Theorem: $L = \{ \langle M_1, M_2 \rangle \mid |L(M_1) \cap L(M_2)| \geq 2\} \cup \{ \langle M \rangle \mid |L(M)| = 2\}$ is undecidable.

Proof: Assume L is decidable by decision R. We will use this assumption to build a TM S that decides $\overline{A_{TM}}$.

S is: a TM that on input $\langle M, x \rangle$ does the following:

1. Build TM M_1 with $L(M_1) = \Sigma^*$.
2. Build a TM M_2 that does the following:
 - On a random input y, if y is one of the 280 lexically smallest strings in Σ^*, then the TM successively simulates $M_{\langle M \rangle}$.
 - Else reject.
3. Run $R(\langle M_1, M_2 \rangle)$ if it accepts then accept, else reject.

End of construction of S. S is a reducer for $\overline{A_{TM}}$. Contradiction!
Let $L' = \{ \langle M_1, M_2 \rangle \mid |L(M_1) \cap L(M_2)| \geq 280 \}$ be Turing-recognizable.

Problem: Let's build a TM M, such that $L(M) = L'$. That suffices.

Then M will be the TM that on input $\langle M_1, M_2 \rangle$ does the following:

1. Build an enumerating TM, E_1, for $L(M_1)$.
2. Build an enumerating TM, E_2, for $L(M_2)$.
3. Run E_1 for 1 step, then E_2 for 2 steps, then E_1 for 3 steps, then E_2 for 4 steps, then E_1 for 5 steps,
4. And, as we do this, we collect separately the things E_1 puts into $L(M_1)$ and that E_2 puts into $L(M_2)$.
5. And the first moment when the intersection of these 2 collections (considered as sets) has ≥ 280 elements, accept. End of proof.

Specification: $L(M) = L'$ (verbal argument was just given.)
Def \(L \) is co-Turing-recognizable (aka \(L \) is coRE) exactly if \(\overline{L} \) is Turing-recognizable.

Example: We know \(A_{TM} \) is Turing-recognizable. Thus \(\overline{A_{TM}} \) is co-Turing-recognizable.

\(L'' = \{ \langle M \rangle \mid M \) is a TM and \(L(M) = \emptyset \} \) is co-Turing-recognizable.

Proof: We will show that \(L'' \) is Turing-recognizable. Given input \(\langle M' \rangle \), if \(M' \) is not a valid TM accept. Otherwise, build the TM \(M \) for \(L(M) \), call \(\text{HE} \) simulate \(E \). If the moment it enumerates any string \(\langle M' \rangle \), halt. \(L'' \) is Turing-recognizable.

So clearly \(L'' \) is Turing-recognizable.