
Private Coins versus Public Coins in
Zero-Knowledge Proof Systems

Rafael Pass? and Muthuramakrishnan Venkitasubramaniam

Cornell University,
{rafael,vmuthu}@cs.cornell.edu

Abstract. Goldreich-Krawczyk (Siam J of Comp’96) showed that only
languages in BPP have constant-round public-coin black-box zero-know-
ledge protocols. We extend their lower bound to “fully black-box” private-
coin protocols based on one-way functions. More precisely, we show that
only languages in BPPSam—where Sam is a “collision-finding” oracle in
analogy with Simon (Eurocrypt’98) and Haitner et. al (FOCS’07)—can
have constant-round fully black-box zero-knowledge proofs; the same
holds for constant-round fully black-box zero-knowledge arguments with
sublinear verifier communication complexity. We also establish near-
linear lower bounds on the round complexity of fully black-box concur-
rent zero-knowledge proofs (or arguments with sublinear verifier commu-
nication) for languages outside BPPSam.
The technique used to establish these results is a transformation from
private-coin protocols into Sam-relativized public-coin protocols; for the
case of fully black-box protocols based on one-way functions, this trans-
formation preserves zero knowledge, round complexity and communica-
tion complexity.

1 Introduction

Roughly speaking, interactive proofs, introduced by Goldwasser, Micali and
Rackoff [9] and Babai and Moran [1]), are protocols that allow one party P—
called the Prover (or Merlin)—to convince a computationally-bounded party
V—called the Verifier (or Arthur)—of the validity of some statement x ∈ L.
While, the notion of interactive proofs introduced by Goldwasser, Micali and
Rackoff considers arbitrary probability polynomial time verifiers, the notion in-
troduced by Babai and Moran, called Arthur-Merlin games considers verifiers
that only send truly random messages; such proof systems are also called pub-
lic coin. Soon after their introduction, a surprisingly result by Goldwasser and
Sipser [11] showed that the two notions in fact are equivalent in their expressive
power: Any private coin protocol 〈P, V 〉 for a language L can be transformed
into a public-coin 〈P̂ , V̂ 〉 for L with the same round-complexity. Their result
has played an important role in subsequent complexity-theoretic work. However,

? Supported in part by a Microsoft New Faculty Fellowship, NSF CAREER Award
CCF-0746990, AFOSR Award FA9550-08-1-0197 and BSF Grant 2006317



from a cryptographic perspective, the transformation is somewhat unsatisfactory
as it does not preserve the efficiency of the prover—and can thus not be applied
to “computationally-sound” protocols (a.k.a. arguments)—or properties such as
zero-knowledge—the principal notion introduced in [9]. By a result of Vadhan
[26], any transformation that uses the original private-coin protocol 〈P, V 〉 as a
black-box, in fact, must require the prover to run in super-polynomial time.

In this work, we provide different and “robust” transformations from private-
coin protocols to public-coin protocols. Our transformations preserve zero-know-
ledge, computational and communication complexity, but instead require the
prover and the verifier to have oracle access to a certain “collision-finding” ora-
cle [25, 13], denoted Sam. Our transformation is black-box and thus by Vadhan’s
results we are required to use a super-polynomial time oracle. Nevertheless, the
Sam oracle is not “too” powerful; in particular, as shown by Haitner, Hoch, Rein-
gold and Segev [13] it cannot be used to invert one-way functions. Therefore, if
the security properties (namely, zero-knowledge and computational soundness)
of the private-coin protocol are based on the hardness of inverting one-way func-
tions (or even trapdoor permutations), we can use our transformation to extended
lower bounds for public-coin protocols to private-coin protocols.

More precisely, Goldreich and Krawczyk [8] showed that only languages in
BPP can have constant-round public-coin black-box zero-knowledge protocols.
Recently, Pass, Tseng and Wikström [21] extended this results to include all
(even super-constant round) black-box zero-knowledge protocols that remain
secure under concurrent (or even parallel) composition (a.k.a concurrent zero-
knowledge protocols). Combining our transformation with these results, we ob-
tain new lower bounds for fully black-box constructions of general, potentially
private-coin, black-box zero-knowledge protocols based on the existence of one-
way permutations.

Theorem 1 (Lower Bounds for Fully Black-Box Zero Knowledge—
Informally stated). Let 〈P, V 〉 be a fully black-box construction of a zero-
knowledge proof (or argument) for the language L from one-way permutations.
Then, L ∈ BPPSam if any of the following hold:

1. 〈P, V 〉 is an O(1)-round proof.
2. 〈P, V 〉 is an O(1)-round argument with o(n) verifier communication com-

plexity.
3. 〈P, V 〉 is an o( n

logn )-round concurrent zero-knowledge proof.
4. 〈P, V 〉 is an o( n

logn )-round concurrent zero-knowledge argument with o(n)
verifier communication complexity.

We remark that all the above type of protocols can be achieved for lan-
guages in NP, assuming the existence of collision-resistant hash-functions [7,
17, 20]. Assuming only one-way permutations, however, the best zero-knowledge
proofs require a super-constant number of rounds [10], and O(n/ log n)-rounds
for concurrent zero-knowledge [22]. As such, assuming NP 6⊆ BPPSam, Theorem
1 is tight.



In Section 3, we discuss the complexity of BPPSam. We observe that the
class SZK, of languages having statistical zero-knowledge proofs, is contained in
BPPSam. This should not be surprising as Ong and Vadhan provide unconditional
constructions of constant-round black-box zero-knowledge proofs for languages
in SZK [19]. By extending the result of [13] we also observe that BPPSam does
not “generically” decide all NP languages, and seems thus like an interesting and
natural complexity class in its own right.

We finally mention that the techniques used in our transformation are in-
teresting in their own right. First, it directly follows that that there is no fully
black-box construction of a one-way function, that compresses its input by more
than a constant factor, from one-way permutations. Next, as pointed out to us
by Haitner, it would seem that by our techniques, the black-box lower bounds
from [14] can be extended also to honest-but-curious protocols; see the proof of
Lemma 2 for more details.

2 Preliminaries and Definitions

We assume familiarity with the basic notions of an Interactive Turing Machine
(ITM for brevity) and a protocol (in essence a pair of ITMs). We denote by
PPT the class of probabilistic polynomial time Turing machines and n.u.PPT ,
the class of non-uniform PPT machines. We denote by M• an oracle machine;
we sometimes drop • when it is clear from the context. As usual, if M• is an
oracle machine, MO denotes the joint execution of M with oracle access to O.
Let O be a random variable over functions from {0, 1}∗ → {0, 1}∗. Then, MO

denotes the execution of MO, where O is sampled according to O. Let Πn denote
the set of all permutations on {0, 1}n and Π denote the set of all permutations
{0, 1}∗ → {0, 1}∗ (obtained by choosing a πn from Πn for every n).

2.1 Fully Black-Box Constructions

A construction of a cryptographic primitive p from a primitive q is said to be fully
black-box if both the implementation and the proof of correctness are black-box.
(See [24] for more details on black-box constructions and reductions.) Here, we
focus on fully black-box constructions from one-way permutations. For simplic-
ity, we show our results only for one-way permutations, but analogous to [13],
our results extend to trapdoor permutations as well. We proceed to define fully
black-box constructions of arguments and zero-knowledge.

Definition 1 (Fully black-box interactive arguments) Let 〈P •, V •〉 be an
interactive argument for a language L ⊆ {0, 1}∗. We say that 〈P •, V •〉 is a
fully black-box construction from one-way permutations, if there exists a PPT
machine A•, and a polynomial q(·) such that for every permutation π = {πn}∞n=1,
malicious prover P ∗•, sequence {xn}∞n=1 where xn ∈ L̄∩ {0, 1}n and polynomial
p(·), if Pr[〈Pπ, V π〉(xn) = 1] ≥ 1

p(n) for infinitely many n, then

Pr[Aπ,P
∗π(xn)(1n, y) = π−1

n (y)] >
1

q((p(n))



for infinitely many n, where the probability is taken uniformly over y ∈ {0, 1}n
(and over all the internal coin tosses of A).

Definition 2 (Fully black-box computational zero-knowledge) Let 〈P •, V •〉
be an interactive proof (or argument) system for a language L. We say that
〈P •, V •〉 is a fully black-box construction of a computational zero-knowledge
proof (or argument) from one-way permutations, if there exists an expected PPT
simulator S•, a PPT machine A•, and a polynomial q(·) such that for every
permutation π = {πn}∞n=1, a distinguisher D, malicious verifier V ∗•, sequence
{(xn, zn)}∞n=1 where xn ∈ L∩{0, 1}n, zn ∈ {0, 1}∗ and polynomial p(·), if for in-
finitely many n, D distinguishes

{
Sπ,V

∗π
r (xn,zn)(xn)

}
and

{
〈Pπ, V ∗πr (zn)〉(xn)

}
with probability at least 1

p(n) where 〈Pπ, V ∗πr (z)〉(x) denotes the output of V ∗π

in an interaction between Pπ and V ∗πr (z) on common input x, then

Pr[Aπ,V
∗π
r (xn,zn)(1n, y) = π−1

n (y)] >
1

q(p((n))

for infinitely many values of n, where the probability is taken uniformly over
y ∈ {0, 1}n (and over all the internal coin tosses of A).

Remark 1. Note that in Definition 2, the simulator S unconditionally runs in
expected polynomial time. One can consider a weaker definition where A is
required to invert π when the expected running time of S exceeds polynomial
time. For simplicity (and due to the fact that all known black-box zero-knowledge
proofs satisfy this property), we consider the stronger definition, but our results
extend also to the weaker definition.

A fully black-box construction of a computational zero-knowledge arguments
refers to a construction that is a fully black-box construction in the argument
sense and the zero-knowledge sense.

3 The Collision Finding Class

Our transformation makes use of a “collision finding” oracle. Such an oracle was
introduced by Simon [25]. In this work, we require a slightly stronger oracle that
finds “collisions” in interactive protocols. Such an oracle—referred to as Sam—
was recently introduced by Haitner, Hoch, Reingold and Segev [13]. The oracle
comes with a permutation π and a parameter d; the depth parameter d denotes
the number of rounds in the protocol on which it finds collisions. We denote the
oracle by Samπ

d . Below, we recall the Sam oracle from [13].

3.1 The Oracle Samπ
d

Informally, Samπ
d is an oracle, that takes as input a probabilistic interactive

turing machine (ITM) M• and a partial transcript trans of an interaction with
M of d or fewer rounds, and



– If trans was an output of a previous query, Sam samples a random tape τ for
Mπ among all random tapes that are consistent with trans, and generates
Mπ’s next message m using τ and outputs trans :: m.

– Otherwise, outputs ⊥.

Description of Samπ
d(n): Let π = {πn}∞n=1 be a permutation and M• be a

probabilistic oracle ITM that runs a d-round protocol and has access to π. Let
transi = (a1, b1, . . . , ai, bi) be a partial transcript of the messages exchange with
Mπ in an execution; Define Rtransi(M

π) to be the set of all random tapes τ for
which Mπ

τ (a1, b1, . . . , bj−1) = aj for all j < i; we say that such a τ is consistent
w.r.t transi. Without loss of generality, we assume that Mπ sends the first
message (i.e. outputs a message on initiation). An input query for Samπ

d(n) is of
the formQ = (Mπ, transi, r) where transi−1 = (a1, b1, . . . , bi−1) and r ∈ {0, 1}∗.
It outputs (τ ′, transi−1 :: ai) such that τ ′ ∈ Rtransj (Mπ) and Mπ

τ ′(transi) = ai,
with the following restrictions:

1. If i > 1, then (a1, b1, . . . , ai−1) was the result of a previous query of the form
(Mπ, (a1, b1, . . . , bi−2), r′) for some r′ ∈ {0, 1}∗.

2. τ ′ is uniformly distributed in Rtransi−1(Mπ) over the randomness of Samπ
d(n),

independent of all other queries.
3. Samπ

d(n) answers queries only up to a depth d(n), i.e. i ≤ d(n).

Otherwise, it outputs ⊥. We remark that the role of r in the query is to obtain
new and independent samples for each r and allow a verifier to obtain the same
sample query by querying on the same r.

Our above description of the Samπ
d(n)-oracle is a stateful instantiation of

the oracle defined in [13]. Just as in [13], for our results, we need the oracle
to be stateless; [13] specify how to modify the oracle to achieve this (using
“signatures”); we omit the details. It was shown by Haitner et. al that random
permutations are hard to invert for polynomial time machines that query Sam
oracle upto depth o( n

logn ).

Theorem 2 ([13]). For every PPT machine A•, there exists a negligible func-

tion ν(·), such that, for all n, Pr[A
π,Samπo( n

logn )(y) = π−1
n (y)] ≤ ν(n) where the

probability is taken uniformly over the randomness of Samπ
o( n

logn ), random per-
mutation π = {πn}∞n=1 and y ∈ {0, 1}n.

Looking ahead, in Section 4.2, we show that this result is optimal w.r.t the
depth: Samπ

n
logn

can be used to invert π.

3.2 The complexity class CFd

We introduce a new complexity classes CFd, which we call the “collision-finding
class”, that we use as part of our characterization of zero-knowledge protocols.

Definition 3 A language L ∈ CFd = BPPSamd , if there exists a PPT machine
M• such that:



Completeness: If x ∈ L, Mπ,Samπd outputs 1 with probability at least 2
3 .

Soundness: If x 6∈ L, Mπ,Samπd outputs 1 with probability at most 1
3 .

where both the probabilities are taken uniformly over the random coins of M , the
randomness of Sam and a random permutation π.

The complexity class CFd seems to be interesting classes that lies between P
and NP. Below we state some properties about this class. The formal proofs of
these statements are postponed to the full version.

1. For every d, CFd is closed under complement, (follows from the definition).
2. SZK ⊆ CF1.
3. CFo( n

logn ) does not “generically” solve NP.
4. CF l(n)

logn
can invert any one-way function with output length l(n) on length n

inputs (Theorem 3 in Section 4.2)

We leave a fuller exploration of the collision-finding class for future work. Note
that, by property (4), if NP 6⊆ CFpoly(n), we have a “natural” complexity class
that can inverts all one-way functions but not decide NP.

We mention that a somewhat weaker (and perhaps even more natural) defi-
nition of the collision-finding class—let us denote it CF’d—is defined identically,
but without giving M , or Sam, access to a random permutation π. That is, in our
notation CF’d = BPPSam⊥d , where ⊥ is the all zero oracle. Clearly CF’d ⊆ CFd,
but all the properties above continue to hold also for CF’.

A very recent work by Haitner, Mahmoody-Ghidary and Xiao [16] takes a
step towards showing that CF’O(1) does not contain NP; they show that if the
deciding machine M only makes a constant number of adaptive queries to Sam,
then the language it decides is in coAM.

4 From Private Coins to Public Coins

In this section, we provide our transformation from private-coin to public-coin
protocols. We provide two transformations: The first transformation—or weak
duality—converts any private coin zero-knowledge proof into a public-coin zero-
knowledge proof in the Sam-hybrid model, where the prover, verifier and sim-
ulator have oracle access to Sam. The second transformation—or strong dual-
ity—converts any private coin zero-knowledge argument with sublinear verifier
communication complexity into a public coin zero-knowledge argument in the
Sam-hybrid model. While the first transformation is oracle efficient (the max-
imum depth it queries Sam is “small”), the second transformation is computa-
tionally efficient (the soundness reduction is polynomial-time) and thus can be
applied to arguments.

Our transformations consider zero-knowledge proofs and arguments in an
oracle world. Let O be a set of oracles O : {0, 1}∗ → {0, 1}∗.



Definition 4 (O-relativized Interactive Proofs) A pair of interactive ma-
chines 〈P •, V •〉 is called an O-relativized interactive proof system for a language
L if machine V • is polynomial-time and the following two conditions hold :

– Completeness: There is a negligible function ν(·), such that for every n,
x ∈ L ∩ {0, 1}n,

Pr
[
〈PO, V O〉(x) = 1

]
≥ 1− ν(n)

where the probability is taken over all the internal coin tosses of P , V and
uniformly chosen O ∈ O.

– Soundness: For every machine B•, there exists a negligible function ν(·),
such that, for every x ∈ L ∩ {0, 1}n,

Pr
[
〈BO, V O〉(x) = 1

]
≤ ν(n)

where the probability is taken over all the internal coin tosses of V and
uniformly chosen O ∈ O.

If the soundness holds only against n.u.PPT B, then 〈P, V 〉 is called an O-
relativized interactive argument system.

Definition 5 (O-relativized black-box ZK) Let 〈P •, V •〉 be an O-relativized
interactive proof (argument) system for the language L ∈ NP with the witness
relation RL. We say that 〈P •, V ∗•〉 is O-relativized computational black-box ZK,
if there exists a probabilistic expected polynomial time oracle machine S• such
that for every PPT machine V ∗•, and PPT distinguisher D•, there exists a
negligible function ν(·), such that for all n, x ∈ L ∩ {0, 1}n, z ∈ {0, 1}∗,∣∣∣Pr[DO(SO,V

O(x)(x)) = 1]− Pr[DO(〈PO, V ∗O(z)〉(x)) = 1]
∣∣∣ < ν(n)

4.1 Weak Duality Lemma

Lemma 1 (Weak Duality). Let 〈P •, V •〉 be a d-round fully black-box zero-
knowledge proof for a language L from one-way permutations with verifier com-
munication complexity c(n) and prover communication complexity p(n). Then,
there exists a d-round public-coin protocol 〈P̂ Sam•d , V̂ Sam•d〉 with the verifier com-
munication complexity O(dc(n)) and prover communication complexity p(n) that
is (π,Samπ

d )-relativized black-box zero-knowledge proof.

Proof: V̂ Samπd is a d-round public-coin verifier that sends random coins in each
round. On a high-level, P̂ Samπd is a machine that internally incorporates the code
of Pπ and emulates an interaction with Pπ by supplying verifier messages accord-
ing to the 〈Pπ, V π〉 protocol. For every verifier round in the internal emulation,
P̂ Samπd first receives random coins externally from V̂ Samπd . Using that, it samples
a random message q for V π that is “consistent” with the interaction with Pπ;
this is made possible using Samπ

d . Next, it q feeds internally to Pπ. Upon re-
ceiving a message a from Pπ, P̂ Samπd forwards a to V̂ Samπd and proceeds to the



Protocol 〈 bP , bV 〉
Let 〈Pπ, V π〉 be a d-round protocol with oracle access to the a permutations π. Each
communication round consists of a message sent from the verifier to the prover followed
by a message sent from the prover to the verifier. Without loss of generality, we assume
that the verifier sends the first message and the prover sends the last message. Also,
the verifier outputs its view at the end of the protocol.

1. Common Input: Statement x ∈ L, security parameter n.
2. Private Input: The statement x, for Pπ and auxiliary input z ∈ {0, 1}∗ for V π.

3. bP Samπd internally incorporates the code for Pπ. Set trans0 = ⊥.
4. for i = 1 to d

(a) bV Samπd uniformly chooses si ∈ {0, 1}12(li+log d) where li is the length of V π’s
ith message.

(b) bV → bP : si
(c) bP queries Samπ

d on input (V •, transi−1, si) and obtains as response (transi−1 ::

qi, ri). bP runs Pπ(transi−1 :: qi) and obtains its response ai. Set transi =
transi−1 :: qi :: ai.

(d) bP → bV : ai.

5. bV Samπd computes transi for all i, by querying Samπ
d on (V •, transi−1, si).bV Samπd chooses s ∈ {0, 1}n, queries Samπ

d on (V π, transd, s) and obtains as response
(b, rd+1), (b = 1 means V π accepts). It outputs b.

Fig. 1. Weak Duality Protocol

next round. Finally, V̂ Samπd reconstructs the interaction emulated by Pπ (again
made possible using Samπ

d ) and outputs the verdict of V π on that transcript. We
remark that since V π is a verifier for a d-round protocol, the maximum depth
of a Samπ

d query made by P̂ Samπd and V̂ Samπd is d.
Informally, the completeness of the protocol follows from the fact that, the in-

ternal emulation carried out by P̂ Samπd proceeds exactly as an execution between
Pπ and the honest verifier V π. The soundness and zero-knowledge of 〈P̂ , V̂ 〉, on
the other hand, holds as the transformation essentially ensures that the messages
from V̂ Samπd carry the same amount of “knowledge” as messages from V π. This
is because, in each round, P̂ Samπd samples a fresh random tape for V π that is con-
sistent with the partial conversation and obtains V π’s next message by running
V π on that tape. Thus, the only extra knowledge that P̂ possesses in each round
is the random tape sampled and (an unbounded) Pπ can obtain these samples
too. A formal description of the transformation is provided in Figure 1. We now
proceed to prove correctness.

Claim 1 (Completeness) For all x ∈ L, P̂ Samπd convinces V̂ Samπd w.p. 1 −
ν(|x|) where the randomness is taken over π,Samπ

d and the internal coin tosses
of P̂ and V̂ , for some negligible function ν(·).



Proof: We show that, for every permutation π, the probability that V̂ Samπd

accepts is identical to the probability V π accepts in an interaction with P (where
the probability is over Samπ

d ). The completeness of 〈P̂ , V̂ 〉 then follows from the
completeness of 〈P •, V •〉.

Towards this, fix a permutation π. Consider an intermediate verifier V ′• that
uses Samπ

d and interacts with Pπ. Informally, this verifier V ′Samπd generates mes-
sages exactly as P̂ Samπd does in the internal emulation with Pπ. More precisely,
for a partial transcript transi−1 at the end of round i − 1, V ′Samπd samples a
consistent random tape r for V π (using Samπ

d ) and runs V πr on transi−1 to gen-
erate the next verifier message qi. At the end of the protocol, V ′Samπd , samples a
random tape r′ consistent on the entire transcript and outputs V πr′ ’s verdict on
the transcript. It follows from the construction that the probability that V̂ Samπd

accepts is equal to the probability that V ′Samπd accepts in an interaction with Pπ.
In Claim 1 below, we prove that the probability that Pπ convinces V ′Samπd ac-
cepts is equal to the probability that Pπ convinces V π. Therefore, combining the
two facts, we get that the probability V̂ Samπd accepts is equal to the probability
V π accepts.

Sub-Claim 1 For every x, z ∈ {0, 1}∗, π ∈ Π the following distributions are
identical: D1 =

{
〈Pπ, V π(z)〉(x)

}
and D2 =

{
〈Pπ, V ′Samπd (z)〉(x)

}
where the

distributions are generated by the internal coin tosses of P, V, V ′ and Samπ
d .

Proof: Recall that the only difference between V ′Samπd and V π in an interaction
with Pπ is that V π selects a uniform random tape at the beginning of the
execution and uses that for the entire execution, while V ′Samπd selects a (uniformly
chosen) random tape consistent with the partial transcript in each round and
executes V π on that tape. First, we observe that every verifier message in D1 and
D2 are generated by running V π on a particular random tape. For a transcript
trans, let R(trans) denote the set of all random tapes of V π consistent with
trans. We show for D1 and D2, separately, that for every trans, conditioned on
the history being trans, the random tape used to generate the next message is
uniformly distributed in R(trans). This shows that the process for generating
verifier messages in D1 and D2 are identical and that concludes the proof of
the claim. For D2, this holds directly from the definition of Samπ

d . For D1, we
prove this fact by induction on the number of verifier messages. The base case
requires that the random tape is uniformly distributed over all possible tapes;
this clearly holds. Suppose that, conditioned on the transcript transi−1, every
random tape in Rtransi−1 is equally likely. Let m be a possible message for
V π, given the history is transi−1. Since, R(transi−1 :: m) are disjoint sets for
different m, we have that conditioned on the transcript transi−1 :: m, every tape
in R(transi−1 :: m) is equally likely to be chosen. This concludes the induction
step.



The algorithm for P ∗Samπd

Let bP ∗Samπd be the cheating prover for 〈 bP , bV 〉. Denote the length of ith verifier message

in 〈 bP , bV 〉 by Li. Then, Li = 12(li + log d).

1. Internally incorporate bP Samπd . Let trans0 = ⊥.
2. for i = 1 to d

(a) Receive qi from V π.
(b) ctr ← 0, found← false.

(c) while ctr < 2
Li
3 and not(found).

– Choose si uniformly from {0, 1}Li . Let (ri, transi :: q) ←
Samπ

d (V •, transi−1, si). If q = qi, found = true.
– ctr ← ctr + 1

(d) if found = false, abort. Otherwise, compute bP ∗’s next message on transcript
transi−1 :: qi. Let it be ai. Set transi = transi−1 :: qi :: ai.

Fig. 2. Proof of Soundness

Claim 2 (Soundness) Let x ∈ {0, 1}∗. If P̂ ∗Samπd convinces V̂ Samπd on x with
probability p, then there exists a prover P ∗Samπd that convinces V π on input x
with probability at least p

2 . (As usual, the probability are taken over Samπ
d and

the internal coin tosses of V̂ and V .)

Proof: We prove the statement of the claim for every permutation π and over
the randomness of Samπ

d . We construct a machine P ∗Samπd that internally incor-
porates P̂ ∗Samπd and emulates an interaction with it, while externally interacting
with V π. The high-level idea is to make P ∗Samπd convince V π whenever P̂ ∗Samπd

succeeds in the internal execution. To ensure this, for every private-coin message
qi that P ∗Samπd receives externally from V π, it needs to find a corresponding
public-coin message si and feed it to P̂ ∗Samπd . Let transi−1 be the transcript of
messages exchanged with V π externally. Then, the message that P ∗Samπd needs
to find, is a string si such that Samπ

d on input (V •, transi−1, si) outputs (qi, ri).
We let P ∗Samπd sample si until it hits the “right” one; it cuts itself off, if it runs
“too long”. It then feeds it to P̂ ∗Samπd internally and obtains a response ai, which
it forwards outside to V π. A formal description is provided in Figure 2.

In Claim 2, we show that P ∗Samπd aborts with probability at most 1
2 . In

Claim 3, we show that conditioned on P ∗Samπd not aborting, each verifier mes-
sage fed internally to P̂ ∗Samπd is uniformly distributed and thus identical to dis-
tribution of the messages received by P̂ ∗Samπd in a real interaction with V̂ Samπd .
Combining the two claims, we have that the probability that P ∗Samπd succeeds is
at least 1

2 Pr[P̂ ∗Samπd succeeds].

Sub-Claim 2 P ∗Samπd aborts with probability at most 1
2 (with probability taken

over Samπ
d ).



Proof: We analyze the abort probability by identifying three bad events for
each round and bound their probabilities separately. Then, using an union bound
over the bad events for each round, we conclude that the probability of aborting
is at most 1

2 . Let transi−1 be the partial transcript at the end of i − 1 rounds.
Consider the following events:

1. P ∗Samπd picks the same sample si twice: The probability that two strings

in 2
Li
3 trials are the same is at most 2

2Li
3

2Li
≤ 1

24(li+log d) using the birthday
bound.

2. V π sends an “unlikely” message m: Let pm be the probability that V π

sends m conditioned on transi−1 being the transcript at the end of i − 1
rounds. We say that m is unlikely if pm ≤ 1

22li+2 log d . Using a union bound
over all m we obtain that the probability of an unlikely m being sent is at
most 2li 1

22li+2 log d = 1
2li+2 log d

3. For a “likely” message m, all trials fail: The probability of a “likely”
message m occurring is at least > 1

22(li+log d) . Therefore, the probability that

all 2
Li
3 trials fails is at most(

1− 1
22(li+log d)

)2
Li
3

≤ e−22(li+log d)

If the bad events do not occur in round i, then the message m is a “likely”
message and some trial succeeds, which implies that P ∗Samπd does not abort in
round i. Using the union bound, we obtain that P ∗Samπd aborts with probability
at most 1

d2li
in round i. Using the union bound again over all the d rounds, the

probability that P ∗Samπd aborts is at most
∑d
i=1

1
d2li
≤ 1

2L
where L is the length

of the shortest message. Thus, P ∗Samπd aborts with probability at most 1
2 .

Sub-Claim 3 Conditioned on P ∗Samπd not aborting, the probability that P ∗Samπd

succeeds in convincing V is identical to the probability that P̂ ∗Samπd succeeds in
convincing V̂ Samπd .

Proof: Recall that, in every round P ∗Samπd samples public-coin messages a
fixed number of times and aborts if none of them correspond to the private-coin
message received externally from V π. We observe that, the process that decides
whether the random coins sampled by P ∗Samπd are the “right” ones depends only
on the randomness of Samπ

d and, in particular, is independent of the actual
public-coin message sampled by P ∗Samπd . Therefore, conditioned on P ∗Samπd not
aborting, the messages fed internally to P̂ ∗Samπd are uniformly distributed. Since,
〈P̂ , V̂ 〉 is a public-coin protocol, we have that the distribution of messages inter-
nally fed to P̂ ∗Samπd is identically distributed to the messages generated in a real
interaction with V̂ Samπd , and hence the probability that the internal emulation
leads to a successful interaction is identical to the probability that P̂ ∗Samπd suc-
ceeds in a real interaction. Recall that the acceptance condition in the internal
emulation is decided by reconstructing a 〈Pπ, V π〉 transcript, sampling a fresh



random tape consistent with the entire transcript and running V π on that tape
to obtain the verdict. By our construction, the transcript of the internal emula-
tion with P ∗Samπd is identical to the transcript between P ∗Samπd and the external
V π. However, the random coins of the external V π might not be the same as the
ones sampled internally. Nevertheless, using the same proof as in Sub-Claim 1,
it follows that conditioned on any complete transcript, the probability that the
external verifier V π and the internally emulated V̂ Samπd accept are identical.

Remark 2. Note that in proof of Claim 2 we provide an algorithmic description of
the cheating prover P ∗Samπd although we only need to contradict “unconditional
soundness”. This algortihm will be useful in proving the strong duality lemma
(see Lemma 2) where consider also computationally-sound protocols.

Remark 3. The expected running time of P ∗Samπd in round i for a partial tran-
script transi−1 of the first i−1 rounds, is bounded by

∑
m pm

1
pm

= 2li where pm
is the conditional probability that V π sent m in round i given transi−1. There-
fore, the total expected running time of P ∗Samπd is at most d · 2L = d2L where
L is the length of the longest message that V sends. If either the length of a
message or the number of rounds is super-logarithmic, then the cheating prover
P ∗ does not run in polynomial time. In the strong duality lemma, we show how
to overcome this problem, as long as the verifier communication complexity is
sublinear; this, however, requires querying Sam on larger depths.

Simulation: Let Sπ be the simulator for 〈Pπ, V π〉. We construct a simulator
ŜSamπd for 〈P̂ , V̂ 〉 using Sπ that has oracle access to Samπ

d . Let V̂ ∗Samπd be a ma-
licious verifier for 〈P̂ , V̂ 〉. On a high-level, ŜSamπd transforms V̂ ∗Samπd to a verifier
V ∗Samπd for 〈P, V 〉 and simulates V ∗Samπd using Sπ. The verifier V ∗Samπd with ora-
cle access to V̂ ∗Samπd and Samπ

d proceeds as follows. In each round, on receiving
a message from Pπ, V ∗Samπd feeds that message to V̂ ∗Samπd . It obtains V̂ ∗Samπd ’s
next public-coin message r. V ∗Samπd queries Samπ

d using r and generates the next
message of V π (i.e. generates a message following P̂ Samπd ’s procedure) and for-
wards that to Pπ. Finally, V ∗Samπd outputs what V̂ ∗Samπd outputs. The simulator
for 〈P̂ , V̂ 〉, ŜSamπd , internally incorporates Sπ and verifier V ∗Samπd , emulates an
execution of Sπ with V ∗Samπd and outputs what Sπ outputs.

To show correctness of simulation, we need to show that 〈P̂ , V̂ 〉 is (π,Samπ
d )-

relativized zero-knowledge. Assume for contradiction, that there is a distin-
guisher D• that can distinguish the simulation of V̂ ∗Samπd by ŜSamπd from the
real interaction for a random (π,Samπ

d ). More precisely, there exists a PPT
distinguisher D•, polynomial p(n), sequence {xn, zn}∞n=1, xn ∈ L ∩ {0, 1}n,
zn ∈ {0, 1}∗ such that for infinitely many n, DSamπd distinguishes the out-
put of ŜSamπd ,

bV ∗Samπd (xn,zn)(xn, 1n) for a random (π,Samπ
d ) and the output of

V̂ ∗Samπd (xn, zn) in a real interaction with probability 1
p(n) (with probability taken

over a random π,Samπ
d ). Using the Borel-Cantelli lemma, it follows that for mea-

sure 1 over permutations π, DSamπd distinguishes ŜSamπd ,
bV ∗Samπd (xn,yn)(xn, 1n) and



the output of V̂ ∗Samπd (xn, yn) in a real interaction with probability 1
n2p(n) for in-

finitely many n (with probability over Samπ
d ). Fix a π = {πn}∞n=1 for which this

happens. It follows by the construction of V ∗Samπd that the output of ŜSamπd on
V̂ ∗Samπd is identically distributed to the output of Sπ on V ∗Samπd . We further claim
that the output of V ∗Samπd in a real interaction with Pπ is identically distributed
to the output of V̂ ∗Samπd with P̂ Samπd (over a random Samπ

d ). The proof of this
identically follows from the proof of Claim 1. Hence, DSamπd distinguishes the
output of Sπ with V ∗Samπd from the output of V ∗Samπd in a real interaction with
Pπ with probability 1

p(n) . Recall that, 〈P, V 〉 is a fully black-box zero-knowledge
based on one-way permutations, there exists a PPT machine B•, that with or-
acle access to DSamπd and V ∗Samπd inverts π (over a random Samπ

d ) for infinitely
many lengths, for measure 1 over permutations π (and hence for a random π).
From Theorem 2, we know that if d ∈ o( n

logn ), then no PPT machine with ora-
cle access to Samπ

d can invert a random one-way permutation π with more than
negligible probability. Therefore, we arrive at a contradiction. This establishes
that 〈P̂ , V̂ 〉 is a (π,Samπ

d )-relativized black-box zero-knowledge proof.

4.2 Strong Duality Lemma

Lemma 2 (Strong Duality). Let 〈P •, V •〉 be a d-round fully black-box zero-
knowledge argument for a language L from one-way permutations with veri-
fier communication complexity c(n) and prover communication complexity p(n).
Then, there exists a d-round public-coin protocol 〈P̂ Sam•D , V̂ Sam•D 〉 with the veri-
fier communication complexity O(Dc(n)) (where D = c(n)

logn) and prover commu-
nication complexity p(n) that is (π,Samπ

D)-relativized black-box zero-knowledge
argument.

Proof: We modify the construction and proof from the previous lemma to
obtain this lemma. From Remark 3, we know that the running time of P ∗, is
d2L where L is the length of the longest V -message. In order to use the previous
construction and obtain an efficient P ∗, we need the length of every verifier
message to be logarithmic. Alternatively, if we split every message into segments
of length log n bits and use the random tape sampled by Sam to generate one
segment of the verifier message at a time, this also makes the running time of P ∗

polynomial. However, now, we need only to ensure the verifier’s communication
complexity is o(n) (as this guarantees that the maximum depth is o( n

logn )). We
note that the idea of splitting messages into segments of log n bits was used in [14]
but their use of this technique is not sufficient for our application. More precisely,
in [14] it is only shown how Sam can be used to generate a new random tape
assuming that the original random tape was also generated using the random
oracle. In our application, we need to be able to find a random tape for the
“external” verifier. (As observed by Haitner in a personal communication, it
would seem that by using our techniques (from Lemma 1) the results of [14]
could be extended to rule-out also constructions that are secure with respect to
only honest-but-curious players.)



We describe the procedure for generating a verifier message using Sam and
the rest of the proof follows identically by plugging in this procedure wherever
V π’s message is required to be generated. Without loss of generality, we assume
that V π’s message in the ith round is a multiple of log n, say k log n. We describe
how to sample the ith round message given transi−1, the partial transcript for
the first i − 1 rounds and a random string si. We first split si into k equal
parts, s1i , . . . , s

k
i . Using s1i , we samples a random tape r1 for V π consistent with

transi−1 using Sam. We then run V πr1 to generate only the first log n bits of
V π’s message in round i, say q1i . Next, we sample another random tape r2 using
s2i , but now r2 is consistent with the extended transcript transi−1 :: q1i . We
run V πr2 and obtain the next log n bits, q2i . In this manner we generate every
log n segment up to qki , each time ensuring that it is consistent with all previous
segments. The depth of the maximum Samπ

D query is total number segments
counted over all verifier messages, i.e. D = c(n)

logn where c(n) is the total verifier
communication complexity. Since, c(n) ∈ o(n), the maximum depth of a Sam
query is o( n

logn ).

Completeness, Soundness and Zero-Knowledge: The proof of complete-
ness follows exactly as before. As show for the weak-duality, we prove that if
there exists a cheating prover P̂ ∗ for 〈P̂ , V̂ 〉 that succeeds with probability p,
there is a prover P ∗ with oracle access to Samπ

D succeeds in 〈P, V 〉 with prob-
ability p

2 . The running time of P ∗, computed as before, is c(n)
logn2logn =

(nc(n)
logn

)
which is polynomial since c(n) ∈ o(n). Therefore, there exists a PPT prover
P ∗ with oracle access to Samπ

o( n
logn ) that cheats with probability p

2 . If 〈P̂ , V̂ 〉 is
not a (π,Samπ

D)-relativized argument for a random permutation π, then there
is a sequence {xn}∞n=1, xn ∈ L ∩ {0, 1}n, polynomial p such that P ∗ succeeds in
convincing on V on xn with probability 1

p(n) over a random permutation π for
infinitely many n. Applying the Borel-Cantelli lemma, we again have that with
measure 1 over permutations π, P ∗ cheats for infinitely many n. Using the fully
black-box property, we have that for measure 1 over permutations π, there exists
an adversary A that inverts π (and hence, for a random π); this violates Theo-
rem 2 and we arrive at a contradiction. This completes the proof of soundness.
To prove zero-knowledge, we use the same simulator from the weak duality, with
the exception that it treats the verifier messages in log n-bit segments. The rest
of the proof follows as before.

We mention that the proof of the strong duality transformation shows that
Theorem 2 (due to [13]) is optimal.

Theorem 3. Let f• be a function that on inputs of length n has output length

l(n). Then, for any π, there exists an oracle PPT machine A•, such that A
Samπl(n)

logn

inverts fπ.

Proof: First, we construct a 1-round protocol 〈P •, V •〉 for the empty language
as follows: On input 1n, V π computes y = fπ(r), where r is its random tape and
sends y to Pπ. Pπ sends a string x′ to V π. V π accepts if fπ(x′) = y. Next, we ap-
ply the strong-duality transformation to the protocol 〈P •, V •〉 and obtain 〈P̂ , V̂ 〉.



In 〈P̂ , V̂ 〉, P̂ Samπl(n)/ logn on receiving a random string s from V̂ Samπl(n)/ logn , queries
Samπ

l(n)/ logn with input s and obtains a random tape r for V π. P̂ Samπl(n)/ logn runs
V πr and obtains fπ(r). V̂ Samπl(n)/ logn accepts at the end, if P̂ Samπl(n)/ logn can send r′

such that fπ(r′) = fπ(r). Notice that P̂ Samπl(n)/ logn knows r from Samπ
l(n)/ logn’s

response, and can just forward r directly to V̂ Samπl(n)/ logn . Therefore, there is a
cheating prover for 〈P̂ , V̂ 〉, that succeeds with probability 1. From the proof of
soundness of the strong duality lemma, we know how to construct a cheating
prover P ∗Samπl(n)/ logn that convinces V π with probability at least 1

2 . This means
that P ∗Samπl(n)/ logn inverts fπ with probability at least 1

2 . The maximum depth
of a query by P ∗Samπl(n)/ logn is l(n)

logn .

We call a function compressing if it on inputs of length n has output length
o(n).

Corollary 1 There exists no fully black-box construction of a compressing one-
way function from one-way permutations.

Proof: From Theorem 3, we have an adversary that inverts fπ with oracle
access to Samπ

o( n
logn ). By the fully black-box property, we have an adversary A

with oracle access to Samπ
o( n

logn ) that inverts π. Since this holds for every π, we
arrive at a contradiction to Theorem 2.

5 Black-box Lower Bounds for Zero Knowledge

All our black-box lower bounds follow by combining the weak or strong duality
lemma with known lower bounds for public-coin protocols.

5.1 Lower Bounds Zero-Knowledge Proofs and Arguments

Goldreich-Krawczyk [8] show that only languages L in BPP have black-box
constant-round public-coin zero-knowledge proofs. We remark that the proof of
GK uses the simulator as a black-box to decide the language L, and relativizes.
We therefore have:

Theorem 4 (Implicit in [8]). Let 〈P •, V •〉 be a O-relativized constant-round
public-coin zero-knowledge proof for a language L with a black-box simulator
S. Then, there exists a PPT machine M•, such that MV O,SO decides L with
probability 2

3 when the probability is taken over a uniformly chosen O ∈ O.

Combining this theorem with the weak-duality lemma, we obtain the following
corollary.

Corollary 2 (Constant-round Zero-Knowledge Proofs) For any constant
d, only languages L in CFd have d-round fully black-box zero-knowledge proofs
from one-way permutations.



Proof: Let 〈P, V 〉 be fully black-box zero-knowledge proof based on one-way
permutations. Applying the weak duality lemma, we obtain a protocol 〈P̂ , V̂ 〉
that is public-coin protocol where the prover, verifier and the simulator have
access to Samπ

d , that is (π,Samπ
d )-relativized black-box zero-knowledge proof.

Using Theorem 4, we have that L ∈ CFd.

We remark that if NP 6⊆ CFO(1), then the corollary is tight; Goldreich, Mi-
cali and Wigderson [10] present a fully black-box construction of an ω(1)-round
protocol for NP based on one-way functions. On the other hand, Goldreich and
Kahan [7], present a fully black-box O(1)-round zero-knowledge proofs for all of
NP using claw-free permutations.1

Remark 4. A very recent work by Gordon, Wee, Xiao and Yerukhimovich [12]
strengthens Corollary 2 by removing the usage of the random oracle π, and thus
placing the class of languages having O(1)-round fully black-box zero-knowledge
proofs from one-way permutations in CF’O(1) (see Section 3.2). By relying on the
recent work of [16], they obtain as a corollary that only languages in coAM have
constant-round fully black-box zero-knowledge proofs from one-way permuta-
tions where the black-box simulator only makes a “constant number of adaptive
queries” (where adaptive queries are defined in an appropriate way).

Using the strong-duality transformation, we obtain an analogous result for
zero-knowledge arguments as well.

Corollary 3 (Constant-round Zero-Knowledge Arguments) For any con-
stant d, only languages L in CFo( n

logn ) have d-round fully black-box computational
zero-knowledge argument based on one-way permutations where the total verifier
communication complexity c(n) is sub-linear (i.e. o(n)).

Proof: Applying the strong-duality lemma, there exists a protocol 〈P̂ , V̂ 〉,
that is public-coin protocol where the prover, verifier and the simulator have
access to Samπ

o( n
logn ) that is (π,Samπ

o( n
logn ))-relativized black-box zero-knowledge

argument. Thus, using Theorem 4, we have that L ∈ CFo( n
logn ).

If NP 6⊆ CFo( n
logn ), then the corollary is essentially tight. Feige and Shamir [5]

and Pass and Wee [22] present an O(1)-round zero-knowledge arguments based
on one-way functions. While, the former construction relies on one-way functions
in a non black-box way, the latter is a fully black-box construction. Nevertheless,
both the constructions require superlinear verifier communication complexity.
On the other hand, efficient zero-knowledge arguments due to Kilian [17] have
poly-logarithmic communication complexity, but are fully black-box based only
on collision-resistant hash functions.
1 Goldreich-Kahan use claw-free permutations to construct constant-round

statistically-hiding commitments. However, these can be constructed under
the potentially weaker assumption of collision-resistant hash functions [3, 15].
Therefore, there also exists constant-round black-box zero-knowledge proofs for all
of NP based on collision-resistant hash functions.



5.2 Lower Bounds for Concurrent Zero Knowledge

The notion of concurrent zero-knowledge introduced by Dwork, Naor and Sahai
[4], considers the execution of zero-knowledge in a concurrent setting. That is,
a single adversary participates as a verifier in many concurrent executions (see
[23] for a formal definition and discussion). Analogous strong and weak dual-
ity transformation for concurrent zero-knowledge proofs and arguments follow
directly by the proof of Lemma 1 and 2. We now turn to prove our lower bounds.

Recently, Pass, Tseng and Wikström in [21] prove that only languages in BPP
have public-coin black-box concurrent zero-knowledge proofs or arguments. As
the result of Goldreich-Krawczyk [8], this proof uses the simulator as a black-box
to decide the language L, and relativizes. We therefore have:

Theorem 5 (Implicit in [21]). Let 〈P •, V •〉 be a O-relativized public-coin
concurrent zero-knowledge proof (or argument) for a language L with a black-box
simulator S (and negligible soundness error). Then, there exists a PPT machine
M•, such that MV O,SO decides L with probability 2

3 when the probability is taken
over a uniformly chosen O ∈ O and the internal coin tosses of M .

As corollary of the strong and weak duality transformation for concurrent zero-
knowledge, we obtain the following.

Corollary 4 A language L has a o( n
logn )-round fully black-box concurrent zero-

knowledge proof (or argument with o(n) verifier communication complexity) based
on one-way permutations, then L ∈ CFo( n

logn ).

This result is tight if NP 6⊆ CFo( n
logn ); Prabhakaran, Rosen and Sahai [20] pro-

vide a fully black-box constructions of ω(log n)-round concurrent zero-knowledge
proofs, or arguments with polylogarithmic communication complexity, based on
collision-resistant hash functions; Pass and Wee [22] provide an O(n)-round fully
black-box argument based on one-way functions.

6 Acknowledgements

We would like to thank the anonymous TCC reviewers for their helpful com-
ments, and Iftach Haitner for pointing out the connection to the work of [14].

References

1. L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and a
hierarchy of complexity classes. JCSS, Vol. 36, pages 254–276, 1988.

2. B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS,
pages 106–115, 2001.

3. I. Damg̊ard, T. Pedersen and B. Pfitzmann. On the Existence of Statistically Hiding
Bit Commitment Schemes and Fail-Stop Signatures. In Crypto93, Springer-Verlag
LNCS Vol. 773, pages 250–265, 1993.



4. C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages
409–418, 1998.

5. U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds. In
Crypto89, Springer LNCS 435, pages. 526–544, 1989.

6. O. Goldreich. Foundation of Cryptography – Basic Tools. Cambridge University
Press, 2001.

7. O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology, Vol. 9, No. 2, pages 167–189, 1996.

8. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Sys-
tems. SIAM Jour. on Computing, Vol. 25(1), pages 169–192, 1996.

9. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM Jour. on Computing, Vol. 18(1), pp. 186–208, 1989.

10. O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol.
38(1), pp. 691–729, 1991.

11. S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive
Proof Systems. In 18th STOC, pages 59–68, 1986.

12. S. D. Gordon and H. Wee and D. Xiao and A. Yerukhimovich. On the Round
Complexity of Zero-Knowledge Proofs Based on One-Way Permutations. Manuscript,
2009.

13. I. Haitner, J. Hoch, O. Reingold and G. Segev. Finding Collisions in Interactive
Protocols - A Tight Lower Bound on the Round Complexity of Statistically-Hiding
Commitments. In 48th FOCS, pages 669–679, 2007.

14. I. Haitner, J. Hoch and G. Segev. A Linear Lower Bound on the Communication
Complexity of Single-Server Private Information Retrieval. In 5th TCC, pages 445–
464, 2008.

15. S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes from
Collision-Free Hashing. In Crypto96, Springer LNCS 1109, pages 201–215, 1996.

16. I. Haitner and M. Mahmoody-Ghidary, and D. Xiao. A constant-round public-
coin protocol for sampling with size, and applications. Technical Report TR-867-09,
Princeton University, 2009.

17. J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th
STOC, pages 723–732, 1992.

18. J. Kilian and E. Petrank. Concurrent and resettable zero-knowledge in poly-
logarithmic rounds. In 33rd STOC, pages 560–569, 2001.

19. S. J. Ong and S. Vadhan. An Equivalence between Zero Knowledge and Commit-
ments. In 5th TCC, 482–500, 2008.

20. M. Prabhakaran, A. Rosen and A. Sahai. Concurrent zero-Knowledge with loga-
rithmic round complexity. In 43rd FOCS, pages 366–375, 2002.

21. R. Pass and W. Tseng and D. Wikström. On the Composition of Public-Coin
Zero-Knowledge Protocols. In CYPTO, Springer LNCS 5677, pages 160–176, 2009.

22. R. Pass and H. Wee. Black-box constructions of two-party primitives from one-way
functions. In 6th TCC, 403–418, 2009.

23. A. Rosen. Concurrent Zero-Knowledge. Springer, 2006.
24. O. Reingold, L. Trevisan and S. Vadhan. Notions of reducibility between crypto-

graphic primitives. In 1st TCC, pp. 1–20, 2004.
25. D. Simon. Finding collisions on a one-way street: Can secure hash functions be

based on general assumptions?. In Eurocrypt, pages 334–345, 1998.
26. S. Vadhan. On Transformations of Interactive Proofs that Preserve Prover’s Com-

plexity. In 32nd STOC, pages 200–207, 2000.


