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In a synchronous network, it is well-known that ¢ + 1
rounds are necessary and sufficient to achieve distributed
consensus tolerating ¢ stopping faults[2]. In this work, we
show that in a network consisting of all k-cast channels, the
corresponding number of rounds is | (¢t — 1)/k| + 2.

THEOREM 1. Consider a synchronous round-based system
with n players connected by a network having all k-casts.
Suppose that at most t crash-failures can occur with at most
k-players crashing in each round.! If n >t + k, there is no
algorithm that solves consensus in A = L%J + 1 rounds.

Proof: We assume that there exists a protocol A that achieves
consensus in A rounds and arrive at a contradiction. The
proof is based on the standard bivalency argument using
forward induction. A particular configuration C' of a syn-
chronous system is univalent if there is only one value that
the correct players can agree upon. C' is said to be bivalent
if it is not univalent (either 1-valent or O-valent). In the fol-
lowing, a l-round partial run r; denotes the execution of A
up to the end of round [. We prove two lemmas similar to
[1]. The second one contradicts the first and completes the
necessity proof of the theorem.

Lemma: Any (A — 1)-round run ry_; is univalent.

Proof: Suppose rx_1 is bivalent. w.l.g. assume that the A-
round run r° obtained by extending rx_; by one round such
that no player crashes in round X is O-valent. Let r* be a 1-
valent extension of ry_; where some players crash in round
X. The only difference between r° and r! is that some mes-
sages {m1,ma,...,ms} were sent in r° but not in r'. We
define runs r* for all 2 < i < s+ 1, as follows: For every i,
1 <i<s,rt! is identical to r’, except that the message
m; was sent in round A. If m; was sent along the k-cast A;
then for every player other than the recipients of A;, 7 is
indistinguishable from 7. Note that, since n > t + k, this
includes at least one correct player. This implies that each
of these runs is 1-valent. However the view of any correct
player ¢ in 7*T! is the same as that in 7°, which means that
c should decide 0 in 7**!, giving the contradiction.
Lemma: There is a bivalent (A — 1)-round run ry_1.

Proof: We show by induction on [ that for each [, 0 <[ <
A — 1, there is a bivalent [-round partial run r;.
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From [1], there exists an initial bivalent configuration Co.
Let rg be the 0-round partial run ending in Cy. Assume, for
contradiction, that every one-round extension of r; is uni-
valent. Let r;,; be the (univalent) partial run obtained by
extending r; by one round such that no new crashes occur.
w.l.g. assume that it is O-valent. Since r; is bivalent and
every one-round extension of r; is univalent, there is at least
one one-round extension r; 11 of r; that is 1-valent. Suppose
, M were not sent in round [+1in 7/ ;.
The only difference between 77, and rl1+1 is that the mes-
,m were sent in r;,; but not in r/,,. Starting
from rllﬂ, we now define [ + 1-round partial runs as follows.
is identical to rlj+1, except that
the message m; was sent in round [+ 1. Note that for every

the messages mi, ...
sages mi, ...
1

For every j, 1 < j <s, 7"{+1

7, 1<j<s+1, T{-H is univalent. There are two cases:

1. Thereisa j, 1 < j < s, such that T{H is 1-valent while

J+1
Tl+1

runs r and 7', respectively, by crashing the k recipients
of A; at the beginning of round ! 4 2, and continuing
with no additional crashes. Note that (a) no player
except the recipients of A; can distinguish between r
and r’, and (b) all correct players must decide 1 in r

and 0 in ' — a contradiction.

2.Vj,1<5<s+1, T{H is 1-valent. (like in case 1.) [

To prove the sufficiency condition, we give an optimal
ers. For I <i < n, let x;
message sent by a player
is of the form (pn,zn,S) where z, € {0,1} is the initial

rotocol. Let P be the set of pleX
e the initial value of player p;.

b

value of the pla%er pn and S C 2P. The following protocol
is executed by the player p;.

is O-valent. Extend partial runs r/_; and rfill into

(1) Set W; = z;. Send (pi, s, {pi}) along all k-casts that p; can use.

(2) For any round r > 1,

(a) If (pn,xn, S) was received in round (r — 1) through k-cast A’,
send (pp,zn,S U A’) using A, for every A such that AN S = 0. If

such a k-cast does not exist then use a k-cast that covers (P — S).

(b) for every message (ph, x, S) received, update W; = W; U{xp}.

(3) After A + 1 rounds, if W = {v} finalvalue=v else finalvalue=0.

The proof of correctness of the protocol is sketched below.
Let 1 <r < £. Any message (pn,zn,S) sent during round
r has |S| > rk. This ensures the following. If p; and p;
are active players at the end of round r, 1 < r < A, and p;
knows the initial value of ps, and p; does not, then at least
(r — 1)k + 1 players crashed by the end of round r. Thus, if
at most (r — 1)k players crashed by the end of round r then
W; = Wj for any two active players p; and p;, and hence all

correct players decide on the same value.
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