Trusted CVS

Muthuramakrishnan Venkitasubramaniam Ashwin Machaiiaaiz David Martin
Johannes Gehrke
Department of Computer Science, Cornell University
{vmuthu,mvnak,djm,johanng&cs.cornell.edu

Abstract authenticated data publishing [2] which involve untrusted
servers. In both these solutions, data is stored in an un-

The CVS (Concurrent Versions System) software is atrusted server and multiple users read from this server. The
popular method for recording modifications to data objects, data is stored in aauthenticated data structuresing which
in addition to concurrent access to data in a multi-user en- the untrusted server can prove to the users that integrity
vironment. In current implementations, all users have to and availability are not violated [2]. For instance, in the
trust that the CVS server performs all user operations as certificate revocation case, the user can verify that the un-
instructed. In this paper, we develop protocols that allow trusted server has neither maliciously revoked some certifi
users to verify that the server has been compromised, andcates nor neglected to report any of the revoked certificates
that it has performed exactly the users’ operations on the These protocols support multiple users who can read the
data. We first show that communication between users isdata, however there is only one user, the data owner, who
necessary to guarantee that users can detect that the servecan update the data on the server.
has been compromised. We then propose efficient proto- In systems where multiple users can update files, like in
cols that fast enable detection of server integrity undeSCV the case of CVS, a malicious server can violate availability
workloads. Our techniques also have applications in the even when each user believes that the server has not ne-
outsourcing model where multiple users own a commonglected any of their updates to the data.

database maintained by an untrusted third-party vendor.) - _
e Multiple-User Availability Violation The CVS server

can make one set of users believe that the other users

1 Introduction are not modifying any files.

]] In this paper we propose protocols which enable detec-

The Concurrent Versions System (CVS) is a popular tjon of integrity and availability violations by an untrest
method for recording modifications to data objects, espe-ggryver when multiple users can modify the data on the un-
cially for large software development projects. In current ysied server. Our solutions will be geared towards con-
implementations, the data objects are stored and maintaine sy cting a trusted CVS system. Our techniques, however,
on a CVS server which provides concurrentread and updaté,aye wide applicability to any scenario where a common

access to the data to multiple users. However, current im-qatahase which is maintained by an untrusted server oper-
plementations of the system require the users to completelyiaq upon by several clients.

trust the CVS server. However, a malicious server can dis- pesiderata for Trusted CVS Protocols.Let us first dis-
rupt the functioning of the CVS by violating the integrity ¢,ss some desiderata for the solutions we are interested in.
and the availability of the system in two ways: First, we want our protocols to be able to detect integrity
e Single-User Integrity Violation A malicious CVS and availability violations as soon as possible in order to
server can modify data even though the user did not limit the amount of rollback that might be necessary. More
request the server to make any updates. specifically, we want to be able to formally bound (by some
metric) how long it takes to detect a violation. In partic-
ular, we will use both time and the number of operations
performed after the violation as metrics in our protocols.
Second, to be applicable to the CVS context, we require the
There are existing solutions which can detect integrity and protocol to be able to detect violations even when the users
availability violations such as certificate revocation §id are inactive for arbitrarily long periods of time. Third, we

e Single-User Availability Violation A malicious CVS
server may not perform a data update even though the
user has submitted a data update.

want the users to be able perform any operations on the datzheck that state transitions can be pieced together to form
atthe server with only a minimum overhead due to any over- a single correct execution. The third protocol simulates a
head involved by our protocols compared to a traditional broadcast channel using the untrusted server; this is{possi
CVS system. Fourth, we want all messages either to be senble since every user is guaranteed to perform at least two
to or be received from the server; i.e., we want only minimal operations every once a while. To the best of our knowl-
external communication among the users. External commu-edge, these three protocols are the first feasible protéaols
nication requires synchronization between users thats ha implementing multi-user data management on an untrusted
to obtain for CVS users. Fifth and last, we want protocols server efficiently.

that do not require much resources at the users, and thus we We describe related work in Section 5 and we conclude
require that the amount of state maintained by each user idn Section 6.

bounded by a small constant amount of memory. In closing this introduction, we would like to point out
Our Approach. Let us shortly survey our approach to in this preliminary work we exclude all types of failures —
building a trusted CVS. for example, unreliable message delivery or crashes of the

We model an untrusted CVS by investigating how differ- users or the server. Failur_es are outside the scope_of this
ently it behaves from a CVS executing on a trusted server,Paper, and we leave extensions of our protocols to this case
We say that the untrusted CVS server biasiatedif the L0 future work.
users do not receive query results identical to the resedts r
turned when using a trusted server. Intuitively, a deviatio 2 Formalisms
from correct behaviour implies that either integrity orikva
ability has been violated. Our aim is then to design pro- |n this section we adopt the framework for multi-agent
tocols where users trust each other and can detect deviandystems from the book by Halpern et al [3] to formally
behaviour of the server. In particular, we are interested in model our system. In Section 2.1, we describe the basic sys-

the case where deviant behavior can be detected within theem model. In Section 2.2 we define the protocol desiderata.
time that some user performgurther updates on the data.

Such a protocol is said to posses the property-bbunded 2.1 System Model
deviation detectiorfSection 2.2.1). We model the activity
of users using the concept ofweorkload and require our In a CVS system, there are+ 2 agents namely, the
protocols to permit workloads wherein users can be offline c\/g gatabase server, theusers, and the environment. At
for long periods of time. We formulize the requirement that times, each agent is associated wittoeal state The
our protocol for the untrusted server does not impose t00|qc4) state of the CVS server includes the data stored at the
large an overhead for carrying out user operations on theseryer. The local state of the users may include the history
data as compared to a trusted server using the concept oft mqgifications requested by the user. The local state of
bounded workload preservation Section 2, we give for- {he environment includes the global clock (which the other
mal definition of these properties. agents may or may not have an access to), information about
Under the assumptions that the CVS server completesmessages in transit and everything else that is relevanéto t
every transaction in bounded time, and that the users aresystem. A global state is thes + 2)-tuple of local states.
partially synchronous (i.e., their local clocks do not trif The global state describes the system at any given point in
arbitrarily), we show in Section 3 that in the absence of time.
communication between users, there is no protocol which The state of the system is constantly changing over time.
guarantees bounded deviation detection, bounded workloadh run of the multi-agent system intuitively represents a pos-
preservation, and permits typical CVS workloads. sible execution sequence of agents in that system. Arunis a
Section 4 contains our main contributions. We propose function from time to global states. A pdir, m) consisting
efficient protocols for implementing a CVS on an untrusted of a runr and timem is called gpoint r(m) denote the state
server while guaranteeingrbounded deviation detection. of the system at that point. The time here co-incides with
In the first two protocols, we assume that there is a broad-the global clock maintained by the environment. Global
cast channel between the users. The third protocol doesstates change as a result of actions. Actions are performed
not assume existence of external channels of communicain rounds— roundm takes place between time — 1 and
tion, but restricts the kind of workloads allowed — every timem. An agentis said tenowa fact at some poirit:, m)
user needs to perform at least two operations eveiye if the fact is true at all points in the system where the agent’
units. The idea behind the first two protocols is that every local state is the same as its local statératn).
user verifies that the CVS server has performed a correct Synchrony. An agents local clock is said to “tick” ev-
state transition while performing an operation, and on@e in ery time its local state changes. An agent’s local clock
while the users synchronize using the broadcast channel tanight be slower than the global clock in the environment.

While it is unreasonable to assume that all the users and the 1. The set of query and response actions that occur in
server share the same clock as the environment (perfectsyn- the prefix ofr is not identical to the set of query and
chrony), it is usually not the case that the local clocks are response actions that occur in the prefix-gfor
arbitrarily slower than the global clock (asynchrony). Par) i .

tial synchrony is a reasonable middle ground. We assume 2- The order in which the query and response actions oc-
p-partial synchronywhere every user's local state changes curinthe preﬂx ofis c_ilfferentfrom the order in which

at least once evenyrounds. they occur in the prefix of

Communication: We do not explicitly model messages g say thaé runr deviates from a run’ if some prefix of

in our system. Instead, message sgnt and received by thﬁeviates from’. We say that the untrusted sendmviatesf
agents can be modeled by appropriate changes to the lo’some run in the untrusted system deviates from all possible

cal states of the sender and the receiver. We assume lofuns in the trusted system.

cal states of the users and the CVS server accommodate
message queues from which messages are handled in ordefye only difference between a rurwhich does not deviate
We assume that messages are not lost and are delivered ifjom a run’ is that the time points at which the query re-
bounded time. Without loss of generality, we only consider sponse events happen in the two runs can be different. We
runs of the system where messages are delivered in a singli|| yse this notion to define one of our desiderata, bounded

round. . o _ workload preservation, in Section 2.2.3.

CVS Operations For simplicity of presentation we as- We have now formally expressed the concept of devi-
sume that only two operations are allowed on the files on gtjon. We can use this to formally express our goal — to
the CVS server €heckoutfile names- andcommit<file gesjgn protocols where users can detect if a run in the un-

names-. The operatiorcheckout<file names-, is aread trysted system deviates from all runs in the trusted system.
request which returns the current version of the files on the \y;orkload: We need to define one more concept to en-
CVS server. Theommit<file names- operation commits gpje ys to compare the untrusted system with the trusted
the changes made by the user in the files specified. To fur-system. Consider a runin the trusted system which in-
ther simplify the model (and to widen the applicability of yolves a sequence of operations on the data at the server.
our result), we consider the CVS server as a database ofy, call this sequence of operations on the datmekload

data items. The checkout operatlon_ls modgled.aesad Any protocol specifies a set of possible ruRls We say
request on the database. The commit operation is modeleg 5t 5 protocopermitsa workload if there exists a run iR

as arnupdaterequest on the database. _ wherein the operations on the data occur in the same order
CVS operations on a Trusted Server We first model 55 in the workload.

CVS operations in a system with a trusted CVS server. CVS

operation requested by a user are called transactions. Th%2 Protocol Desiderata
start and end of transactions are marked lguary action
and aresponse actioivespectively. The query action rep- Not only do we want our protocols to enable the users
resents a message sent to the server requesting an operati%l detect deviation, we also want the protocol to have the
on the data. The response action models a message from ﬂ:ﬁ)llowing desirable,properties

server telling the user that the operation has completed an o L . .
returning results if any. For simplicity, we assume that at 221 Bounded Deviation Detectior\Ve are interested in
most one query action occurs per round. The trusted CVsprotocols which enable users to detect that the untrusted

server is assumed to execute the requested operations in erver hr?s ?ewateld ffrom the trulzuﬁg syslgem grehfergbly
serial order mirroring the order in which requests are re- sooner than later. In fact, we would like to bound the de-

ceived. We assumie-bounded transaction timé.e., the tection delay in terms of the number of transactions that are

response action corresponding to every query action occur§equeSteOI after the first deviati_on. .
Witf?in b. rounds P J YRS We say that the system exhibitsbounded deviation de-

Untrusted Server and Deviation We now can model tectionif for any runr in the untrusted system, if a prefix of

our untrusted CVS system and formally express our goal.” of lengthm deviates from all runs in the trusted system,
An untrusted server can maliciously violate the integritg a then some user knows this fact before any user completes

availability of the system. We model violations by the un- nlw\lore tr;]ank: transactl_onsrtlha;t Wer?(;n'ft.'a.t.ed af]Eer roulr(md |
trusted server using the concept of deviation between runs.(ote that we are using the formal definition of user know!-

Intuitively, an untrusted server is acting maliciously tf i edge from Sect|(_)n 2.) . .
does not behave “similar” to the trusted system. We only require that some user realizes this fact (as op-
posed to requiring that the fact become common knowledge

Definition 2.1 (Deviation) A prefix of a run deviategrom amongst all users) because we assume that the first user to
arunr’ if there is some prefix of such that: detect deviation will leave the system at that point and use

an external mechanism (e.g. law enforcement) to broadcasitf for each possible run, in the trusted system there is some
this information to all other users. runr in the untrusted system such that
The motivation behind bounding delay this way is that no
user will lose more thak transactions after the server has 1. runr does not deviate from,, and
deviated. We could required a stronger condition — the pro-

tocol should enable deviation detection before afyrther 2. the number of rounds between any two events is at
operations are performed on the data, andinoperations most the number of rounds between those events in
per user. We only give protocol for the weaker requirement. . plusc times the number of query and answer events
2.2.2 CVS Workloads Ideally, we would like the un- that occur between the two events. (Intuitivelyepre-
trusted system to handle a variety of workloads typically sents the overhead of integrity verification per ordinary
found in CVS applications. For example, we want our transaction.)

system to guarantee bounded deviation detection in cases

where some users sleep (i.e., go offline) indefinitely since 2.2.4 Absence of External Communicationin a CVS

this often seems to be the case with actual CVS users in reafystem on a trusted server, all communication is only be-
life. Unfortunate|y' as we shall see in the next section,som tween the users and the server. There is no communication
naturally occurring classes of workloads make it difficult o between users. For an untrusted server, we also want proto-

even impossible for protocols to provide bounded deviation €IS that do not require communication between the users.
detection. We call any communication between usexsernal commu-

2.2.3 Bounded Workload PreservationWe show asim- ~ Mication)

ple protocol which motivates the workload preservation re- ~ More precisely, we say that a system s external
quirement. Consider a system with an untrusted server andfommunicatioiif the local state of each user in round 1

a single user. Techniques from authenticated data publishiS & function of the user's local state in rouncand the mes-

ing ensure that integrity and availability are notviolafgld ~ Sages received by the user from the server in round 1,

In these protocols, every time the data is modified by the N case there_ are any. This means that the local state of each
server (on a request by the data owner), the server returns 4S€r iS conditionally independent of the local states of the
verification objectoack to the owner. The owner can use other users given the state of the server. Hence, if the users
this verification object to verify that single-user intagri ~ Want to communicate with each other, they can do so only
and availability violations have not occurred. through the server.

We can use a simple extension of this protocol for the 2.2.5 Bounded Local State with UsersiWe want proto-
mutli-user case as follows. The protocol forces users to up-cols that bound the local state at each user by a small con-
date the data only at pre-specified time points (say, on thestant amount of memory. This means, for example, that
hour) and only in a pre-specified order. All users know the the protocol should not expect the users to maintain the
initial state of the data. The first user performs an update,complete history of the requests that they ever posed to the
and verifies that the server has not deviated using the veri-Server.
fication object. Then the user signs this verification object
and the update performed and stores it on the server. Thi . o
goes on in a token passing style cycling through the users.% Necessity of External Communication
If a user does not have an operation, a signature of a null
message is stored. Since the signatures are not forgeable, Though all the desiderata outlined in the previous sec-
and since users are guaranteed to store a signed object ition are very reasonable and desirable, we will show in this
their turn, we have simulated the single user protocol. Thussection that there is no protocol with all of these desider-
if the single user protocol can detect deviation, so can thisata. More precisely, we show that in the absence of reliable
multi-user protocol. external communication, there is no protocol which permits

We want protocols that permit any user to be able to do CVS workloads and guarantees bounded workload preser-
anything in the untrusted system that she could do in thevation andk-bounded deviation detection.
trusted system, with only a reasonable delay in verification To show the necessity of reliable external communica-
overhead. In a workload where a user performs two oper-tion, we introduce a class of workloads which we altti-
ations in succession, the above protocol forces the user taionable workloads These workloads are very reasonable
wait for all the other users to write null records to the serve in a CVS system. We then show that there is no proto-
before performing her second operations! We want to dis- col which guarantees-bounded deviation detection and
allow such protocols which drastically slow down certain bounded workload preservation, while permitting a parti-
workloads, and we make this formal as follows. tionable workload in the absence of reliable external com-

We say that the system exhibitsvorkload preservation munication.

3.1 Partitionable Workloads

We motivate this class of workloads with an example.
Consider a code-base in CVS which is jointly edited by a
programmer in the US and a programmer in China. The
two programmers work quite independently. They work at
different times (due to the time difference) and on différen
parts of the source code, occasionally changing some com-
mon header files. It is therefore quite reasonable to assume
that the programmer in the US changes a common header
file, sayCommon.h and goes offline. Before this program-
mer comes back up, the programmer in China might make
a change which is dependent @@mmon.h. We call the
change made by the Chinese programuoaarsally depen-
denton the change made by the US programmer. The Chi-
nese programmer might go on to make- 1 other changes
before the American comes back up. We describe such a
situation abstractly as follows.

We say that the systeermits unboundedly partition-
able workloadsf, for every numbelk, there is a partition-
ing of users into setgl and B and two runs-4 andrg in
the untrusted system and rounds< my < mp < m’
such that:

P includes k+1
operations
by one user,

run TA run b runr

e transaction by users in A
o transaction by users in B

Figure 1. The Partition Attack

deviation and cannot be discovered until the US program-
mer comes up, by which time the other programmer has

performed more thak operations. Hence;-bounded de-

1. r4 andrp have some common prefix up to round
(see Figure 1).

2. the prefix ofr4 up tom’ does not deviate from some
run in the trusted system.

viation cannot be guaranteed.

Theorem 3.1 If the untrusted system lacks external com-
munication, and permits unboundedly partitionable work-

loads, thenk-bounded deviation detection is not possible

3. the prefix ofrg up tom’ does not deviate from some
run in the trusted system.

4. some transaction, in rp that gets issued and com-
pleted strictly between rounds 4, andmp is causally
dependent on the existence of some transactian
r4 that gets issued and completed strictly between
roundsm andm 4, and

5. inrp, some user (imB) issues and completes at least
k + 1 transactions between rounds; andm’

for anyk.

The proof of this theorem is omitted due to space con-

straints.

4 Protocols

In this section, we present three protocols that guaran-

tee deviation detection. From Theore&ni, we know that

6. in 74, NO user inB issues or completes any trans- there are no protocols that can guarantee bounded devi-
actions (neither operations nor verifications) between ation detection while at the same time permitting typical

roundsm 4 andm’

7. in rg, no user inA issues or completes any trans-
actions (neither operations nor verifications) between

roundsm 4 andm’

CVS workloads without the use of external communication.
Our first protocol guarantees bounded deviation detection
while permitting less restrictive workloads by using exter
nal communication. Our second protocol improves on the
first in efficiency. Finally, our third protocol guarantees d

Under such a workload, an untrusted server can mount aviation detection within bounded time (as opposed to within
partitioning attack where the US programmer is led to be- @ bounded number of operations) with no external commu-

lieve that change t€ommon.h (¢1) has been completed
and the Chinese programmer is led to believe thadid
not happen. This is illustrated in Figure 1 as runRunr

nication, by restricting the permitted workload.

Before describing our protocols, we first describe the
data structure we will build upon to verify that the server

deviates from all possible runs in the trusted system. Thishas not violated integrity — Merkle Trees [7].

4.1 Merkle Trees

A Merkle Tree [7] is a B -tree with digests. In aB-tree
[15], the leaf nodes of the tree contain data, and the interna
nodes contain keys and tree pointers. Each internal node has
up tom keys andn + 1 pointers to children, whera + 1 is
the maximum permissible branching factor of thé-Bee.

In a Merkle Tree, each node also storedigest The
digest stored in a leaf node is the hash of the data stored at

that node. A collision intractable hash function, for exdenp Node Digest
as described in [2], is used. The digest stored in an internal N3 hiall bl ¢)
node is a hash of the concatenation of the digests of the N2 | h(N3| d]e)
node’s children. Figure 2 shows a root to leaf path in a N1 | A(N2]| fllg)

Merkle Tree.N 3 is a leaf node an&/'2, N1 denote internal
nodes.N1 has no parent node and hence is the root of the
tree.a, b, ..., g denote digests. Digesisb andc are hashes
of values stored in nod& 3. Digestsd ande are the digests
stored at the siblings of nod¥3. The digests that will be next operation.

Figure 2. A path in a Merkle Tree

stored in each of the node§1, N2 and N3 are shown in We will use some notation from this section in the re-
the table in the Figure 2. The hash of the root of this tree is maining discussion. We denote B (D) the root digest of
called theroot hash the databas®. Recall that given a quer, Q(D) repre-

A change in any of the data values in the tree will change sents the answer to the query an¢tp, D), the verification
the digests on the path from the corresponding leaf node toobject for queryQ on D.
the root node. For example, if a value in the nad8 is
updated, the digests &3, N2 and N1 change; the other 4.2 Protocol I
parts of the tree are not affected. Assume that after the up-
date in'3, the new hashes d¥3's data values are/, b and In this protocol, when a user submits a query, the server

¢, respectively,, and if we know, e, f andg, then we can s required to return a message containing a root digest
recompute the digests along the path and thus compute thgjgned by the last user to perform an operation. The user
new root hash. Since the height of the tree is bounded bythen verifies the signature, calculates the new root digest,
O(log n) and the number of siblings of any node is bounded and returns a signed copy of it to the server. Thus, the user
by a constantn, for a single update we only need to know yerifies its operation on the database. Notice, howevet, tha
O(log n) other digests to recompute the root hash. this does not prevent a partition attack, where the server re
Since an insert or delete operation affects an(yog n) turns an out-of-date signed root digest (see Section 3). Our
elements of the B-tree, given the operation (insert or protocol therefore requires users to communicate eiery
delete) and the digests of thig(log n) siblings of the af- operations in order to verify that the server produced the
fected nodes, it is possible to recompute the root digest ofcurrent states for all operations. We now describe the pro-
the Merkle Tree before and after the operation has been pertocol in detail.
formed usingD(log) digests. We assume the existence of a public key infrastructure,
We now describe how the above schema enables a singléor example as in4]; it is used to verify digital signatures.
user to verify operations on the database. We assume thatVe write sign,(z) for the result of usef signing message
the current root digesM is known to the user. Given an . In this protocol,
update queryQ), the server returns the new root hash and o
the digests of the(log n) nodes required to compute the ° '_rhe server maintains the count of number of opera-
old and new root digests. We call theSglogn) digests tions performed on the database, denotedoy
the verification object of updat€), denoted byv(Q, D).
Usingv(Q, D), the user recomputes the old root digest and
verifies that it is equal to\. By doing so the user verifies
that the verification object returned by the server is cdrrec
The user then computes the new root digest of the tree andAt the beginning of the protocalgtr;, gctr; andctr are ini-
compares it with the returned new root hash. This helps totialized to0. We denote the initial state of the database by
check if the update was performed correctly. Finally, the Dy. The root digest of the initial database stateMi§ Dy),
user sets\ to the new root digest to be ready to verify the and is assumed to be common knowledge. Some jser

e Useri maintains the count of the total number of oper-
ations it has performed, denoted hyr;, and the last
value ofctr it has seen, denoted lgytr,.

Notation | Description Description of Protocol |
Q(D) | Answer to queryy 1: Initialization:
v(Q, D) | Verification object 2: Some usey is elected to sigh(M (Do) || 0) and send
ctr Total number of operations performed it to the server.
j User with the most recent operation fn
sig sig;(M(D) || ctr) 1: Query Operation:

2: Useri sendsqueryQ’ to the server.
: Serversends® to useri, where
® = (Q'(D),v(Q", D), ctr, j, sig)

is elected to sigr (M (Do) || 0) and send the result (i.e., 4 if sigis legitimatethen

sign; (h(M(Dy)]|0))) to the server. When any usiissues 5. Usersetdctr; « lctr; +1andgetr; — ctr + 1.

a queryQ, the server returnéQ (D), v(Q, D), ctr, j, sig) 6: Usersendssign,;(h(M(D') || ctr 4 1)) to server.
7
8
9

Table 1. Notation

w

where,Q(D) is the answer to quer®, v(Q, D) is the as- - else _

sociated verification object, andg = sig;(M(D) || ctr) - User terminates and reports and error.
is the root hash concatenated with the countessigned by : end if

userj. Table 1 gives an overview of this notation. 10: Server setgtr — ctr 4 1.

Given the verification objecty(Q, D), the user can
computeM (D) and hence can also compute the value of
h(M(D) || ctr). The user then verifies thaig is indeed
h(M(D) || ctr) signed by usey. We call such asig le-
gitimate because it cannot be forged by the serversidf
is legitimate, the user increments its local operation toun
letr;, updategyctr, = ctr + 1, computes the new root di-
gestM(D’), and sends a signed copyidfM (D’)|| ctr+1)
back to the server. Ifig is not legitimate, the user termi-
nates and reports an error.

: Synchronization:

: All users broadcastir; to the other users

: Useri broadcasts successgiftr; =Y, letry.

. If no user broadcasts success they terminate and report
an error.

R A

The protocol guarantees bounded deviation detection be-
cause the synchronization is guaranteed to be performed
The first user to completé operations announces a when the first user completésoperations. The communi-
“sync-up” message on the broadcast channel. On receiy.cation overhead due to verification process occurs in step 6
ing the “sync-up” message, all users broadcast their IocaIOf the query operation Wher_e an extra message is se_nt fr_om
operation countécir; after completing their current trans- the user to the server. ThIS is a constant communication
actions. Furthermore, they do not start a new transaction®vernead for each operation and hence the protocol guaran-

between the “sync-up” message and broadcast. User (€S bounded workload preservation u

ports success ifctr; = >, lctry. If all users report the

check unsuccessful, they terminate and report an error. 1f4.3 Protocol 11

the server is not malicious, there is some ustr whom

getry = >, letry. In Protocol I, we notice that after the server responds
to a query, it waits for the user to return the signature of

Theorem 4.1 Protocol | guarantees bounded deviation de- the current root digest in another message. Only after re-

tection and bounded workload preservation. ceiving this signature, the server can answer the next query
This additional blocking step affects throughput in system
Proof (sketch): Given a legitimatesig (i.e., sig = with frequent updates. Also, the protocol requires a public

sign ; (h(M(D) || ctr))), our assumptions on hash functions key infrastructure. In this section, we give a protocol that
make it intractable for the server to find a datab&4& and avoids that extra message while still guaranteeing bounded
ctr’ such thatsig = sign;(M(D") || ctr’). Hence, the deviation detection. Furthermore, this protocol does set u
server can not forge a legitimate state. Thus every incremendigital signatures, and hence does not need a PKI.

in ctr is accompanied by an increment ir¥r;, for some In this discussion, we associate the state of the database
userk. The total number of increments seen is captured by with the valueh(M (D) || ctr). We notice that every state of
> letry,. If the server presents the same legitimaiefor the database is seen by at least by two users, except the ini-
two different operations, then a single incrementin is tial state and current state which is seen by one user. While
accompanied by two increments in the, Ictr;, once for synchronizing every: operations, if the users could verify
each of the two operations. This would mean that at the this property, they are guaranteed that the states were part
synchronization stegctr; would not be equal t§ ", lctry, of a single sequence, each transition of which is seen by
for all . exactly one user.

Description of Protocol Il
2 2 1: Query Operation:
(Do, 0) 1 1 (D2.2) 1 (Dud) 5 Useri sends query)’ to the server.

O O 50 0 3: Server returns to usér (Q*(D), v(Q?, D), ctr, j) and
(D1,1) (Ds,3) increments:tr by 1.
3 3 4: User: reports error ifctr < gctr;.

(DY,2) 5: Useri computesM (D) and M (D').
6: User: updates local value
oi = 0i®h(M(D)] ctr]lj)
Figure 3. Scenario 2 ®h(M(Q(D)) || ctr + 1] i)
last; = h(M(Q(D)) || ctr +1||3)
getr, = cir+1

A first attempt towards this, would be for useto keep
a registero;, that contains the XOR of all states they see. 1. Synchronization :
During synchronization, they XOR all their registers. All . Allusers broadcast; to the other users
states that occur twice, would cancel out. Only the XOR of 3. Useri broadcasts successhf M (Dy) || 1) @ last; =

the first and last state would remain. @D, o
This however does not work for a simple reason. Take a4: If no user broadcasts success they terminate and report
the scenario depicted in Figuse The nodes are represented an error

as states and counter values. The node labels must be inter-
preted asi(M(D) || ctr). The label on the edge of a tran-
sition depicts the user that validated that transition.hia t indegree and outdegree). One of these vertices has in-
case the XOR’s of all intermediate nodes cancel out to give degree 0.
the first and last, since the intermediate nodes have even d
gree. Thus, the untrusted system can violate availabiity b
replaying the same state to multiple users.

We however notice that in this graph, there are multiple Theorem 4.2 Protocol Il guarantees bounded deviation
transition with the same end state (¢@s, 3)). Since each detection and bounded workload preservation.
user maintaingctr,, which is the last seentr value, the
two transitions cannot be seen by the same usdihis is
because, usarwould detect an error when the server pro-
duces the sametr value for two of its operations. Hence,
the transitions were seen by different users. Suppose gve ta
the new staté (M (D’)||ctr+1) of a transition with the user _ .
that performeEﬂ th(e trz);\|r|13ition,)i.e. if usesaw the transition h(M(D/) Il etr +11] j) oceurs if fqr some qu?ry by
from (D, ctr)to (D', ctr+1) then the statéD’, ctr+1), is userj, the server returne(h(Q, D), ctr, 1) and M(D") =
represented d@s(M (D')|| ctr+1]| 7). This would force only M(Q(ﬁ))' Fo.r.evefry edge therde 1S sohme uhser Whho ha.s
a single transition into a state. We claim that, this is etoug s_elen the t;art:snsm Lom one no e_tci t ZOt er. The '3';3
to guarantee that the graph is a directed path from thelinitia tial state of the database Is a special node represented by

state to the last state. We summarize the conditions of the® :Ah(M(_DO)tL‘ 1t).th hronizati . leted
graph in Lemmat.1. Since our protocol satisfies the con- ssuming that In€ synchronization step completed suc-

ditions of the Lemma, we only need that the users perform cessfully, we show that the graph representing the states of

. . the database satisfy the properties of Lemima
the XOR operation every operations to get Theorem. P1. There are no isolated verticebhis is true, since all

Lemma 4.1 Consider a directed grapi(V, E) with the nodes in the graph are part of some transition and have an

e'T'hen,G is a directed path.]

Proof(sketch): We visualize the state of the database as

h(M(D) || ctr ||) whereD is the database seen by user

1 for some query, as a node in a graph. This graph con-
tains nodes corresponding to all the states the users saw.
A directed edge from node = h(M(D) || ctr || i) to

following properties edge corresponding to that transition.
’ P2. In-degree of every vertex is at-mostSupposeu, v
P1. There are no isolated vertices andw are three nodes such that, w) and (v, w) are two
) edges (thereforgwdegree(w) > 1). Let
P2. In-degree of every vertex is at-most 1.
_ u = hash(M(D,) || cu || 0u)
P3. There are no directed cycles. v = hash(M(Dy) || o || 00)
P4. Exactly two vertices have an odd total degree (sum of w = hash(M(Dy) || cw || 0w)

Since(u,w) and (v, w) are directed edges,, = ¢, + 1 Description of Protocol Il
andc, = ¢, + 1 which means:,, = ¢,. Further useb,, 1: Query Operation:
must have performed both these operations. This means the ;. yser; sends querg): to the server. If this is the second
publisher produced the same counter valye-¢ o,) to the operation in a new epoch then along-with the query the
ownero,, twice which would have been detected at step 4 |ocal states of the previous epoch is sent with a signa-
in that Query operation. ture.

P3. There are no directed cyclesSince the counter 3: Server returns to uset (v(Q?, D), ctr,j) and incre-
value increases along every directed edge there cannot be mentsctr by 1.

any loop. 4: Useri checks ifctr > ctr; else reports error
P4. Exactly two vertices have an odd total degree. One s: Useri computesM (D) and M (D').

of these vertices has in-degree During synchronization, 6: Useri updates local value

when allo;’s are cumulatively XOR’ed, nodes with even

degree cancels oulust; is a state in the graph and is forced oi = 0 ®hM(D) | ctrllj)

to have an odd degree for some ugerFurther the initial Sh(M(Q(D)) || ctr + 1| i)

state is forced to have odd degree too. A third vertex can- last; = h(M(Q(D)) | ctr +1|4)

not have odd degree because it would appear in the XOR
and fail in the check. Hence only two nodes can have odd ”

de?:ree. L a1 it foll that th hi ingle di trieves the stored local states from the epoch before last
romLemmat.l, itiollows thatthe graphisasingle dl- - 544 yerifies consistency, i.e. checks if there exists
rected path. This means that, the server acted correctly, if ¢ ,ch that

the synchronization step terminated successfully. Sivee,
are guaranteed that the synchronization step occurs when h(M(De) || le) @ last; = @Uk
the first user completels operations this protocol guaran- k
tees bounded deviation detection. This guarantees bounded
workload preservation because because it has no extra mes-

If the server indicates start of new epoch then user
takes backup of local states andlast;. The user re-

User i informed User i stores

sages for every operation. n of the new epoch ~ SIgN(q, last) and o
N (o, last) on server User j verifies local
. states ofrom epoch e
User i's local | |
4.4 Protocol IT1 sertsoea Sta\tg?'f\las't) \ : i
””” A B —
Protocols | and Il assume that there is a broadcast chan- epoche v epoch e+t i epoch e+

nel among the users. When the number of users is large it is
unrealistic to assume a broadcast channel among all users.
Furthermore, it requires that all users to be online simulta Figure 4. Epochs in Protocol llI
neously whenever the synchronization step is done.
In this section, we present a third protocol that guaran- o
P P N from epoche at the server. Some usgrin epoche + 2

tees bounded detection where users do not have any external
o . y ?at C), takes the local states of all users from epoemnd
communication channels. However, we restrict the work-

load that the protocol permits. We assume that every useruns the synchronization check from protocol Il, i.e. cleck

performs at least two operations eveétyme units. The ad- it h(M(De) ”.le) & last; = @y, ox f(_)r somei. For each
. i . . epoch, a particular user can be assigned to do the synchro-
vantage of this solution over the previous two protocols is

. . . nization check. For verification the user needs the initial
that the users are not required to be online simultaneously. state,s(M(D,)||l.) . This it can compute from théist;
As in Protocol Il users maintain the registers and ' ese P Sti

last,. values of the previous epoch.

For this protocol we shall define one epoch toiiene Theorem 4.3 Protocol 11l guarantees detection within two

units. We assume that every user performs at least two 0pepochs assuming that every agent performs at least two op-
erations every epoch. We illustrate the protocol in terms of erations every epoch.

epochs with a time line shown in Figude Consider three

consecutive epochge + 1 ande + 2. Useri in its first The proof of this theorem is omitted due to space con-
operation in epocla + 1 (at A) is informed by the server straints.

that it entered a new epoch. It takes a back up of its last Unlike protocols | and Il, in this protocol, all the users
state from epocl. This is stored in the server in the sec- need not be online simultaneously. We note that this pro-
ond operation of epoch + 1 (at B). At the end of epoch tocol guarantees that a fault by the server will be detected
e + 1 it is guaranteed that all users have stored their stateswithin two epochs. Hence, this protocol gives a guarantee

with respect to time, while the first two protocols guarastee recommendations expressed in this material are those of the
with respect to the number of operations by a user. authors and do not necessarily reflect the views of the spon-
sors.

5 Related Work
References
Hash trees were developed by Merkle and used for effi-
cient authentication of a public file [7, 8] as well as a digi- [1] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls,

tal signature construction in [9]. Merkle's hash tree can be and S. G. Stubblebine. Flexible authentication of xml docu-
described as an authenticated dictionary data structlire, a ments. InProceedings of the 8th ACM conference on Com-
lowing efficient proofs of membership or non-membership puter and Communications Securifyages 136-145. ACM
of elements in the set. Authenticated dictionaries were Press, 2001.

adapted and enhanced to manage certificate revocation lists[2] Premkumar T. Devanbu, Michael Gertz, Chip Martel, and
in [5, 11]. Authenticated dictionaries were adapted to re- Stuart G. Stubblebine. Authentic third-party data publica
lations in [2], where algorithms based on Merkle trees and tion. In IFIP Workshop on Database Securifyages 101
refinementsin [11] are proposed for authenticating retetio 112, 2000.

and verifying basic relational queries. They assume either [3] Ronald Fagin, Joseph Y. Halpern, Moshe Y. Vardi, and
the data is static or very infrequently updated. This is be- Yoram Moses. Reasoning about knowledgeMIT Press,

cause they require the root of the Merkle tree published for ~ Cambridge, MA, USA, 1995.

every update. Extension to semistructured data was inves- [4] R. Housley, W. Ford, W. Polk, , and D. Solo. Internet x.509
tigated in [1], and implementation using B-trees considere public key infrastructure certificate and crl profile. 1999.
in [14]. Authenticating queries using the techniques above |ETF RFC2459, http://www.ietf.org/rfc/rfc2459.txt.

may require revealing some data items that are not in the [5] Paul C. Kocher. On certificate revocation and validatiom
query answer, or other information about the database in- Financial Cryptographypages 172-177, 1998.

stance [13]. It is the goal of [10, 12] to provide authenti- [6] Naor M and Nissim K. Certificate revocation and certifecat
cated answers while also maintaining certain secrecy prop- update. Technical Report MCS99-05, Weizmann Institute of
erties. Recently, techniques for proving the actual query Science, 1999.

execution for not only range queries but also more com- [7] Ralph C. Merkle. Secrecy, authentication, and public key

plicated compute-intensive data-mining queries were pro- systemsPhD thesis, Information Systems Laboratory, Stan-
posed [16]. ford University, 1979.

[8] Ralph C. Merkle. Protocols for public key cryptosysterts
6 Conclusions Symp. Security & Privagyages 122—134, 1980.

[9] Ralph C. Merkle. A certified digital signature. BRYPTQ

We have studied the problem of implementing a CVS- pages 218-238, 1989.

like multi-user data management system on an untrusted1o] Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-
server. We have formalized the notion of what it means knowledge sets. IFROCS 2003.
for an untrusted system to “behave like” a trusted system by 1 1] Moni Naor and Kobbi Nissim. Certificate revocation and

providing definitions of deviation detection and workload certificate update. IWSENIX Security Sympl998.
preservauon. We have shown that eXteT”"?" Comm“’_"c""_“orglz] Rafail Ostrovsky, Charles Rackoff, and Adam Smith. Effi
is necessary to guarantee bounded deviation detection if w cient consistency proofs for generalized queries on a com-
are required to support workloads that are typical to CVS mitted database. IFCALP, 2004.

applications. We proposed efficient protocols that use ex-
ternal communication in the form of a broadcast channel.

Possible future directions are (1) to extend these protocol

[13] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and kian
Lee Tan. Verifying completeness of relational query result
in data publishing. INSIGMOD '05: Proceedings of the

to detect exactly when the fault occurred (2) to find proto- 2005 ACM SIGMOD international conference on Manage-
cols where the clients do only constant amount of work as ment of data pages 407-418, New York, NY, USA, 2005.
compared to proportional to the number of users in the sys- ACM Press.

tem and (3) to address failures. In future work, we plan to [14] HweeHwa Pang and Kian-Lee Tan. Authenticating query

extend our protocols to address these issues. results in edge computing. I€DE, 2004.
Acknowledgments.We thank Alan Demers and Jayavel
Shanmugasundaram for helpful discussions. This work was
supported by NSF Grants 11S-0330201, 11S-0133481, IIS-
0121175, and by an E-Science grant and a gift from Mi-
crosoft Corporation. Any opinions, finding, conclusions, o

[15] Raghu Ramakrishnan and Johannes Gelbk¢abase Man-
agement SystembcGraw-Hill Higher Education, 2000.

[16] Radu Sion. Query execution assurance for outsourced
databases. IWLDB, 2005.

10

