random MB so
the slopes of their miss ratio curves are steeper.

6.5 Multi-VM Memory Allocation

Guided by the predicted VM miss ratio curves, we per-
form experiments on multi-VM memory allocation with
performance assurance. Our experiments are conducted
with the allocation goals ofisolated sharingandVMware
ESX server emulationdescribed in Section 4.2 respec-
tively. In our experiments, we employ three VMs, run-
ning SPECweb99, index searching, and TPC-H respec-
tively. The initial baseline memory allocation for each
VM is 512 MB. We adjust the total 1,536 MB memory
among the three VMs toward our allocation goal.

Isolated sharing In isolated sharing experiments, we
attempt to minimize a system-wide page miss metric
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Figure 11: Accuracy of miss ratio curve prediction for memory sizes between 128 MB and 1024 MB. The current memory
allocation is 512 MB, within which 384 MB is managed by the hypervisor cache. The miss ratio at each memory size is defined
as the number of page misses at the current memory size divided by the page miss number at a baseline memory size (512 MB in
this case). Since there is almost no page miss for TPC-H at 512MB memory, we set a small baseline page miss number for this
workload to avoid numeric imprecision in divisions.

(e.g., profitable sharing) while at the same time no VM
should experience a performance loss beyond a given
bound (i.e., isolation constraint). In our experiments, the
system-wide page miss metric is the geometric mean of
all VMs’ miss ratios which represents the average ac-
celeration ratio for all VMs in terms of page miss re-
duction. The performance loss bound is set as a maxi-
mum percentage increase of page misses compared to the
baseline allocation. To demonstrate the flexibility of our
policy, we run two experiments with different isolation
constraints — 5% and 25% performance loss bounds re-
spectively. We allocate memory in the multiple of 4 MB.
We use exhaustive search to find the optimal allocation
strategy and the computation overhead for the exhaustive
search is acceptable for three VMs.

Table 2 lists the memory allocation results. Overall,
the experimental results show that our hypervisor cache-
based memory allocation scheme can substantially re-
duce the system-wide page miss metric (15% average
page miss reduction at 5% isolation constraint and 59%
average page miss reduction at 25% isolation constraint).
This is primarily due to our ability of transparent data ac-
cess tracing and accurate VM miss ratio curve prediction.
The two very different allocation outcomes at different
isolation constraints demonstrate the flexibility and per-
formance assurance of our approach. In comparison, a
simple working set-based allocation approach [23] may
not provide such support.

Generally all VMs observe the isolation constraints in
our experiments. However, a small violation is observed
for SPECweb99 in the test with 25% isolation constraint

Initial configuration
VM #1 VM #2 VM #3

Workload SPECweb Searching TPC-H

Memory alloc. 512 MB 512 MB 512 MB

Allocation with 5% isolation constraint
VM #1 VM #2 VM #3

Memory alloc. 452 MB 748 MB 336 MB

Predicted miss ratio 1.05 0.64 1.00
Predicted geo. mean 0.88

Measured miss ratio 1.04 0.58 1.00
Measured geo. mean 0.85

Allocation with 25% isolation constraint
VM #1 VM #2 VM #3

Memory alloc. 280 MB 920 MB 336 MB

Predicted miss ratio 1.24 0.06 1.00
Predicted geo. mean 0.43

Measured miss ratio 1.28 0.05 1.00
Measured geo. mean 0.41

Table 2:Memory allocation results for isolated sharing.

(28% page miss increase). This is due to the miss ratio
curve prediction error. We believe such a small violation
is tolerable in practice. If not, we can leave an error mar-
gin when determining the allocation (e.g., using a 20%
isolation constraint on the predicted miss ratios when a
hard 25% isolation constraint needs to be satisfied).

VMware ESX server emulation This experiment
demonstrates that hypervisor cache-based allocation is



Initial configuration
VM #1 VM #2 VM #3

Workload SPECweb Searching TPC-H

Memory alloc. 512 MB 512 MB 512 MB

Hcache emulation
VM #1 VM #2 VM #3

Memory alloc. 600 MB 600 MB 336 MB

Measured miss ratio 0.85 0.71 1.00

VMware ESX server
VM #1 VM #2 VM #3

Memory alloc. 576 MB 576 MB 384 MB

Measured miss ratio 0.88 0.78 1.00

Hcache emulation(A background task runs with TPC-H)
VM #1 VM #2 VM #3

Memory alloc. 578 MB 578 MB 380 MB

Measured miss ratio 0.88 0.78 1.00

VMware ESX server (A background task runs with TPC-H)
VM #1 VM #2 VM #3

Memory alloc. 512 MB 512 MB 512 MB

Measured miss ratio 1.00 1.00 1.00

Table 3: Memory allocation results for VMware ESX server
emulation.

able to: 1) emulate the memory allocation policy em-
ployed in VMware ESX server; and 2) more accurately
discover VM memory need when choosing victim VMs.
We employ VMware ESX server version 3.0.0 in this
test. We ported our test workloads to ESX server envi-
ronment and conditioned all workload parameters in the
same way. For each VM, the initial and maximum mem-
ory allocations are 512 MB and 1 GB respectively. All
VMs receive the same share (a VMware ESX server pa-
rameter indicating a per-VM proportional right to mem-
ory).

We first use the exactly same three VMs as in the
isolated sharing experiments. Table 3 shows that both
ESX server and our emulation are able to reclaim unused
memory from TPC-H VM without raising the page fault
rate. However, ESX server is more conservative, result-
ing in less performance improvement for other VMs. We
suspect this conservatism is related to the prediction in-
accuracy inherent with its memory sampling approach.

Then we add a light background workload to TPC-H
VM. The workload touches one 4 MB file every 2.5 sec-
onds over 500 such files repeatedly. Figure 12 shows
the predicted and measured miss ratio curve for this new
TPC-H VM. It is clear that beyond the allocation of
around 360 MB, more memory does not reduce the VM
page fault rate. Our hypervisor cache-based allocation
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Figure 12:Miss ratio curve of TPC-H with a light background
task.

correctly recognizes this and therefore takes away some
TPC-H VM memory to the other two VMs. In contrast,
ESX server estimates that the TPC-H VM has a large
working set (around 830 MB) and thus does not perform
any memory allocation adjustment. This is due to inher-
ent weakness of the working set model-based memory
allocation [6,18].

7 Conclusion

For data-intensive services on a virtual machine (VM)
platform, the knowledge of VM page misses under dif-
ferent memory resource provisioning is desirable for de-
termining appropriate VM memory allocation and for fa-
cilitating service consolidation. In this paper, we demon-
strate that the employment of a hypervisor-level exclu-
sive buffer cache can allow transparent data access trac-
ing and accurate prediction of the VM page miss ra-
tio curve without incurring significant overhead (no I/O
overhead and mostly small CPU cost). To achieve this
goal, we propose the design of the hypervisor exclusive
cache and address challenges in guaranteeing the cache
content correctness when the data enters the cache di-
rectly from the VM memory.

As far as we know, existing hypervisor-level buffer
cache is used primarily for the purpose of keeping sin-
gle copy of data shared across multiple VMs. Our hyper-
visor exclusive cache is unique in its ability to manage
large chunk of a VM’s memory without increasing the
overall system page faults. Although our utilization of
this cache is limited to transparent data access tracing in
this paper, there might also be other beneficial use of the
cache. For example, the hypervisor-level buffer cache
allows the employment of new cache replacement pol-
icy and I/O prefetching policy transparent to the VM OS.
This may be desirable when the OS-level caching and
I/O prefetching are not fully functional (e.g., during OS
installation or boot [10]) or when the default OS-level
policy is insufficient (e.g., desiring more aggressive I/O
prefetching [14]).
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